Skip to main content

Advertisement

Log in

An experimental study on classifying spatial trajectories

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

We provide the first comprehensive study on how to classify trajectories using only their spatial representations, measured on 5 real-world datasets. Our comparison considers 20 distinct classifiers arising either as a KNN classifier of a popular distance, or as a more general type of classifier using a vectorized representation of each trajectory. We additionally develop new methods for how to vectorize trajectories via a data-driven method to select the associated landmarks, and these methods prove among the most effective in our study. These vectorized approaches are simple and efficient to use, and also provide state-of-the-art accuracy on an established transportation mode classification task. In all, this study sets the standard for how to classify trajectories, including introducing new simple techniques to achieve these results, and sets a rigorous standard for the inevitable future study on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Besse PC, Guillouet B, Loubes J-M, Royer F (2016) Review and perspective for distance-based clustering of vehicle trajectories. IEEE Trans Intell Transp Syst 17:3306–3317

    Article  Google Scholar 

  2. Buchin K, Driemel A, Gudmundsson J, Horton M, Kostitsyna I, Loffler M ( 2019) Approximating \((k,l)\)-center clustering for curves. In: SODA

  3. Driemel A, Krivosija A, Sohler C ( 2016) Clustering time series under the Frechet distance. In: ACM-SIAM Symposium on Discrete Algorithms

  4. Buchin K, Driemel A, van de L’Isle N, Nusser A ( 2019) klcluster: Center-based clustering of trajectories. In: Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 496– 499

  5. Zhang Z, Huang K, Tan T ( 2006) Comparison of similarity measures for trajectory clustering in outdoor surveillance scenes. In: 18th International Conference on Pattern Recognition. ICPR’06

  6. Astefanoaei M, Cesaretti P, Katsikouli P, Goswami M, Sarkar R ( 2018) Multi-resolution sketches and locality sensitive hashing for fast trajectory processing. In: SIGSPATIAL

  7. Cuturi M ( 2011) Fast global alignment kernels. In: Proceedings of the 28th International Conference on Machine Learning

  8. Magdy N, Sakr MA, Mostafa T, El-Bahnasy K(2015) Review on trajectory similarity measures. In: IEEE Seventh International Conference on Intelligent Computing and Information Systems. ICICIS ( 2015)

  9. Alt H, Knauer C, Wenk C (2004) Comparison of distance measures for planar curves. Algorithmica, 45–58

  10. de Freitas NCA, da Silva TLC, de Macêdo JAF, Junior LM, Cordeiro MG ( 2021) Using deep learning for trajectory classification. In: Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021)

  11. Garcia J, Concha OP, Molina JM, de Miguel G ( 2006) Trajectory classification based on machine-learning techniques over tracking data. In: IEEE 9th International Conference on Information Fusion

  12. Lin W-Y, Hsieh C-Y (2013) Kernel-based representation for 2d/3d motion trajectory retrieval and classification. Pattern Recogn 46:662–670

    Article  Google Scholar 

  13. Liua L, Liua F, Ky B (2019) Data mining-based model for motion target trajectory prediction. J Intell Fuzzy Syst 37:371–379

    Article  Google Scholar 

  14. Sbalzarini IF, Theriot J, Koumoutsakos P ( 2002) Machine learning for biological trajectory classification applications. In: Proceedings of the CTR Summer Program

  15. Sharma LK, Vyas OP, Schieder S, Akasapu AK ( 2010) Nearest neighbour classification for trajectory data. In: ICT: International Conference on Advances in Information and Communication Technologies

  16. Xu W, Zhang Y, Lu J, Wang J (2011) Hdp-hmm-scfg: a novel model for trajectory representation and classification. Procedia Eng 15:629–633

    Article  Google Scholar 

  17. Zhou F, Gao Q, Trajcevski G, Zhang K, Zhong T, Zhang F (2018) Trajectory-user linking via variational autoencoder. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence

  18. Gao Q, Zhou F, Zhang K, Trajcevski G, Luo X, Zhang F ( 2017) Identifying human mobility via trajectory embeddings. In: AAAI

  19. Junior AS, Renso C, Matwin S (2017) An active learning system for trajectory classification. IEEE Comput Graphics Appl 37(5):28–39

