Skip to main content

Advertisement

Log in

An in-depth and contrasting survey of meta-heuristic approaches with classical feature selection techniques specific to cervical cancer

  • Review
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Data mining and machine learning algorithms’ performance is degraded by data of high-dimensional nature due to an issue called “curse of dimensionality”. Feature selection is a hot research topic where a subset of features are selected to reduce the dimensionality and thereby increasing the accuracy of learning algorithms. Redundant and irrelevant features are eliminated. Cervical cancer is most commonly occurring disease and driving reasons for untimely mortality among ladies worldwide especially in emerging low income nations like India. However, literature shows that the early identification and exact conclusion of cervical malignant growth can increase the survival chances. The disease does not show signs of its presence in the early stages of its growth. Automated classification and diagnosis of cervical cancer using machine learning and deep learning techniques is in high demand as it allows timely, accurate and regular study of the patient’s health progress. Meta-heuristics algorithms provide a global problem independent optimal solution and applied on feature selection problem since decades. In spite of having a good number of literature, there is no survey on feature selection techniques applied to cervical cancer dataset. This paper presents a brief survey on meta-heuristic, its variants, hybrid meta-heuristic and hyper-heuristic techniques. This survey summarizes the feature selection techniques applied to the cervical cancer data to identify the research gap thereby guiding the researchers in the future research direction. The summary of categorization of the techniques such as nature-inspired or non-nature inspired and trajectory or population based is also highlighted. The survey provides a comparative literature review involving classical feature selection techniques and feature selection using metaheuristic algorithms for cervical cancer classification application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Forman G (2003) An extensive empirical study of feature selection metrics for text classification. J Mach Learn Res 3:1289–1305

    MATH  Google Scholar 

  2. Liu T, Liu S, Chen Z (2003) An evaluation on feature selection for text clustering. In: Proceedings of the 20th international conference on machine learning (ICML-2003), Washington, DC, pp 488–495

  3. Bins J, Draper BA (2001) Feature selection from huge feature sets. In: Proceedings of the 8th international conference on computer vision (ICCV-01). IEEE Computer Society, pp 159–165

  4. Muštra M, Grgić M, Delač K (2012) Breast density classification using multiple feature selection. Automatika 53:1289–1305

    Article  Google Scholar 

  5. Dessì N, Pascariello E, Pes B (2013) A comparative analysis of biomarker selection techniques. Biomed Res Int 2013:387673. https://doi.org/10.1155/2013/387673

    Article  Google Scholar 

  6. Abusamra H (2013) A comparative study of feature selection and classification methods for gene expression data of glioma. Procedia Comput Sci 23:5–14

    Article  Google Scholar 

  7. Liu C, Jiang D, Yang W (2014) Global geometric similarity scheme for feature selection in fault diagnosis. Expert Syst Appl 41(8):3585–3595

    Article  Google Scholar 

  8. Keogh E, Mueen A (2017) Curse of dimensionality. In: Sammut C, Webb GI (eds) Encyclopedia of machine learning and data mining. Springer, Boston. https://doi.org/10.1007/978-1-4899-7687-1_192

    Chapter  Google Scholar 

  9. Hastie T, Tibshirani R, Friedman J, Franklin J (2009) The elements of statistical learning. Springer Series in Statistics. Springer, New York. https://doi.org/10.1007/978-0-387-84858-7

    Book  Google Scholar 

  10. Zhao H, Sinha AP, Ge W (2009) Effects of feature construction on classification performance: an empirical study in bank failure prediction. Expert Syst Appl 36(2):2633–2644

    Article  Google Scholar 

  11. Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182

    MATH  Google Scholar 

  12. Chen H, Li T, Fan X, Luo C (2019) Feature selection for imbalanced data based on neighborhood rough sets. Inf Sci 483:1–20. https://doi.org/10.1016/j.ins.2019.01.041

    Article  Google Scholar 

  13. He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. Adv Neural Inf Process Syst 18:507–514

    Google Scholar 

  14. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238

    Article  Google Scholar 

  15. Fister I Jr, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. Elektroteh Vestn 80:1–7

    MATH  Google Scholar 

  16. Binitha S, Siva SS (2012) A survey of bio inspired optimization algortihms. Int J Soft Comput Eng 2(2):37–151

    Google Scholar 

  17. Yang XS (2015) Nature-inspired algorithms: success and challenges. In: Lagaros ND, Papadrakakis M (eds) Engineering and applied sciences optimization. Springer, Berlin, pp 129–143

    Chapter  Google Scholar 

  18. Kar AK (2016) Bio inspired computing: a review of algorithms and scope of applications. Expert Syst Appl 59:20–32. https://doi.org/10.1016/j.eswa.2016.04.018

    Article  Google Scholar 

  19. Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2011) A survey on meta-heuristic global optimization algorithms. Res J Appl Sci Eng Technol 3(6):569–578

    MATH  Google Scholar 

  20. Boussaid I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117

    Article  MathSciNet  MATH  Google Scholar 

  21. Sörensen K, Glover FW (2013) Metaheuristics. In: Gass SI, Fu MC (eds) Encyclopedia of operations research and management science. Springer, Boston. https://doi.org/10.1007/978-1-4419-1153-7_1167

    Chapter  Google Scholar 

  22. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Chapter 10—metaheuristic algorithms: a comprehensive review. In: Intelligent data-centric systems, computational intelligence for multimedia big data on the cloud with engineering applications. Academic Press, pp 185–231

  23. Anand HS, Vinod Chandra SS (2021) Nature inspired meta heuristic algorithms for optimization problems. Computing 104:251–269. https://doi.org/10.1007/s00607-021-00955-5

    Article  MathSciNet  MATH  Google Scholar 

  24. Yusta SC (2009) Different metaheuristic strategies to solve the feature selection problem. Pattern Recognit Lett 30(5):525–534

    Article  Google Scholar 

  25. Xue B, Zhang M, Brone WN, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626

    Article  Google Scholar 

  26. Lee PY, Loh WP, Chin JF (2017) Feature selection in multimedia: the state-of-the-art review. Image Vis Comput 67:29–42

