Skip to main content
Log in

An action–reaction influence model relying on OSN user-generated content

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Due to the sustained popularization of Online Social Networks (OSNs), it has become of interest for a variety of domains of applications to correctly characterize how the behavior of an individual user can be influenced by the actions of other users in a network. Additionally, the richness of available features in modern OSNs highlights the growing importance of user-generated data in establishing user relations. In this paper, we follow a data-driven methodology and propose a diffusion algorithm designed around user-to-content relationships and an action–reaction paradigm. Crucially, we design our approach by integrating different cross-disciplinary theories of how users influence each other. Thus, we enrich the influence maximization task with a psychological dimension and define a model that ties influence diffusion to recurrent users’ behavior from OSN logs, considering relationships between users mediated by user-generated content. We evaluate our approach over the Yahoo Flickr Creative Commons 100 Million real-world dataset. We measure efficiency and effectiveness by analyzing scalability and spread efficacy and show how our model outperforms existing state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. https://www.flickr.com/.

  2. https://azure.microsoft.com/.

  3. https://azure.microsoft.com/it-it/services/hdinsight/.

  4. https://www.tweepy.org/.

  5. https://www.yelp.com/developers.

  6. https://developers.facebook.com/.

  7. https://www.flickr.com/services/api/.

  8. https://cassandra.apache.org/.

  9. https://spark.apache.org/.

  10. https://github.com/yahoo/TensorFlowOnSpark.

  11. https://www.instagram.com/.

  12. https://www.tiktok.com/.

References

  1. Al-Adwan AS, Al-Debei MM, Dwivedi YK (2022) E-commerce in high uncertainty avoidance cultures: the driving forces of repurchase and word-of-mouth intentions. Technol Soc 71:102083. https://doi.org/10.1016/j.techsoc.2022.102083

    Article  Google Scholar 

  2. Ali J, Babaei M, Chakraborty A, Mirzasoleiman B, Gummadi KP, Singla A (2022) On the fairness of time-critical influence maximization in social networks (extended abstract). In: 2022 IEEE 38th international conference on data engineering (ICDE), pp 1541–1542. https://doi.org/10.1109/ICDE53745.2022.00147

  3. Alshahrani M, Fuxi Z, Sameh A, Mekouar S, Huang S (2020) Efficient algorithms based on centrality measures for identification of top-k influential users in social networks. Inf Sci 527:88–107. https://doi.org/10.1016/j.ins.2020.03.060

    Article  MathSciNet  Google Scholar 

  4. Alshahrani M, Fuxi Z, Sameh A, Mekouar S, Liu S (2019) Influence maximization based global structural properties: a multi-armed bandit approach. IEEE Access 7:69707–69747. https://doi.org/10.1109/ACCESS.2019.2917123

    Article  Google Scholar 

  5. Amato F, Castiglione A, Moscato V, Picariello A, Sperlì G (2018) Multimedia summarization using social media content. Multimed Tools Appl 77(14):17803–17827. https://doi.org/10.1007/s11042-017-5556-2

    Article  Google Scholar 

  6. Amato F, Moscato V, Picariello A, Piccialli F (2019) Sos: a multimedia recommender system for online social networks. Future Gener Comput Syst 93:914–923. https://doi.org/10.1016/j.future.2017.04.028

    Article  Google Scholar 

  7. Amato F, Moscato V, Picariello A, Sperlí G (2017) Diffusion algorithms in multimedia social networks: a preliminary model. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017, ASONAM ’17. Association for Computing Machinery, New York, NY, USA, pp 844–851. https://doi.org/10.1145/3110025.3116207

  8. Amato F, Moscato V, Picariello A, Sperli’ì G (2019) Extreme events management using multimedia social networks. Future Gener Comput Syst 94:444–452. https://doi.org/10.1016/j.future.2018.11.035

    Article  Google Scholar 

  9. Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2002) The nonstochastic multiarmed bandit problem. SIAM J Comput 32(1):48–77. https://doi.org/10.1137/S0097539701398375

    Article  MathSciNet  MATH  Google Scholar 

  10. Banerjee S, Jenamani M, Pratihar DK (2020) A survey on influence maximization in a social network. Knowl Inf Syst 62(9):3417–3455. https://doi.org/10.1007/s10115-020-01461-4

