Skip to main content
Log in

A domain adaptation method by incorporating belief function in twin quarter-sphere SVM

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Domain adaptation is a representative problem in transfer learning, which aims to tackle the problem of insufficient labeled data in a target domain by exploiting discriminant information from a labeled source domain. Since the source and target domains follow different distributions, source domain data are uncertain with respect to the target domain. Ignoring the uncertainty may lead to unreliable label prediction for the target domain. Despite the many studies that have been done on domain adaptation, most have ignored the adverse impact of uncertain and noisy data on learning an adaptive classifier. Regarding these issues, the present paper introduces a robust to noise domain adaptation method by extending the quarter-sphere SVM classifier. Essentially, the proposed method builds an individual classifier for each available class per domain. Also, a belief theory-based weighting approach is designed to provide noise robustness. The strength of the proposed method is that after constructing and training the source domain classifiers, accessibility to the source domain data is not required, and the existence of only the source domain hyperspheres is sufficient. The effectiveness of the proposed method has been compared to the state-of-the-art methods on 15 tasks taken from two benchmark datasets. The experimental results demonstrate the superiority of the proposed method over state-of-the-art ones in terms of classification accuracy and computational time. Besides, the noise analysis proves the robustness of the proposed method. To prove a meaningful distinction between the evaluation metrics results of the proposed method and the competing ones, the Wilcoxon statistical test has been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://qwone.com/~jason/20Newsgroups/.

  2. https://cvml.ist.ac.at/AwA/.

  3. http://ai.bu.edu/M3SDA/#dataset.

References

  1. Fan C, He W, Liu Y, Xue P, Zhao Y (2022) A novel image-based transfer learning framework for cross-domain HVAC fault diagnosis: from multi-source data integration to knowledge sharing strategies. Energy Build 262:111995. https://doi.org/10.1016/j.enbuild.2022.111995

    Article  Google Scholar 

  2. Pan T, Chen J, Ye Z, Li A (2022) A multi-head attention network with adaptive meta-transfer learning for RUL prediction of rocket engines. Reliabil Eng Sys Safety. https://doi.org/10.1016/j.ress.2022.108610

    Article  Google Scholar 

  3. Almanifi ORA, Ab Nasir AF, Mohd Razman MA, Musa RM, Majeed APP (2022) Heartbeat murmurs detection in phonocardiogram recordings via transfer learning. Alex Eng J 61(12):10995–11002. https://doi.org/10.1016/j.aej.2022.04.031

    Article  Google Scholar 

  4. Prabono AG, Yahya BN, Lee S-L (2022) Multiple-instance domain adaptation for cost-effective sensor-based human activity recognition. Futur Gener Comput Syst 133:114–123. https://doi.org/10.1016/j.future.2022.03.006

    Article  Google Scholar 

  5. Shan Y, Lu WF, Chew CM (2019) Pixel and feature level based domain adaptation for object detection in autonomous driving. Neurocomputing 367:31–38. https://doi.org/10.1016/j.neucom.2019.08.022

    Article  Google Scholar 

  6. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng 22(10):1345–1359

    Article  Google Scholar 

  7. Zhang L, Gao X (2019) Transfer adaptation learning: a decade survey. arXiv preprint arXiv:190304687

  8. Xu Y, Pan SJ, Xiong H, Wu Q, Luo R, Min H, Song H (2017) A unified framework for metric transfer learning. IEEE Trans Knowl Data Eng 29(6):1158–1171

    Article  Google Scholar 

  9. Chen S, Han L, Liu X, He Z, Yang X (2020) Subspace distribution adaptation frameworks for domain adaptation. IEEE Trans Neural Netw Learn Sys 31(12):5204–5218

    Article  MathSciNet  Google Scholar 

  10. Li S, Song S, Huang G (2016) Prediction reweighting for domain adaptation. IEEE Trans Neural Netw Learn Sys 28(7):1682–1695

    Article  Google Scholar 

  11. Khalighi S, Ribeiro B, Nunes UJ (2016) Importance weighted import vector machine for unsupervised domain adaptation. IEEE Trans Cybern 47(10):3280–3292