    Article  Google Scholar 

  27. Remeseiro B, Bolon-Canedo V (2019) A review of feature selection methods in medical applications. Comput Biol Med 112:103375

    Article  Google Scholar 

  28. Nguyen BH, Xue B, Zhang M (2020) A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol Comput 54:100663

    Article  Google Scholar 

  29. Kothari V, Anuradha J, Shah S, Mittal P (2011) A survey on particle swarm optimization in feature selection. In: Krishna PV, Babu MR, Ariwa E (eds) Global trends in information systems and software applications, ObCom 2011, communications in computer and information science, vol 270

  30. Bin-Basir MA, Binti-Ahmad F (2014) Comparison on swarm algorithms for feature selections/reductions. Int J Sci Eng Res 5:479–486

    Google Scholar 

  31. Tran B, Xue B, Zhang M (2014) Overview of particle swarm optimisation for feature selection in classification. In: Dick G et al (eds) Simulated evolution and learning, SEAL 2014. Lecture notes in computer science, vol 8886. Springer

  32. Xue B, Zhang M, Browne WN, Yao X (2016) A survey on evolutionary computation approaches to feature selection. IEEE Trans Evol Comput 20(4):606–626

    Article  Google Scholar 

  33. Brezočnik L, Fister I, Podgorelec V (2018) Swarm intelligence algorithms for feature selection: a review. Appl Sci 8:1521

    Article  Google Scholar 

  34. Sharma M, Kaur PA (2021) Comprehensive analysis of nature-inspired meta-heuristic techniques for feature selection problem. Arch Computat Methods Eng 28:1103–1127

    Article  MathSciNet  Google Scholar 

  35. Glover F, Laguna M (1997) Tabu Search. Kluwer Academic Press, London. https://doi.org/10.1007/978-1-4615-6089-0

    Book  MATH  Google Scholar 

  36. Ferreira AJ, Figueiredo MA (2012) An unsupervised approach to feature discretization and selection. Pattern Recognit 45(9):3048–3060

    Article  Google Scholar 

  37. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550

    Article  Google Scholar 

  38. Estévez PA et al (2009) Normalized mutual information feature selection. IEEE Trans Neural Netw 20(2):189–201

    Article  MathSciNet  Google Scholar 

  39. Yamada M et al (2014) High-dimensional feature selection by feature-wise kernelized lasso. Neural Comput 26(1):185–207

    Article  MathSciNet  MATH  Google Scholar 

  40. Sandri M, Zuccolotto P (2006) Variable selection using random forests. In: Zani S, Cerioli A, Riani M, Vichi M (eds) Data analysis, classification and the forward search, studies in classification, data analysis, and knowledge organization. Springer, Berlin, pp 263–270

    Chapter  Google Scholar 

  41. Ma S, Huang J (2008) Penalized feature selection and classification in bioinformatics. Brief Bioinform 9(5):392–403

    Article  Google Scholar 

  42. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat Soc Ser B (Stat Methodol) 67(2):301–320

    Article  MathSciNet  MATH  Google Scholar 

  43. Gao W, Li Y, Hu L (2021) Multilabel feature selection with constrained latent structure shared term. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3105142

    Article  Google Scholar 

  44. Qi M, Wang T, Liu F, Zhang B, Wang J, Yi Y (2018) Unsupervised feature selection by regularized matrix factorization. Neurocomputing 273:593–610. https://doi.org/10.1016/j.neucom.2017.08.047

    Article  Google Scholar 

  45. Cadenas JM, Garrido MC, Martínez R (2013) Feature subset selection filter–wrapper based on low quality data. Expert Syst Appl 40:6241–6252

    Article  Google Scholar 

  46. Oh IS, Lee JS, Moon BR (2004) Hybrid genetic algorithms for feature selection. IEEE Trans Pattern Anal Mach Intell 26(11):1424–1437

    Article  Google Scholar 

  47. Sarafrazi S, Nezamabadi-pour H (2013) Facing the classification of binary problems with a GSA-SVM hybrid system. Math Comput Model 57(1–2):270–278

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen Q, Diao R, Su P (2012) Feature selection ensemble. Turing-100 10:289–306

    Google Scholar 

  49. Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H (2017) Feature selection: a data perspective. ACM Comput Surv 50(6):45. https://doi.org/10.1145/3136625

    Article  Google Scholar 

  50. Wang S, Tang J, Liu H (2015) Embedded unsupervised feature selection. In: Proceedings of the twenty-ninth AAAI conference on artificial intelligence, Austin, Texas, USA, pp 470-476

  51. Du L, Shen Y-D (2015) Unsupervised feature selection with adaptive structure learning. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge discovery and data mining (KDD ’15). ACM, New York, USA, pp 209–218. https://doi.org/10.1145/2783258.2783345

  52. Dash M, Liu H (1997) Feature selection for classification. Intell Data Anal 3(1):131–156

    Article  Google Scholar 

  53. Gheyas IA, Smith LS (2010) Feature subset selection in large dimensionality domains. Pattern Recognit 43(1):5–13

    Article  MATH  Google Scholar 

  54. Doak J (1992) An evaluation of feature selection methods and their application to computer security. In: CSE-92-18, UC Davis: College of Engineering. https://escholarship.org/uc/item/2jf918dh

  55. Pudil P, Novovičová J, Kittler J (1994) Floating search methods in feature selection. Pattern Recognit Lett 15(11):1119–1125

    Article  Google Scholar 

  56. Skalak DB (1994) Prototype and feature selection by sampling and random mutation hill climbing algorithms. In: Proceedings of the of 11th international conference on machine learning, pp 293–301

  57. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley, Boston

    MATH  Google Scholar 

  58. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13(5):533–549

    Article  MathSciNet  MATH  Google Scholar 

  59. Maniezzo V, Gambardella LM, de Luigi F (2004) Ant colony optimization. In: Onwubolu GC, Babu BV (eds) New optimization techniques in engineering. Studies in fuzziness and soft computing, vol 141. Springer, Berlin. https://doi.org/10.1007/978-3-540-39930-8_5