    Article  Google Scholar 

  11. Biswas TK, Abbasi A, Chakrabortty RK (2022) A two-stage vikor assisted multi-operator differential evolution approach for influence maximization in social networks. Expert Syst Appl 192:116342. https://doi.org/10.1016/j.eswa.2021.116342

    Article  Google Scholar 

  12. Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on discrete algorithms, SODA ’14. Society for Industrial and Applied Mathematics, USA, pp 946–957

  13. Caliò A, Interdonato R, Pulice C, Tagarelli A (2018) Topology-driven diversity for targeted influence maximization with application to user engagement in social networks. IEEE Trans Knowl Data Eng 30(12):2421–2434. https://doi.org/10.1109/TKDE.2018.2820010

    Article  Google Scholar 

  14. Cao Q, Shen H, Gao J, Cheng X (2021) Learning diffusion model-free and efficient influence function for influence maximization from information cascades. Knowl Inf Syst 63(5):1173–1196. https://doi.org/10.1007/s10115-021-01556-6

    Article  Google Scholar 

  15. Chawla Y, Kowalska-Pyzalska A, Silveira PD (2020) Marketing and communications channels for diffusion of electricity smart meters in Portugal. Telemat Inform 50:101385. https://doi.org/10.1016/j.tele.2020.101385

    Article  Google Scholar 

  16. Chen S, Zhang Y, Yang W, Yang R (2022) Information spread maximization with multi-boosting stages. IEEE Trans Netw Sci Eng 9(5):3467–3477. https://doi.org/10.1109/TNSE.2022.3185047

    Article  MathSciNet  Google Scholar 

  17. Chen W, Lakshmanan LV, Castillo C (2013) Information and influence propagation in social networks. Synth Lect Data Manag 5(4):1–177. https://doi.org/10.2200/S00527ED1V01Y201308DTM037

    Article  Google Scholar 

  18. Chen W, Wang Y, Yuan Y (2013) Combinatorial multi-armed bandit: general framework and applications. In: Dasgupta S, McAllester D (eds) Proceedings of the 30th international conference on machine learning, proceedings of machine learning research, vol 28. PMLR, Atlanta, Georgia, USA, pp 151–159

  19. Chen W, Wang Y, Yuan Y, Wang Q (2016) Combinatorial multi-armed bandit and its extension to probabilistically triggered arms. J Mach Learn Res 17(1):1746–1778

    MathSciNet  MATH  Google Scholar 

  20. Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: 2010 IEEE 10th international conference on data mining (ICDM). IEEE, pp 88–97. https://doi.org/10.1109/ICDM.2010.118

  21. Chen Y, Qu Q, Ying Y, Li H, Shen J (2020) Semantics-aware influence maximization in social networks. Inf Sci 513:442–464. https://doi.org/10.1016/j.ins.2019.10.075

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng LC, Chen K, Lee MC, Li KM (2021) User-defined SWOT analysis—a change mining perspective on user-generated content. Inf Process Manag 58(5):102613. https://doi.org/10.1016/j.ipm.2021.102613

    Article  Google Scholar 

  23. Cialdini RB (2009) Influence: Science and practice, vol 4. Pearson education, Boston

    Google Scholar 

  24. Cialdini RB (2016) Pre-suasion: a revolutionary way to influence and persuade. Simon & Schuster, New York

    Google Scholar 

  25. Cornuejols G, Fisher ML, Nemhauser GL (1977) Exceptional paper-location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manag Sci 23(8):789–810. https://doi.org/10.1287/mnsc.23.8.789

    Article  MATH  Google Scholar 

  26. Deng X, Long F, Li B, Cao D, Pan Y (2020) An influence model based on heterogeneous online social network for influence maximization. IEEE Trans Netw Sci Eng 7(2):737–749. https://doi.org/10.1109/TNSE.2019.2920371

    Article  MathSciNet  Google Scholar 

  27. Deng X, Pan Y, Wu Y, Gui J (2015) Credit distribution and influence maximization in online social networks using node features. In: 2015 12th international conference on fuzzy systems and knowledge discovery (FSKD). IEEE, pp 2093–2100. https://doi.org/10.1109/FSKD.2015.7382274