    Article  Google Scholar 

  12. Kundu JN, Venkat N, Babu RV (2020) Universal source-free domain adaptation. pp 4544–4553

  13. Liang J, Hu D, Feng J Do (2020) we really need to access the source data? source hypothesis transfer for unsupervised domain adaptation PMLR, pp 6028–6039

  14. Kundu JN, Venkat N, Revanur A, Babu RV (2020) Towards inheritable models for open-set domain adaptation. pp 12376–12385

  15. Li R, Jiao Q, Cao W, Wong H-S, Wu S (2020) Model adaptation: unsupervised domain adaptation without source data. pp 9641–9650

  16. Yang J, Yan R, Hauptmann AG (2007) Cross-domain video concept detection using adaptive svms. Paper presented at the Proceedings of the 15th ACM international conference on Multimedia, Augsburg, Germany

  17. Yang J, Yan R, Hauptmann AG (2007) Adapting SVM classifiers to data with shifted distributions. 17th IEEE international conference on data mining workshops (ICDMW 2007), pp 69–76. https://doi.org/10.1109/ICDMW.2007.37

  18. Wei J, Zavesky E, Shih-Fu C, Loui A (2008) Cross-domain learning methods for high-level visual concept classification. 15th IEEE International conference on image processing, pp 161–164. https://doi.org/10.1109/ICIP.2008.4711716

  19. Aytar Y, Zisserman A (2011) Tabula rasa: model transfer for object category detection. International conference on computer vision, 2011. pp 2252–2259. https://doi.org/10.1109/ICCV.2011.6126504

  20. Matasci G, Tuia D, Kanevski M (2012) SVM-based boosting of active learning strategies for efficient domain adaptation. IEEE J Select Topics Appl Earth Observ Remote Sens 5(5):1335–1343. https://doi.org/10.1109/JSTARS.2012.2202881

    Article  Google Scholar 

  21. Sun Z, Wang C, Wang H, Li J (2013) Learn multiple-kernel SVMs for domain adaptation in hyperspectral data. IEEE Geosci Remote Sens Lett 10(5):1224–1228. https://doi.org/10.1109/LGRS.2012.2236818

    Article  Google Scholar 

  22. Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. Proceedings of the AAAI conference on artificial intelligence, Vol 1

  23. Xue Y, Beauseroy P (2017) Transfer learning for one class SVM adaptation to limited data distribution change. Patt Recogn Lett 100:117–123. https://doi.org/10.1016/j.patrec.2017.10.030

    Article  Google Scholar 

  24. Lv Y, Zhang B, Zou G, Yue X, Xu Z, Li H (2022) Domain adaptation with data uncertainty measure based on evidence theory. Entropy 24(7):966

    Article  MathSciNet  Google Scholar 

  25. Jayadeva KR, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Pattern Anal Mach Intell 29(5):905–910. https://doi.org/10.1109/TPAMI.2007.1068

    Article  MATH  Google Scholar 

  26. Ding S, Zhang N, Zhang X, Wu F (2017) Twin support vector machine: theory, algorithm and applications. Neural Comput Appl 28(11):3119–3130

    Article  Google Scholar 

  27. Li Y, Sun H, Yan W (2022) Domain adaptive twin support vector machine learning using privileged information. Neurocomputing 469:13–27

    Article  Google Scholar 

  28. Maddox WJ, Izmailov P, Garipov T, Vetrov DP, Wilson AG (2019) A simple baseline for bayesian uncertainty in deep learning. Adv Neur Inf Process Sys, 32

  29. Pan L, Deng Y (2018) A new belief entropy to measure uncertainty of basic probability assignments based on belief function and plausibility function. Entropy. https://doi.org/10.3390/e20110842

    Article  Google Scholar 

  30. Jiroušek R, Shenoy PP (2018) A new definition of entropy of belief functions in the Dempster–Shafer theory. Int J Approx Reason 92:49–65. https://doi.org/10.1016/j.ijar.2017.10.010