    Chapter  Google Scholar 

  60. Ferri F, Pudil P (1994) Comparative study of techniques for large-scale feature selection. Pattern Recognit Pract IV 1994:403–413

    Google Scholar 

  61. Narendra PM, Fukunaga K (1977) A branch and bound algorithm for feature subset selection. IEEE Trans Comput C–26(9):917–922

    Article  MATH  Google Scholar 

  62. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95-international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  63. Venkatesh B, Anuradha J (2019) A review of feature selection and its methods. Cybern Inf Technol 19(1):3–26

    MathSciNet  Google Scholar 

  64. Kamalov F, Thabtah F (2017) A feature selection method based on ranked vector scores of features for classification. Ann Data Sci 4:483–502. https://doi.org/10.1007/s40745-017-0116-1

    Article  Google Scholar 

  65. Huan L, Setiono R (1995) Chi2: feature selection and discretization of numeric attributes. In: Proceedings of 7th IEEE international conference on tools with artificial intelligence, pp 388–391. https://doi.org/10.1109/TAI.1995.479783

  66. Duda RO, Hart PE, Stork DG (2007) Pattern classification. J Classif 24:305–307. https://doi.org/10.1007/s00357-007-0015-9

    Article  MATH  Google Scholar 

  67. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106. https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  68. Zhao Z, Liu H (2007) Searching for interacting features. IJCAI 7:1156–1161

    Google Scholar 

  69. Kononenko I (1994) Estimating attributes: analysis and extensions of relief. In: Machine learning: ECML-94. Springer, pp 171–182

  70. Alelyani S, Tang J, Liu H (2013) Feature selection for clustering: a review. In: Aggarwal C, Reddy C (eds) Data clustering: algorithms and applications. CRC Press, Boca Raton

    Google Scholar 

  71. Zhao Z, Liu Z (2007) Spectral feature selection for supervised and unsupervised learning. In: ICML ’07: proceedings of the 24th international conference on Machine learning, New York, pp 1151–1157

  72. He X, Cai D, Niyogi P (2005) Laplacian score for feature selection. In: International conference on neural information processing systems. MIT Press, Cambridge, pp 507–514

  73. Liu R, Yang N, Ding X, Ma L (2009) An unsupervised feature selection algorithm: Laplacian score combined with distance-based entropy measure. In: 2009 third international symposium on intelligent information technology application, pp 65–68. https://doi.org/10.1109/IITA.2009.390

  74. Song Q, Ni J, Wang G (2013) A fast clustering-based feature subset selection algorithm for high-dimensional data. IEEE Trans Knowl Data Eng 25(1):1–14

    Article  Google Scholar 

  75. Hall MA (1999) Correlation-based feature selection for machine learning. Ph.D. thesis, University of Waikato, Hamilton

  76. Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151(1–2):155–176. https://doi.org/10.1016/S0004-3702(03)00079-1

    Article  MathSciNet  MATH  Google Scholar 

  77. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  Google Scholar 

  78. Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the 20th international conference on machine learning (ICML-2003), Washington, DC, USA. AAAI Press, pp 856–863

  79. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5:537–550

    Article  Google Scholar 

  80. Verleysen M, Rossi F, François D (2009) Advances in feature selection with mutual information. In: Biehl M, Hammer B, Verleysen M, Villmann T (eds) Similarity-based clustering, vol 5400. Lecture notes in computer science. Springer, Berlin. https://doi.org/10.1007/978-3-642-01805-3_4

    Chapter  Google Scholar 

  81. Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532. https://doi.org/10.1016/j.eswa.2015.07.007

    Article  Google Scholar 

  82. Li Y, Dong M, Hua J (2008) Localized feature selection for clustering. Pattern Recognit Lett 29(1):10–18. https://doi.org/10.1016/j.patrec.2007.08.012

    Article  Google Scholar 

  83. Modha DS, Scott Spangler W (2003) Feature weighting in k-means clustering. Mach Learn 52(3):217–237

    Article  MATH  Google Scholar 

  84. Cai D, Zhang C, He X (2010) Unsupervised feature selection for multi-cluster data. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, pp 333–342

  85. Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene selection for cancer classification using support vector machines. Mach Learn 46(1–3):389–422. https://doi.org/10.1023/A:1012487302797

    Article  MATH  Google Scholar 

  86. Wang ZC, Li MQ, Li JZ (2015) A multi-objective evolutionary algorithm for feature selection based on mutual information with a new redundancy measure. Inf Sci 307:73–88

    Article  MathSciNet  MATH  Google Scholar 

  87. Che JX, Yang YL, Li L, Bai XY, Zhang SH, Deng CZ (2017) Maximum relevance minimum common redundancy feature selection for nonlinear data. Inf Sci 409–410:68–86

    Article  MATH  Google Scholar 

  88. Chen ZJ, Wu CZ, Zhang YS, Huang Z, Ran B, Zhong M, Lyu NC (2015) Feature selection with redundancy-complementariness dispersion. Knowl Based Syst 89:203–217

    Article  Google Scholar 

  89. Wang J, Wei JM, Yang ZL, Wang SQ (2017) Feature selection by maximizing independent classification information. IEEE Trans Knowl Data Eng 29(4):828–841

    Article  Google Scholar 

  90. Gao WF, Hu L, Zhang P, Feng W (2018) Feature selection by integrating two groups of feature evaluation criteria. Expert Syst Appl 110:11–19

    Article  Google Scholar 

  91. Li C, Luo X, Qi YP, Gao ZB, Lin XH (2020) A new feature selection algorithm based on relevance, redundancy and complementarity. Comput Biol Med 119:103667

    Article  Google Scholar 

  92. Wang LX, Jiang SY, Jiang SY (2021) A feature selection method via analysis of relevance, redundancy, and interaction. Expert Syst Appl 183:115365

    Article  Google Scholar 

  93. Jihong W, Hongmei C, Tianrui L, Wei H, Min L, Chuan L (2022) R2CI: information theoretic-guided feature selection with multiple correlations. Pattern Recognit. https://doi.org/10.1016/j.patcog.2022.108603