  28. Ding Q, Li W, Hu X, Zheng Z, Tang S (2020) The sis diffusion process in complex networks with independent spreaders. Phys A Stat Mech Appl 546:122921. https://doi.org/10.1016/j.physa.2019.122921

    Article  MATH  Google Scholar 

  29. Domingos P, Richardson M (2001) Mining the network value of customers. In: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 57–66. https://doi.org/10.1145/502512.502525

  30. Doo M, Liu L (2014) Probabilistic diffusion of social influence with incentives. IEEE Trans Serv Comput 7(3):387–400. https://doi.org/10.1109/TSC.2014.2310216

    Article  Google Scholar 

  31. Eastwick PW, Gardner WL (2009) Is it a game? Evidence for social influence in the virtual world. Soc Influ 4(1):18–32

    Article  Google Scholar 

  32. Erkol S, Mazzilli D, Radicchi F (2022) Effective submodularity of influence maximization on temporal networks. Phys Rev E 106:034301. https://doi.org/10.1103/PhysRevE.106.034301

    Article  MathSciNet  Google Scholar 

  33. Freire M, Antunes F, Costa JP (2022) Getting decision support from context-specific online social networks: a case study. Soc Netw Anal Min 12(1):1–23. https://doi.org/10.1007/s13278-022-00870-3

    Article  Google Scholar 

  34. Gómez M, Lopez C, Molina A (2019) An integrated model of social media brand engagement. Comput Hum Behav 96:196–206. https://doi.org/10.1016/j.chb.2019.01.026

    Article  Google Scholar 

  35. Goldenberg J, Libai B, Muller E (2001) Talk of the network: a complex systems look at the underlying process of word-of-mouth. Market Lett 12(3):211–223. https://doi.org/10.1023/A:1011122126881

    Article  Google Scholar 

  36. Gomez-Rodriguez M, Song L, Du N, Zha H, Schölkopf B (2016) Influence estimation and maximization in continuous-time diffusion networks. ACM Trans Inf Syst (TOIS) 34(2):1–33

    Article  Google Scholar 

  37. Granovetter M (1978) Threshold models of collective behavior. Am J Soc. https://doi.org/10.1086/226707

    Article  MATH  Google Scholar 

  38. Guadagno RE, Cialdini RB (2005) Online persuasion and compliance: social influence on the internet and beyond. The social net: the social psychology of the internet, pp 91–113

  39. Guo L, Zhang D, Cong G, Wu W, Tan KL (2017) Influence maximization in trajectory databases. IEEE Trans Knowl Data Eng 29(3):627–641. https://doi.org/10.1109/TKDE.2016.2621038

    Article  Google Scholar 

  40. Guo Q, Wang S, Wei Z, Lin W, Tang J (2022) Influence maximization revisited: efficient sampling with bound tightened. ACM Trans Database Syst. https://doi.org/10.1145/3533817

    Article  MathSciNet  Google Scholar 

  41. He Q, Wang X, Yi B, Mao F, Cai Y, Huang M (2020) Opinion maximization through unknown influence power in social networks under weighted voter model. IEEE Syst J 14(2):1874–1885. https://doi.org/10.1109/JSYST.2019.2922373

    Article  Google Scholar 

  42. Hosseini-Pozveh M, Zamanifar K, Naghsh-Nilchi AR (2019) Assessing information diffusion models for influence maximization in signed social networks. Expert Syst Appl 119:476–490. https://doi.org/10.1016/j.eswa.2018.07.064

    Article  Google Scholar 

  43. Hu T, Dai H, Salam A (2019) Integrative qualities and dimensions of social commerce: toward a unified view. Inf Manag 56(2):249–270. https://doi.org/10.1016/j.im.2018.09.003. (Social Commerce and Social Media: Behaviors in the New Service Economy)

    Article  Google Scholar 

  44. Jaouadi M, Romdhane LB (2022) A graph sampling-based model for influence maximization in large-scale social networks. IEEE Trans Comput Soc Syst. https://doi.org/10.1109/TCSS.2022.3216587

    Article  Google Scholar 

  45. Jendoubi S, Martin A (2020) Evidential positive opinion influence measures for viral marketing. Knowl Inf Syst 62(3):1037–1062. https://doi.org/10.1007/s10115-019-01375-w