    Article  Google Scholar 

  20. Soleymani A, Cachat J, Robinson K, Dodge S, Kalueff AV, Weibel R (2014) Integrating cross-scale analysis in the spatial and temporal domains for classification of behavioral movement. J Spatial Inf Sci 8:1–25

    Google Scholar 

  21. Patel D, Sheng C, Hsu W, Lee ML ( 2012) Incorporating duration information for trajectory classification. In: 28th International Conference on Data Engineering

  22. Lee J-G, Han J, Li X, Cheng H (2011) Mining discriminative patterns for classifying trajectories on road networks. IEEE 9th Int Conf Inf Fusion 23(5):713–726

    Google Scholar 

  23. Dodge S, Weibel R, Forootan E (2009) Revealing the physics of movement: Comparing the similarity of movement characteristics of different types of moving objects. Comput Environ Urban Syst 33(6):419–434

    Article  Google Scholar 

  24. Lee, J.-G., Han, J., Li, X., Gonzalez, H.: Traclass: trajectory classification using hierarchical region-based and trajectory-based clustering. In: Proceedings of the VLDB Endowment. ICPR’06 ( 2008)

  25. Murray B, Perera LP (2022) Ship behavior prediction via trajectory extraction-based clustering for maritime situation awareness. J Ocean Eng Sci 7:1–13

    Article  Google Scholar 

  26. Dabiri S, Heaslip K (2018) Inferring transportation modes from gps trajectories using a convolutional neural network. Transp Res Part C 86:360–371

    Article  Google Scholar 

  27. Dabiri S, Lu C-T, Heaslip K, Reddy CK (2020) Semi-supervised deep learning approach for transportation mode identification using gps trajectory data. IEEE Trans Knowl Data Eng 32:1010–1023

    Article  Google Scholar 

  28. Endo Y, Toda H, Nishida K, Kawanobe A (2016) Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. Pacific-Asia Conf Knowl Discov Data Min 6:54–66

    Google Scholar 

  29. Fang S-H, Liao H-H, Fei Y-X, Chen K-H, Huang J-W, Lu Y-D, Tsao Y (2016) Transportation modes classification using sensors on smartphones. Sensors 16:1324

    Article  Google Scholar 

  30. Wang H, Liu G, Duan J, Zhang L ( 2017) Detecting transportation modes using deep neural network. IEICE Trans Inf & Syst 100, 1132– 1135

  31. Zheng Y, Chen Y, Li Q, Xie X, Ma W-Y ( 2008) Understanding mobility based on gps data. Proceedings of the 10th International Conference on Ubiquitous Computing. ACM 100, 312– 321

  32. Zheng Y, Xie X ( 2008) Learning transportation mode from raw gps data for geographic applications on the web. Proceedings of the 17th World Wide Web Conference 86, 247– 256

  33. Etemad M, Júnior AS, Matwin S ( 2018) Predicting transportation modes of gps trajectories using feature engineering and noise removal. In: Advances in Artificial Intelligence

  34. Varlamis I ( 2015) Evolutionary data sampling for user movement classification, in evolutionary computation. In: IEEE Congress on Evolutionary Computation, CEC 2015, Sendai, Japan

  35. Tragopoulou S, Varlamis I, Eirinaki M ( 2014) Classification of movement data concerning user’s activity recognition via mobile phones. In: Proceedings of the 4th International Conference on Web Intelligence, Mining and Semantics (WIMS14), p. 42

  36. Phillips JM, Tang P( 2019) Simple distances for trajectories via landmarks. In: ACM GIS SIGSPATIAL

  37. Phillips JM, Pourmahmood-Aghababa H ( 2021) Orientation-preserving vectorized distance between curves. In: Mathematical and Scientific Machine Learning (MSML)

  38. Cruz MO, Macedo H, Barreto R, Guimaraes A (2016) GPS Trajectories Data Set

  39. Zheng Y, Fu H, Xie X, Ma W-Y, Li Q (2011) Geolife GPS Trajectory Dataset - User Guide

  40. Duan H, Ma F, Miao L, Zhang C (2022) A semi-supervised deep learning approach for vessel trajectory classification based on ais data. Ocean Coast Manag 218:106015