    Article  Google Scholar 

  94. Gao W, Hu L, Zhang P (2018) Class-specific mutual information variation for feature selection. Pattern Recognit 79:328–339. https://doi.org/10.1016/j.patcog.2018.02.020

    Article  Google Scholar 

  95. Gao W, Hu L, Li Y, Zhang P (2021) Preserving similarity and staring decisis for feature selection. IEEE Trans Artif Intell 2(6):584–593. https://doi.org/10.1109/TAI.2021.3105084

    Article  Google Scholar 

  96. Hu L, Gao W, Zhao K, Zhang P, Wang F (2017) Feature selection considering two types of feature relevancy and feature interdependency, vol 93. Pergamon Press, Oxford. https://doi.org/10.1016/j.eswa.2017.10.016

    Book  Google Scholar 

  97. Zhang P, Gao W (2020) Feature selection considering uncertainty change ratio of the class label. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2020.106537

    Article  Google Scholar 

  98. Lin D, Tang X (2006) Conditional infomax learning: an integrated framework for feature extraction and fusion. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision—ECCV 2006. Lecture notes in computer science, vol 3951. https://doi.org/10.1007/11744023_6

  99. Meyer PE, Schretter C, Bontempi G (2008) Information-theoretic feature selection in microarray data using variable complementarity. IEEE J Sel Top Signal Process 2(3):261–274. https://doi.org/10.1109/JSTSP.2008.923858

    Article  Google Scholar 

  100. Yang HH, Moody J (2000) Data visualization and feature selection: new algorithms for nongaussian data. In: Advances in neural information processing systems, pp 687–693

  101. Bennasar M, Hicks Y, Setchi R (2015) Feature selection using joint mutual information maximisation. Expert Syst Appl 42(22):8520–8532

    Article  Google Scholar 

  102. Das AK, Kumar S, Jain S et al (2020) An information-theoretic graph-based approach for feature selection. Sādhanā. https://doi.org/10.1007/s12046-019-1238-2

    Article  MathSciNet  Google Scholar 

  103. Goswami S, Das AK, Guha P et al (2019) An approach of feature selection using graph-theoretic heuristic and hill climbing. Pattern Anal Appl 22:615–631. https://doi.org/10.1007/s10044-017-0668-x

    Article  MathSciNet  Google Scholar 

  104. Zheng L, Chao F, Parthaláin NM, Zhang D, Shen Q (2021) Feature grouping and selection: a graph-based approach. Inf Sci 546:1256–1272. https://doi.org/10.1016/j.ins.2020.09.022

    Article  MathSciNet  MATH  Google Scholar 

  105. Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2020) A robust graph-based semi-supervised sparse feature selection method. Inf Sci 531:13–30. https://doi.org/10.1016/j.ins.2020.03.094

    Article  MathSciNet  MATH  Google Scholar 

  106. Wan JG, Chen H, Li T, Yuan Z, Liu J, Huang W (2021) Interactive and complementary feature selection via fuzzy multigranularity uncertainty measures. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2021.3112203

    Article  Google Scholar 

  107. Wan J, Chen H, Li T, Yang X, Sang B (2021) Dynamic interaction feature selection based on fuzzy rough set. Inf Sci 581:891–911. https://doi.org/10.1016/j.ins.2021.10.026

    Article  Google Scholar 

  108. Wan J, Chen H, Li T, Sang B, Yuan Z (2022) Feature grouping and selection with graph theory in robust fuzzy rough approximation space. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3185285

    Article  Google Scholar 

  109. Prasetiyo B, Alamsya, Muslim MA, Baroroh N (2021) Evaluation of feature selection using information gain and gain ratio on bank marketing classification using Naïve Bayes. In: Journal of physics: conference series, vol 1918. Mathematics and its application

  110. Zhang J, Xu D, Hao K, Zhang Y, Chen W, Liu J, Gao R, Wu C, De MY (2021) FS-GBDT: identification multicancer-risk module via a feature selection algorithm by integrating Fisher score and GBDT. Brief Bioinform 22(3):bbaa189

    Article  Google Scholar 

  111. Shah SMS, Shah FA, Hussain SA, Batool S (2020) Support vector machines-based heart disease diagnosis using feature subset, wrapping selection and extraction methods. Comput Electr Eng. https://doi.org/10.1016/j.compeleceng.2020.106628

    Article  Google Scholar 

  112. El Habib DM, Settouti N, Bechar MEA, Boublenza A, Chikh A (2021) A new correlation-based approach for ensemble selection in random forests. Int J Intell Comput Cybern 14(2):251–268

    Article  Google Scholar 

  113. Sumaiya TI, Aswani KC (2017) Intrusion detection model using fusion of chi-square feature selection and multi class SVM. J King Saud Univ Comput Inf Sci 29(4):462–472

    Google Scholar 

  114. Li M, Wang H, Yang L, Liang Y, Shang Z, Wan H (2020) Fast hybrid dimensionality reduction method for classification based on feature selection and grouped feature extraction. Expert Syst Appl 150:113277

    Article  Google Scholar 

  115. Abdulrazaq MB, Mahmood MR, Zeebaree SRM, Abdulwahab MH, Zebari RR, Sallow AB (2021) An analytical appraisal for supervised classifiers’ performance on facial expression recognition based on relief-F feature selection. In: Journal of physics: conference series, vol 1804. https://doi.org/10.1088/1742-6596/1804/1/012055

  116. Shukla AK, Pippal SK, Gupta S, Ramachandra Reddy B, Tripathi D (2020) Knowledge discovery in medical and biological datasets by integration of relief-F and correlation feature selection techniques. J Intell Fuzzy Syst 38(5):6637–6648

    Article  Google Scholar 

  117. Kavitha KR, Prakasan A, Dhrishya PJ (2020) Score-Based feature selection of gene expression data for cancer classification. In: Fourth international conference on computing methodologies and communication (ICCMC), pp 261–266. https://doi.org/10.1109/ICCMC48092.2020.ICCMC-00049

  118. Shahee SA, Ananthakumar U (2020) An effective distance based feature selection approach for imbalanced data. Appl Intell 50:717–745. https://doi.org/10.1007/s10489-019-01543-z