    Article  Google Scholar 

  46. Jendoubi S, Martin A, Liétard L, Hadji HB, Yaghlane BB (2017) Two evidential data based models for influence maximization in twitter. Knowl Based Syst 121:58–70. https://doi.org/10.1016/j.knosys.2017.01.014

    Article  Google Scholar 

  47. Ji X, Wang Q, Chen BW, Rho S, Kuo CJ, Dai Q (2014) Online distribution and interaction of video data in social multimedia network. Multimed Tools Appl. https://doi.org/10.1007/s11042-014-2335-1

    Article  Google Scholar 

  48. Kang H, Sun M, Yu Y, Fu X, Bao B (2020) Spreading dynamics of an SEIR model with delay on scale-free networks. IEEE Trans Netw Sci Eng 7(1):489–496. https://doi.org/10.1109/TNSE.2018.2860988

    Article  MathSciNet  Google Scholar 

  49. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03. Association for Computing Machinery, New York, NY, USA, pp 137–146. https://doi.org/10.1145/956750.956769

  50. Kim M, Kim S, Kim J (2019) Can mobile and biometric payments replace cards in the Korean offline payments market? consumer preference analysis for payment systems using a discrete choice model. Telemat Inform 38:46–58. https://doi.org/10.1016/j.tele.2019.02.003

    Article  Google Scholar 

  51. Kumar S, Mallik A, Khetarpal A, Panda B (2022) Influence maximization in social networks using graph embedding and graph neural network. Inf Sci 607:1617–1636. https://doi.org/10.1016/j.ins.2022.06.075

    Article  Google Scholar 

  52. Lai TL, Robbins H (1985) Asymptotically efficient adaptive allocation rules. Adv Appl Math 6(1):4–22. https://doi.org/10.1016/0196-8858(85)90002-8

    Article  MathSciNet  MATH  Google Scholar 

  53. Li H, Xu M, Bhowmick SS, Rayhan JS, Sun C, Cui J (2022) Piano: influence maximization meets deep reinforcement learning. IEEE Trans Comput Soc Syst. https://doi.org/10.1109/TCSS.2022.3164667

    Article  Google Scholar 

  54. Li W, Bai Q, Zhang M, Nguyen TD (2018) Automated influence maintenance in social networks: an agent-based approach. IEEE Trans Knowl Data Eng 31(10):1884–1897. https://doi.org/10.1109/TKDE.2018.2867774

    Article  Google Scholar 

  55. Li W, Li Y, Liu W, Wang C (2022) An influence maximization method based on crowd emotion under an emotion-based attribute social network. Inf Process Manag 59(2):102818. https://doi.org/10.1016/j.ipm.2021.102818

    Article  Google Scholar 

  56. Li Y, Chen W, Wang Y, Zhang ZL (2015) Voter model on signed social networks. Internet Math 11(2):93–133. https://doi.org/10.1080/15427951.2013.862884

    Article  MathSciNet  MATH  Google Scholar 

  57. Li Y, Fan J, Wang Y, Tan KL (2018) Influence maximization on social graphs: a survey. IEEE Trans Knowl Data Eng 30(10):1852–1872. https://doi.org/10.1109/TKDE.2018.2807843

    Article  Google Scholar 

  58. Li Y, Fan J, Wang Y, Tan KL (2018) Influence maximization on social graphs: a survey. IEEE Trans Knowl Data Eng 30(10):1852–1872. https://doi.org/10.1109/TKDE.2018.2807843

    Article  Google Scholar 

  59. Li Y, Zhang D, Tan KL (2015) Real-time targeted influence maximization for online advertisements. Proc VLDB Endow 8(10):1070

    Article  Google Scholar 

  60. Li YM, Lai CY, Lin LF (2017) A diffusion planning mechanism for social marketing. Inf Manag 54(5):638–650. https://doi.org/10.1016/j.im.2016.12.006

    Article  Google Scholar 

  61. Lim WM, Ahmed PK, Ali MY (2022) Giving electronic word of mouth (eWOM) as a prepurchase behavior: the case of online group buying. J Bus Res 146:582–604. https://doi.org/10.1016/j.jbusres.2022.03.093

    Article  Google Scholar 

  62. Lin LF, Li YM (2021) An efficient approach to identify social disseminators for timely information diffusion. Inf Sci 544:78–96. https://doi.org/10.1016/j.ins.2020.07.040