    Article  MathSciNet  MATH  Google Scholar 

  31. Fu C, Chang W, Liu W, Yang S (2019) Data-driven group decision making for diagnosis of thyroid nodule. Sci China Inf Sci 62(11):212205. https://doi.org/10.1007/s11432-019-9866-3

    Article  MathSciNet  Google Scholar 

  32. Liu ZG, Pan Q, Dezert J, Martin A (2018) Combination of classifiers with optimal weight based on evidential reasoning. IEEE Trans Fuzzy Syst 26(3):1217–1230. https://doi.org/10.1109/TFUZZ.2017.2718483

    Article  Google Scholar 

  33. Bossman A, Umar Z, Agyei SK, Junior PO (2022) A new ICEEMDAN-based transfer entropy quantifying information flow between real estate and policy uncertainty. Res Econ. https://doi.org/10.1016/j.rie.2022.07.002

    Article  Google Scholar 

  34. Zadeh LA (1965) Fuzzy sets. Inf Control 8(3):338–353. https://doi.org/10.1016/S0019-9958(65)90241-X

    Article  MATH  Google Scholar 

  35. Hamidzadeh J, Rezaeenik E, Moradi M (2021) Predicting users’ preferences by fuzzy rough set quarter-sphere support vector machine. Appl Soft Comp 112:107740. https://doi.org/10.1016/j.asoc.2021.107740

    Article  Google Scholar 

  36. Shafer G (1976) A mathematical theory of evidence, vol 42. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  37. Smets P (1990) The combination of evidence in the transferable belief model. IEEE Trans Patt Anal Mach Intell 12(5):447–458

    Article  Google Scholar 

  38. Hamidzadeh, J., Moradi, M. (2020). Enhancing data analysis: uncertainty-resistance method for handling incomplete data. Applied Intelligence, 50(1):74–86.

  39. Motiian S, Piccirilli M, Adjeroh DA, Doretto G (2017) Unified deep supervised domain adaptation and generalization. pp 5715–5725

  40. Xie X, Sun S, Chen H, Qian J (2018) Domain adaptation with twin support vector machines. Neural Process Lett 48(2):1213–1226

    Article  Google Scholar 

  41. Mozafari AS, Jamzad M (2016) A SVM-based model-transferring method for heterogeneous domain adaptation. Patt Recogn 56:142–158

    Article  Google Scholar 

  42. Gao P, Wu W, Li J (2021) Multi-source fast transfer learning algorithm based on support vector machine. Appl Intell. https://doi.org/10.1007/s10489-021-02194-9

    Article  Google Scholar 

  43. Ganin Y, Ustinova E, Ajakan H, Germain P, Larochelle H, Laviolette F, Marchand M, Lempitsky V (2016) Domain-adversarial training of neural networks. J Mach Learn Res 17(1):2096–2030

    MathSciNet  MATH  Google Scholar 

  44. Damodaran BB, Kellenberger B, Flamary R, Tuia D, Courty N (2018) Deepjdot: deep joint distribution optimal transport for unsupervised domain adaptation. pp 447–463

  45. Hong C, Zeng Z, Xie R, Zhuang W, Wang X (2018) Domain adaptation with low-rank alignment for weakly supervised hand pose recovery. Signal Process 142:223–230. https://doi.org/10.1016/j.sigpro.2017.07.032

    Article  Google Scholar 

  46. Chen S., Hong Z., Harandi M., Yang X. (2022) Domain Neural Adaptation. IEEE Transactions on Neural Networks and Learning Systems, https://doi.org/10.1109/TNNLS.2022.3151683.