    Article  Google Scholar 

  119. Praveena HD, Subhas C, Naidu KR (2021) Automatic epileptic seizure recognition using reliefF feature selection and long short term memory classifier. J Ambient Intell Hum Comput 12:6151–6167

    Article  Google Scholar 

  120. Jagan Mohan N, Murugan R, Goel T et al (2021) A novel four-step feature selection technique for diabetic retinopathy grading. Phys Eng Sci Med 44:1351–1366. https://doi.org/10.1007/s13246-021-01073-4

    Article  Google Scholar 

  121. Cui X, Li Y, Fan J et al (2021) A novel filter feature selection algorithm based on relief. Appl Intell 52(5):5063–5081

    Article  Google Scholar 

  122. Sarkar SS, Sheikh KH, Mahanty A et al (2021) A harmony search-based wrapper–filter feature selection approach for microstructural image classification. Integr Mater Manuf Innov 10:1–19

    Article  Google Scholar 

  123. Nouri-Moghaddam B, Ghazanfari M, Fathian M (2021) A novel multi-objective forest optimization algorithm for wrapper feature selection. Expert Syst Appl 175:114737

    Article  Google Scholar 

  124. Abu Adla YA, Raydan DG, Charaf MZJ, Saad RA, Nasreddine J, Diab MO (2021) Automated detection of polycystic ovary syndrome using machine learning techniques. In: Sixth international conference on advances in biomedical engineering (ICABME), pp 208–212

  125. Hanan M, Abdulrahman A, Daehan W (2018) Predictive modeling for diagnosis of cervical cancer with feature selection. In: IISE annual conference, Orlando, Florida

  126. Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549. https://doi.org/10.1016/0305-0548(86)90048-1

    Article  MathSciNet  MATH  Google Scholar 

  127. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: overview and conceptual comparison. ACM Comput Surv 35:268–308

    Article  Google Scholar 

  128. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  129. Harifi S, Khalilian M, Mohammadzadeh J, Ebrahimnejad S (2019) Emperor penguins colony: a new metaheuristic algorithm for optimization. Evol Intell 12(2):211–226

    Article  Google Scholar 

  130. Gustavo M, Bruno B, Joaquín I, Edevar L (2020) Grand tour algorithm: novel swarm-based optimization for high-dimensional problems. Processes 8:980

    Article  Google Scholar 

  131. Jian-Kai X, Bo S (2020) A novel swarm intelligence optimization approach: sparrow search algorithm. Syst Sci Control Eng 8:22–34. https://doi.org/10.1080/21642583.2019.1708830

    Article  Google Scholar 

  132. Khishe M, Mosavi MR (2020) Chimp optimization algorithm. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.113338

    Article  Google Scholar 

  133. Mandal S (2018) Elephant swarm water search algorithm for global optimization. Sādhanā. https://doi.org/10.1007/s12046-017-0780-z

    Article  MathSciNet  MATH  Google Scholar 

  134. Zhiheng W, Jianhua L (2021) Flamingo search algorithm: a new swarm intelligence optimization algorithm. IEEE Access 9:88564–88582. https://doi.org/10.1109/ACCESS.2021.3090512

    Article  Google Scholar 

  135. Naruei I, Keynia F (2021) Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems. Eng Comput. https://doi.org/10.1007/s00366-021-01438-z

    Article  Google Scholar 

  136. Sumit K, Pradeep J, Ghanshyam T, Premkumar M, Hassan HA (2021) MOPGO: a new physics-based multi-objective plasma generation optimizer for solving structural optimization problems. IEEE Access 9:84982–85016. https://doi.org/10.1109/ACCESS.2021.3087739

    Article  Google Scholar 

  137. Karami H, Anaraki MV, Farzin S, Mirjalili S (2021) Flow direction algorithm (FDA): a novel optimization approach for solving optimization problems. Comput Ind Eng. https://doi.org/10.1016/j.cie.2021.107224

    Article  Google Scholar 

  138. Kashan AH, Balavand A, Karimiyan S (2021) The find-fix-finish-exploit-analyze (F3EA) meta-heuristic algorithm with an extended constraint handling technique for constrained optimization. In: Kulkarni AJ, Mezura-Montes E, Wang Y, Gandomi AH, Krishnasamy G (eds) Constraint handling in metaheuristics and applications. Springer, Berlin. https://doi.org/10.1007/978-981-33-6710-4_1

    Chapter  MATH  Google Scholar 

  139. Mohamed AW, Hadi AA, Mohamed AK (2020) Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int J Mach Learn Cybern 11:1501–1529. https://doi.org/10.1007/s13042-019-01053-x

    Article  Google Scholar 

  140. Guha R, Ghosh S, Ghosh KK, Cuevas E, Perez-Cisneros M, Sarkar R (2022) Groundwater flow algorithm: a novel hydro-geology based optimization algorithm. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3222489

    Article  Google Scholar 

  141. Ghosh K, Guha R, Bera SK et al (2021) S-shaped versus V-shaped transfer functions for binary Manta ray foraging optimization in feature selection problem. Neural Comput Appl 33:11027–11041. https://doi.org/10.1007/s00521-020-05560-9

    Article  Google Scholar 

  142. Guha R, Khan AH, Singh PK, Sarkar R, Bhattacharjee D (2021) CGA: a new feature selection model for visual human action recognition. Neural Comput Appl 33(10):5267–5286. https://doi.org/10.1007/s00521-020-05297

    Article  Google Scholar 

  143. Civicioglu P (2012) Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm. Comput Geosci 46:229–247

    Article  Google Scholar 

  144. Civicioglu P (2013) Backtracking search optimization algorithm for numerical optimization problems. Appl Math Comput 219(15):8121–8144. https://doi.org/10.1016/j.amc.2013.02.017

    Article  MathSciNet  MATH  Google Scholar 

  145. Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18. https://doi.org/10.1016/j.knosys.2014.07.025

    Article  Google Scholar 

  146. Holland JH (1992) Genetic algorithms. Sci Am 267(1):44–50

    Article  Google Scholar 

  147. Dorigo M, Gambardella LM (1997) Ant colony system, a cooperative learning approach to the travelling salesman problem. IEEE Trans Evol Comput 1(1):214. https://doi.org/10.1109/4235.58589