    Article  MathSciNet  Google Scholar 

  63. Marin E, Guo R, Shakarian P (2020) Measuring time-constrained influence to predict adoption in online social networks. Trans Soc Comput. https://doi.org/10.1145/3372785

    Article  Google Scholar 

  64. Masood Z, Samar R, Raja MAZ (2019) Design of a mathematical model for the stuxnet virus in a network of critical control infrastructure. Comput Secur 87:101565. https://doi.org/10.1016/j.cose.2019.07.002

    Article  Google Scholar 

  65. Mishra KK, Bisht H, Singh T, Chang V (2018) A direction aware particle swarm optimization with sensitive swarm leader. Big Data Res 14:57–67. https://doi.org/10.1016/j.bdr.2018.03.001

    Article  Google Scholar 

  66. Molaei S, Farahbakhsh R, Salehi M, Crespi N (2020) Identifying influential nodes in heterogeneous networks. Expert Syst Appl 160:113580. https://doi.org/10.1016/j.eswa.2020.113580

    Article  Google Scholar 

  67. Molaei S, Zare H, Veisi H (2020) Deep learning approach on information diffusion in heterogeneous networks. Knowl Based Syst 189:105153. https://doi.org/10.1016/j.knosys.2019.105153

    Article  Google Scholar 

  68. More JS, Lingam C (2019) A SI model for social media influencer maximization. Appl Comput Inform 15(2):102–108. https://doi.org/10.1016/j.aci.2017.11.001

    Article  Google Scholar 

  69. Moscato V, Picariello A, Subrahmanian V (2015) Multimedia social networks for cultural heritage applications: the givas project. In: Data management in pervasive systems. Springer, pp 169–182. https://doi.org/10.1007/978-3-319-20062-0_8

  70. Nan G, Zang C, Dou R, Li M (2015) Pricing and resource allocation for multimedia social network in cloud environments. Knowl Based Syst 88:1–11. https://doi.org/10.1016/j.knosys.2015.08.017

    Article  Google Scholar 

  71. Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular set functions-I. Math Program 14(1):265–294. https://doi.org/10.1007/BF01588971

    Article  MathSciNet  MATH  Google Scholar 

  72. Ni Y (2017) Sequential seeding to optimize influence diffusion in a social network. Appl Soft Comput 56:730–737. https://doi.org/10.1016/j.asoc.2016.04.025

    Article  Google Scholar 

  73. Ruziska FM, Tomé T, de Oliveira MJ (2017) Susceptible-infected-recovered model with recurrent infection. Phys A Stat Mech Appl 467:21–29. https://doi.org/10.1016/j.physa.2016.09.010

    Article  MathSciNet  MATH  Google Scholar 

  74. Saura JR, Ribeiro-Soriano D, Palacios-Marqués D (2021) From user-generated data to data-driven innovation: a research agenda to understand user privacy in digital markets. Int J Inf Manag 60:102331. https://doi.org/10.1016/j.ijinfomgt.2021.102331

    Article  Google Scholar 

  75. Tang J, Zhang R, Wang P, Zhao Z, Fan L, Liu X (2020) A discrete shuffled frog-leaping algorithm to identify influential nodes for influence maximization in social networks. Knowl Based Syst 187:104833. https://doi.org/10.1016/j.knosys.2019.07.004

    Article  Google Scholar 

  76. Tang J, Zhang R, Yao Y, Zhao Z, Wang P, Li H, Yuan J (2018) Maximizing the spread of influence via the collective intelligence of discrete bat algorithm. Knowl Based Syst 160:88–103. https://doi.org/10.1016/j.knosys.2018.06.013

    Article  Google Scholar 

  77. Tang J, Zhu Y, Tang X, Han K (2022) Distributed influence maximization for large-scale online social networks. In: 2022 IEEE 38th international conference on data engineering (ICDE), pp 81–95. https://doi.org/10.1109/ICDE53745.2022.00011

  78. Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD international conference on management of data, SIGMOD ’15. Association for Computing Machinery, New York, NY, USA, pp 1539–1554. https://doi.org/10.1145/2723372.2723734

  79. Tang Y, Xiao X, Shi Y (2014) Influence maximization: Near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD international conference on management of data, SIGMOD ’14. Association for Computing Machinery, New York, NY, USA, pp 75–86. https://doi.org/10.1145/2588555.2593670