    Article  Google Scholar 

  41. Meng L, Zhang S (2020) Inferring travel modes from trajectory data based on hidden markov model. Int Conf Trans Dev 2020(7):95–103

    Google Scholar 

  42. Papadopoulos AN ( 2008) Trajectory retrieval with latent semantic analysis. In: Proceedings of the 2008 ACM Symposium on Applied Computing, pp. 1089– 1094

  43. Pourmahmood-Aghababa, H., Phillips, J.M.: Classifying Spatial Trajectories (Python Implementation). https://github.com/aghababa/Classifying-Spatial-Trajectories

  44. Alt H, Godau M (1995) Computing the fréchet distance between two polygonal curves. JCG Appl 5:75–91

    MATH  Google Scholar 

  45. Guillouet, B., Hinsbergh, J.V.: A Python Package for Computing Distance Between 2D Trajectories. https://github.com/bguillouet/traj-dist

  46. Eiter T, Mannila H (1994) Computing discrete Frechet distance. Technical report, Christian Doppler Laboratory for Expert Systems

    Google Scholar 

  47. Hausdorff F (1914) Grundzüge der mengenlehre. Leipzig

  48. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. KDD Workshop 10:359–370

    Google Scholar 

  49. Salvador S, Chan P (2007) Fastdtw: Toward accurate dynamic time warping in linear time and space. Intell Data Anal 11:561–580

    Article  Google Scholar 

  50. Tanida K Python Implementation of FastDTW. https://pypi.org/project/fastdtw

  51. Cuturi M, Blondel M ( 2017) Soft-dtw: a differentiable loss function for time-series. In: Proceedings of ICML

  52. Blondel M, Python Implementation of soft-DTW. https://github.com/mblondel/soft-dtw

  53. Vlachos M, Gunopulos D, Kollios G ( 2002) Discovering similar multidimensional trajectories. In: ICDE

  54. Chen L, Özsu MT, Oria V (2005) Robust and fast similarity search for moving object trajectories. In: SIGMOD, pp. 491– 502

  55. Chen L, Ng R (2004) On the marriage of lp-norms and edit distance. Proceedings of the 30th International Conference on Very Large Data Bases (VLDB) 30, 792– 803

  56. Khaiiate-Ajami H, Pourmahmood-Aghababa H, Phillips JM (2021) Trjtrypy. https://pypi.org/project/trjtrypy

  57. Databases, in University of Illinois at Chicago MCL (2006) Real Trajectory Data. https://www.cs.uic.edu/~boxu/mp2p/gps_data.html

  58. Yuan J, Zheng Y, Zhang C, Xie W, Xie X, Sun G, Huang Y (2010) T-drive: driving directions based on taxi trajectories. In: 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS

  59. Yuan J, Zheng Y, Xie X, Sun G ( 2011) Driving with knowledge from the physical world. In: The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining

  60. Chen T, Guestrin, C ( 2016) Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785– 794

  61. Meade J, Biro D, Guilford T( 2005) Homing pigeons develop local route stereotypy. In: Proceedings of the Royal Society B, vol. 272, pp. 17– 23

  62. Mann R, Freeman R, Osborne M, Garnett R, Armstrong C, Meade J, Biro D, Guilford T, Roberts S (2011) Objectively identifying landmark use and predicting flight trajectories of the homing pigeon using gaussian processes. J R Soc Interface 8(55):210–219

    Article  Google Scholar 

  63. Mann RP, Armstrong C, Meade J, Robin F, Biro D, Guilford T (2014) Landscape complexity influences route-memory formation in navigating pigeons. Biol Let 10:1020130885

    Article  Google Scholar 

Download references

Acknowledgements

Jeff Phillips thanks his support from NSF CCF-1350888, CNS-1514520, CNS-1564287, IIS-1816149, CCF-2115677, and from Visa Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Pourmahmood-Aghababa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourmahmood-Aghababa, H., Phillips, J.M. An experimental study on classifying spatial trajectories. Knowl Inf Syst 65, 1587–1609 (2023). https://doi.org/10.1007/s10115-022-01802-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-022-01802-5

Keywords