    Article  Google Scholar 

  148. Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J Glob Optim 39:459–471. https://doi.org/10.1007/s10898-007-9149-x

    Article  MathSciNet  MATH  Google Scholar 

  149. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN’95—international conference on neural networks, vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968

  150. Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

    Article  MATH  Google Scholar 

  151. Yang X-S, Suash D (2009) Cuckoo search via Lévy flights. In: World congress on nature & biologically inspired computing (NaBIC 2009), pp 210–214. https://doi.org/10.1109/NABIC.2009.5393690

  152. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization (NICSO2010), vol 284. Studies in computational intelligence, pp 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004

  153. Yang XS (2009) Firefly algorithms for multimodal optimization. In: Watanabe O, Zeugmann T (eds) Stochastic algorithms: foundations and applications. SAGA 2009, Lecture notes in computer science, vol 5792. https://doi.org/10.1007/978-3-642-04944-6_14

  154. Mergos PE, Yang XS (2021) Flower pollination algorithm parameters tuning. Soft Comput 25:14429–14447. https://doi.org/10.1007/s00500-021-06230-1

    Article  Google Scholar 

  155. Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845

    Article  MathSciNet  MATH  Google Scholar 

  156. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  157. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98

    Article  Google Scholar 

  158. Mirjalili S (2015) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective discrete, and multiobjective problems. Neural Comput Appl 27(4):1053–1073

    Article  MathSciNet  Google Scholar 

  159. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67

    Article  Google Scholar 

  160. Saremi S, Mirjalili S, Lewis A (2017) Grasshopper optimisation algorithm: theory and application. Adv Eng Softw 105:30–47

    Article  Google Scholar 

  161. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  162. Zolghadr-Asli B, Bozorg-Haddad O, Chu X (2018) Crow search algorithm (CSA). In: Bozorg-Haddad O (ed) Advanced optimization by nature-inspired algorithms, vol 720. Studies in computational intelligence. Springer, Singapore, pp 143–149

    Google Scholar 

  163. Hatamlou A (2013) Black hole: a new heuristic optimization approach for data clustering. Inf Sci 222:175–184. https://doi.org/10.1016/j.ins.2012.08.023

    Article  MathSciNet  Google Scholar 

  164. Pan W-T (2012) A new fruit fly optimization algorithm: taking the financial distress model as an example. Knowl Based Syst 26:69–74. https://doi.org/10.1016/j.knosys.2011.07.001

    Article  Google Scholar 

  165. Uymaz SA, Tezel G, Yel E (2015) Artificial algae algorithm (AAA) for nonlinear global optimization. Appl Soft Comput 31(C):153–171. https://doi.org/10.1016/j.asoc.2015.03.003

    Article  Google Scholar 

  166. Doğan B, Ölmez T (2015) A new metaheuristic for numerical function optimization: vortex search algorithm. Inf Sci 293:125–145. https://doi.org/10.1016/j.ins.2014.08.053

    Article  Google Scholar 

  167. Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872

    Article  Google Scholar 

  168. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst 191:105190. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  169. Pierezan J, Coelho LDS (2018) Coyote optimization algorithm: a new metaheuristic for global optimization problems. In: IEEE congress on evolutionary computation (CEC), pp 1–8. https://doi.org/10.1109/CEC.2018.8477769

  170. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  171. Fausto F, Cuevas E, Valdivia A, González A (2017) A global optimization algorithm inspired in the behavior of selfish herds. Biosystems 160:39–55. https://doi.org/10.1016/j.biosystems.2017.07.010

    Article  Google Scholar 

  172. Zhao W, Wang L, Zhang Z (2019) Atom search optimization and its application to solve a hydrogeologic parameter estimation problem. Knowl Based Syst 163:283–304. https://doi.org/10.1016/j.knosys.2018.08.030

    Article  Google Scholar 

  173. Arora S, Singh S (2019) Butterfly optimization algorithm: a novel approach for global optimization. Soft Comput 23(3):715–734

    Article  Google Scholar 

  174. Shi Y (2011) Brain storm optimization algorithm. In: Tan Y, Shi Y, Chai Y, Wang G (eds) Advances in swarm intelligence, ICSI 2011. Lecture notes in computer science, vol 6728. https://doi.org/10.1007/978-3-642-21515-5_36

  175. Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans 53(4):1168–1183. https://doi.org/10.1016/j.isatra.2014.03.018

    Article  Google Scholar 

  176. Rao RV, Savsani VJ, Vakharia DP (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 43(3):303–315. https://doi.org/10.1016/j.cad.2010.12.015

    Article  Google Scholar 

  177. Venkata Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimization problems. Int J Ind Eng Comput 7:19–34. https://doi.org/10.5267/j.ijiec.2015.8.004

    Article  Google Scholar 

  178. Mohamed AW, Hadi AA, Mohamed AK (2020) Gaining-sharing knowledge based algorithm for solving optimization problems: a novel nature-inspired algorithm. Int J Mach Learn Cybern 11:1501–1529. https://doi.org/10.1007/s13042-019-01053-x

    Article  Google Scholar 

  179. He S, Wu QH, Saunders JR (2009) Group search optimizer: an optimization algorithm inspired by animal searching behavior. Trans Evol Comput 13:973–990. https://doi.org/10.1109/TEVC.2009.2011992

    Article  Google Scholar 

  180. Seyed-Alireza A (2016) Human behavior-based optimization: a novel metaheuristic approach to solve complex optimization problems. Neural Comput Appl 28(Suppl 1):233–244. https://doi.org/10.1007/s00521-016-2334-4

    Article  Google Scholar 

  181. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Metaheuristic algorithms: a comprehensive review. In: Sangaiah AK, Zhang Z, Sheng M (eds) Computational intelligence for multimedia big data on the cloud with engineering applications. Elsevier, Amsterdam, pp 185–231. https://doi.org/10.1016/B978-0-12-813314-9.00010-4