  80. Thomee B, Shamma DA, Friedland G, Elizalde B, Ni K, Poland D, Borth D, Li LJ (2016) Yfcc100m: the new data in multimedia research. Commun ACM 59(2):64–73

    Article  Google Scholar 

  81. Vaswani S, Lakshmanan L, Schmidt M et al (2015) Influence maximization with bandits. arXiv:1503.00024

  82. Vazirani VV (2013) Approximation algorithms. Springer, Berlin

    Google Scholar 

  83. Wang Z, Liu H, Liu W, Wang S (2020) Understanding the power of opinion leaders’ influence on the diffusion process of popular mobile games: travel frog on sina weibo. Comput Hum Behav 109:106354. https://doi.org/10.1016/j.chb.2020.106354

    Article  Google Scholar 

  84. Weimann G (1994) The influentials: people who influence people. SUNY Press, Albany

    Google Scholar 

  85. Williams D (1991) Probability with martingales. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  86. Xu Z, Dang Y, Wang Q (2022) Potential buyer identification and purchase likelihood quantification by mining user-generated content on social media. Expert Syst Appl 187:115899. https://doi.org/10.1016/j.eswa.2021.115899

    Article  Google Scholar 

  87. Yang J, Zhang Y, Zhang W, Lin X (2019) Cost optimization based on influence and user preference. Knowl Inf Syst 61(2):695–732. https://doi.org/10.1007/s10115-018-1290-y

    Article  Google Scholar 

  88. Yu CH, Tsai CC, Wang Y, Lai KK, Tajvidi M (2020) Towards building a value co-creation circle in social commerce. Comput Hum Behav 108:105476. https://doi.org/10.1016/j.chb.2018.04.021

    Article  Google Scholar 

  89. Zhang H, Gupta S, Sun W, Zou Y (2020) How social-media-enabled co-creation between customers and the firm drives business value? The perspective of organizational learning and social capital. Inf Manag 57(3):103200. https://doi.org/10.1016/j.im.2019.103200

    Article  Google Scholar 

  90. Zhang H, Zang Z, Zhu H, Uddin MI, Amin MA (2022) Big data-assisted social media analytics for business model for business decision making system competitive analysis. Inf Process Manag 59(1):102762. https://doi.org/10.1016/j.ipm.2021.102762

    Article  Google Scholar 

  91. Zhang J, Wang W, Xia F, Lin YR, Tong H (2020) Data-driven computational social science: a survey. Big Data Res 21:100145. https://doi.org/10.1016/j.bdr.2020.100145

    Article  Google Scholar 

  92. Zhang J, Yang Y, Zhuo L, Tian Q, Liang X (2019) Personalized recommendation of social images by constructing a user interest tree with deep features and tag trees. IEEE Trans Multimed 21(11):2762–2775. https://doi.org/10.1109/TMM.2019.2912124

    Article  Google Scholar 

  93. Zhang Z, Sun R, Wang X, Zhao C (2019) A situational analytic method for user behavior pattern in multimedia social networks. IEEE Trans Big Data 5(4):520–528. https://doi.org/10.1109/TBDATA.2017.2657623

    Article  Google Scholar 

  94. Zheng W, Pan H, Sun C (2019) A friendship-based altruistic incentive knowledge diffusion model in social networks. Inf Sci 491:138–150. https://doi.org/10.1016/j.ins.2019.04.009

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ADS: conception and design of study, acquisition of data, analysis and/or interpretation of data, Writing—original draft, Writing—review and editing. AF: conception and design of study, acquisition of data, analysis and/or interpretation of data, writing—original draft, writing—review and editing. VM: conception and design of study, acquisition of data, analysis and/or interpretation of data, writing—original draft, writing—review and editing. GS: conception and design of study, acquisition of data, analysis and/or interpretation of data, writing—original draft, writing—review and editing.

Corresponding author

Correspondence to Giancarlo Sperlí.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Santo, A., Ferraro, A., Moscato, V. et al. An action–reaction influence model relying on OSN user-generated content. Knowl Inf Syst 65, 2251–2280 (2023). https://doi.org/10.1007/s10115-023-01833-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01833-6

Keywords

Navigation