    Chapter  Google Scholar 

  182. Talbi EG (2009) Metaheuristics: from design to implementation. Wiley, Hoboken

    Book  MATH  Google Scholar 

  183. Birattari M, Paquete L, Stutzle T, Varrentrapp K (2001) Classification of metaheuristics and design of experiments for the analysis of components

  184. Abdel-Basset M, Abdel-Fatah L, Sangaiah AK (2018) Chapter 10—metaheuristic algorithms: a comprehensive review. In: Intelligent data-centric systems, computational intelligence for multimedia big data on the cloud with engineering applications. Academic Press, pp 185–231. https://doi.org/10.1016/B978-0-12-813314-9.00010-4

  185. Xue Y, Zhu H, Neri F (2022) A self-adaptive multi-objective feature selection approach for classification problems. Integr Comput-Aided Eng 29(1):3–21. https://doi.org/10.3233/ICA-210664

    Article  Google Scholar 

  186. Yu S, Jia Y, Hu X, Ni H, Wang L (2021) Feature selection based on a modified adaptive human learning optimization algorithm. In: Han Q, McLoone S, Peng C, Zhang B (eds) Intelligent equipment, robots, and vehicles, vol 1469. Springer, Singapore. https://doi.org/10.1007/978-981-16-7213-2_76

    Chapter  Google Scholar 

  187. Chen Y-P, Li Y, Wang G, Zheng Y-F, Xu Q, Fan J-H, Cui X-T (2017) A novel bacterial foraging optimization algorithm for feature selection. Expert Syst Appl 83(C):1–17. https://doi.org/10.1016/j.eswa.2017.04.019

    Article  Google Scholar 

  188. Le TM, Pham TN, Dao ST (2021) A novel wrapper-based feature selection for heart failure prediction using an adaptive particle swarm grey wolf optimization. In: Marques G, Kumar Bhoi A, de la Torre DI, Garcia-Zapirain B (eds) Enhanced telemedicine and e-health, vol 410. Studies in fuzziness and soft computing. Springer, Cham. https://doi.org/10.1007/978-3-030-70111-6_15

    Chapter  Google Scholar 

  189. Tang R, Fong S, Dey N (2018) Metaheuristics and chaos theory. In: Al Naimee KAM (ed) Chaos theory. Intech, Rijeka. https://doi.org/10.5772/intechopen.72103

    Chapter  Google Scholar 

  190. Kumar S, John B (2021) A novel Gaussian based particle swarm optimization gravitational search algorithm for feature selection and classification. Neural Comput Appl 33:12301–12315. https://doi.org/10.1007/s00521-021-05830-0

    Article  Google Scholar 

  191. Hussien AG, Heidari AA, Ye X et al (2022) Boosting whale optimization with evolution strategy and Gaussian random walks: an image segmentation method. Eng Comput. https://doi.org/10.1007/s00366-021-01542-0

    Article  Google Scholar 

  192. Sagban R, Marhoon HA, Alubady R (2020) Hybrid bat-ant colony optimization algorithm for rule-based feature selection in health care. Int J Electr Comput Eng 10(6):6655–6663. https://doi.org/10.11591/ijece.v10i6.pp6655-6663

    Article  Google Scholar 

  193. Vinod Chandra SS, Anand HS (2022) Nature inspired meta heuristic algorithms for optimization problems. Computing 104:251–269. https://doi.org/10.1007/s00607-021-00955-5

    Article  MathSciNet  MATH  Google Scholar 

  194. İlker G, Burcin OF (2021) Q-learning and hyper-heuristic based algorithm recommendation for changing environments. Eng Appl Artif Intell 102:104284

    Article  Google Scholar 

  195. Ibrahim RA, Elaziz MA, Ewees AA, El-Abd M, Songfeng L (2021) New feature selection paradigm based on hyper-heuristic technique. Appl Math Model 98:14–37

    Article  MathSciNet  MATH  Google Scholar 

  196. Piri J, Mohapatra P (2021) An analytical study of modified multi-objective Harris Hawk optimizer towards medical data feature selection. Comput Biol Med 135:104558

    Article  Google Scholar 

  197. Duan L, Yang S, Zhang D (2021) Multilevel thresholding using an improved cuckoo search algorithm for image segmentation. J Supercomput 77:6734–6753. https://doi.org/10.1007/s11227-020-03566-7

    Article  Google Scholar 

  198. Garcia JCS, Tanaka H, Giannetti N, Sei Y, Saito K, Houfuku M, Takafuji R (2022) Multiobjective geometry optimization of microchannel heat exchanger using real-coded genetic algorithm. Appl Therm Eng 202:117821

    Article  Google Scholar 

  199. Feng Z et al (2020) Electric energy management method based on binary genetic algorithm. In: 2020 IEEE 9th joint international information technology and artificial intelligence conference (ITAIC), pp 1222–1225. https://doi.org/10.1109/ITAIC49862.2020.9338825

  200. Abbasi M, Rafiee M, Khosravi MR et al (2020) An efficient parallel genetic algorithm solution for vehicle routing problem in cloud implementation of the intelligent transportation systems. J Cloud Comput 9:6. https://doi.org/10.1186/s13677-020-0157-4

    Article  Google Scholar 

  201. Banerjee PS, Mandal SN, De D et al (2022) CGARP: chaos genetic algorithm-based relay node placement for multifaceted heterogeneous wireless sensor networks. Innov Syst Softw Eng 1:1. https://doi.org/10.1007/s11334-022-00439-5

    Article  Google Scholar 

  202. Cheng Z, Wang L, Tang B, Li H (2022) A hybrid genetic algorithm for flexible job shop scheduling problems. In: Jia Y, Zhang W, Fu Y, Yu Z, Zheng S (eds) Proceedings of 2021 Chinese intelligent systems conference. Lecture notes in electrical engineering, vol 805. https://doi.org/10.1007/978-981-16-6320-8_40

  203. Pang LM, Ishibuchi H, Shang K (2021) Using a genetic algorithm-based hyper-heuristic to tune MOEA/D for a set of benchmark test problems. In: Ishibuchi H et al (eds) Evolutionary multi-criterion optimization, EMO 2021. Lecture notes in computer science, vol 12654. https://doi.org/10.1007/978-3-030-72062-9_14

  204. Jena L, Mishra S, Nayak S, Ranjan P, Mishra MK (2021) Variable optimization in cervical cancer data using particle swarm optimization. In: Mallick PK, Bhoi AK, Chae GS, Kalita K (eds) Advances in electronics, communication and computing, vol 709. Lecture notes in electrical engineering. Springer, Singapore

    Chapter  Google Scholar 

  205. Kuanr M, Mohapatra P, Piri J (2021) Health recommender system for cervical cancer prognosis in women. In: 6th international conference on inventive computation technologies (ICICT), pp 673–679. https://doi.org/10.1109/icict50816.2021.93585

  206. Rachna J, Saurabh SR, Shivam B, Surbhi G, Yash U (2019) Optimized model for cervical cancer detection using binary cuckoo search. Recent Patents Comput Sci 12(4):293-303(11)

    Article  Google Scholar 

  207. Sagban R, Marhoon HA, Alubady R (2020) Hybrid bat-ant colony optimization algorithm for rule-based feature selection in health care. Int J Electr Comput Eng 10(6):6655–6663

    Google Scholar 

  208. Anter AM, Azar AT, Fouad KM (2019) Intelligent hybrid approach for feature selection. In: Handbook of experimental pharmacology, pp 71–79. https://doi.org/10.1007/978-3-030-14118-9_8

  209. Sawhney R, Mathur P, Shankar R (2018) A Firefly Algorithm Based Wrapper-Penalty Feature Selection Method for Cancer Diagnosis. Lect Notes Comput Sci, 438–449

  210. Khan IU, Aslam N, Alshehri R, Alzahrani S, Alghamdi M, Almalki A, Balabeed M (2021) Cervical cancer diagnosis model using extreme gradient boosting and bioinspired firefly optimization. In: Scientific programming, vol 2021, Article ID 5540024, pp 1–10. https://doi.org/10.1155/2021/5540024

  211. Elgamal ZM, Yasin NBM, Tubishat M, Alswaitti M, Mirjalili S (2020) An improved Harris hawks optimization algorithm with simulated annealing for feature selection in the medical field. IEEE Access 8:186638–186652. https://doi.org/10.1109/ACCESS.2020.3029728

    Article  Google Scholar 

  212. Tripathi AK, Garg P, Tripathy A, Vats N, Gupta D, Khanna A (2020) Prediction of cervical cancer using chicken swarm optimization. In: Khanna A, Gupta D, Bhattacharyya S, Snasel V, Platos J, Hassanien A (eds) International conference on innovative computing and communications. Advances in intelligent systems and computing, vol 1087. Springer, Singapore

  213. Adamu A, Abdullahi M, Junaidu SB, Hassan IH (2021) An hybrid particle swarm optimization with crow search algorithm for feature selection. Mach Learn Appl. https://doi.org/10.1016/j.mlwa.2021.100108

    Article  Google Scholar 

  214. Iliyasu AM, Fatichah CA (2017) Quantum hybrid PSO combined with fuzzy k-NN approach to feature selection and cell classification in cervical cancer detection. Sensors (Basel, Switzerland) 17:2935

    Article  Google Scholar 

  215. Dong N, Zhai Md, Zhao L et al (2021) Cervical cell classification based on the CART feature selection algorithm. J Ambient Intell Hum Comput 12:1837–1849

    Article  Google Scholar 

  216. Basak H, Kundu R, Chakraborty S et al (2021) Cervical cytology classification using PCA and GWO enhanced deep features selection. SN Comput Sci 2(5):369

    Article  Google Scholar 

  217. https://www.kaggle.com/datasets/prahladmehandiratta/cervical-cancer-largest-dataset-sipakmed

  218. http://mdelab.aegean.gr/downloads

  219. Chaudhari P, Agarwal H (2018) Improving feature selection using elite breeding QPSO on gene data set for cancer classification. Intell Eng Inform. https://doi.org/10.1007/978-981-10-7566-7_22

    Article  Google Scholar 

  220. Geeitha S, Thangamani M (2018) Incorporating EBO-HSIC with SVM for gene selection associated with cervical cancer classification. J Med Syst 42(11):225. https://doi.org/10.1007/s10916-018-1092-5

    Article  Google Scholar 

  221. Anita S, Satish C (2017) Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl Soft Comput 52:64–80. https://doi.org/10.1016/j.asoc.2016.12.022

    Article  Google Scholar 

  222. Setiawan QS, Rustam Z, Pandelaki J (2021) Comparison of Naive Bayes and support vector machine with grey wolf optimization feature selection for cervical cancer data classification. In: 2021 international conference on decision aid sciences and application (DASA), pp 451–455. https://doi.org/10.1109/DASA53625.2021.9682329

  223. Sahoo A, Satish C (2016) Improved cervix lesion classification using multi-objective binary firefly algorithm-based feature selection. Int J Bio-Inspired Comput 8(6):367–378. https://doi.org/10.1504/IJBIC.2016.081326

    Article  Google Scholar 

  224. Singh R (2020) A gene expression data classification and selection method using hybrid meta-heuristic technique. ICST Trans Scalable Inf Syst. https://doi.org/10.4108/EAI.13-7-2018.159917

    Article  Google Scholar 

  225. Agrawal V, Chandra S (2015) Feature selection using artificial bee colony algorithm for medical image classification. In: 2015 eighth international conference on contemporary computing (IC3), pp 171–176. https://doi.org/10.1109/ic3.2015.7346674

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception. The first draft of the manuscript was written by SaK and further refined by SuK. Figures and tables are prepared by SaK. All the authors read and contributed to the submitted version of the manuscript.

Corresponding author

Correspondence to Sangeeta Kurman.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurman, S., Kisan, S. An in-depth and contrasting survey of meta-heuristic approaches with classical feature selection techniques specific to cervical cancer. Knowl Inf Syst 65, 1881–1934 (2023). https://doi.org/10.1007/s10115-022-01825-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-022-01825-y

Keywords

Navigation