  47. Xu X, Zhou X, Venkatesan R, Swaminathan G, Majumder (2019) O d-sne: Domain adaptation using stochastic neighborhood embedding. pp 2497–2506

  48. Wang Z, Du B, Guo Y (2019) Domain adaptation with neural embedding matching. IEEE Trans Neural Netw Learn Sys 31(7):2387–2397

    Article  MathSciNet  Google Scholar 

  49. Yang S, Wang Y, van de Weijer J, Herranz L, Jui S (2021) Generalized source-free domain adaptation. pp 8978–8987

  50. Yan H, Ding Y, Li P, Wang Q, Xu Y, Zuo W (2017) Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation. Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2272–2281

  51. Chen Y, Song S, Li S, Wu C (2019) A graph embedding framework for maximum mean discrepancy-based domain adaptation algorithms. IEEE Trans Image Process 29:199–213

    Article  MathSciNet  MATH  Google Scholar 

  52. Kumagai A, Iwata T (2019) Unsupervised domain adaptation by matching distributions based on the maximum mean discrepancy via unilateral transformations. Proceedings of the AAAI Conference on Artificial Intelligence, pp 4106–4113

  53. Sun B, Saenko K (2016) Deep coral: Correlation alignment for deep domain adaptation. European conference on computer vision, Springer, pp 443–450

  54. Sun B, Feng J, Saenko K (2016) Return of frustratingly easy domain adaptation. In: Proceedings of the AAAI conference on artificial intelligence

  55. Sun B, Feng J, Saenko K (2017) Correlation alignment for unsupervised domain adaptation. Domain adaptation in computer vision applications. Springer, Berlin, pp 153–171

    Chapter  Google Scholar 

  56. Pan SJ, Tsang IW, Kwok JT, Yang Q (2010) Domain adaptation via transfer component analysis. IEEE Trans Neural Networks 22(2):199–210

    Article  Google Scholar 

  57. Gao J, Fan W, Jiang J, Han J (2008) Knowledge transfer via multiple model local structure mapping. Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 283–291

  58. Ghifary M, Balduzzi D, Kleijn WB, Zhang M (2016) Scatter component analysis: a unified framework for domain adaptation and domain generalization. IEEE Trans Pattern Anal Mach Intell 39(7):1414–1430

    Article  Google Scholar 

  59. Chen S, Harandi M, Jin X, Yang X (2020) Domain adaptation by joint distribution invariant projections. IEEE Trans Image Process 29:8264–8277

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,” in Proc. 32nd Annu. Conf. Neural Inf. Process. Syst., Montreal, QC, Canada, Dec. 2018, pp. 1640–1650.

  61. Liu H, Shao M, Ding Z, Fu Y (2018) Structure-preserved unsupervised domain adaptation. IEEE Trans Knowl Data Eng 31(4):799–812

    Article  Google Scholar 

  62. Laskov P, Schäfer C, Kotenko I, Müller KR (2004) Intrusion detection in unlabeled data with quarter-sphere support vector machines 27(4):228–236 doi https://doi.org/10.1515/PIKO.2004.228

  63. Denœux T, Masson M-H (2012) Evidential reasoning in large partially ordered sets. Ann Oper Res 195(1):135–161

    Article  MathSciNet  MATH  Google Scholar 

  64. Pan SJ, Tsang IW, Kwok JT, Yang Q (2011) Domain adaptation via transfer component analysis. IEEE Trans Neural Networks 22(2):199–210. https://doi.org/10.1109/TNN.2010.2091281

    Article  Google Scholar 

  65. Peng X, Bai Q, Xia X, Huang Z, Saenko K, Wang B (2019) Moment matching for multi-source domain adaptation. pp 1406–1415

  66. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. arXiv preprint arXiv:13013781

  67. Arora S, Liang Y, Ma T (2019) A simple but tough-to-beat baseline for sentence embeddings. In: International conference on learning representations

  68. Gong B, Shi Y, Sha F, Grauman K (2012) Geodesic flow kernel for unsupervised domain adaptation. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 2066–2073

  69. Sheskin DJ (2007) Handbook of parametric and nonparametric statistical procedures. Chapman & Hall/CRC, Boca Raton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mona Moradi: Writing - original draft, Resources. Software, Data curation, Writing – review & editing. Javad Hamidzadeh: Conceptualization, Methodology, Validation, Investigation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Javad Hamidzadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Hamidzadeh, J. A domain adaptation method by incorporating belief function in twin quarter-sphere SVM. Knowl Inf Syst 65, 3125–3163 (2023). https://doi.org/10.1007/s10115-023-01857-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01857-y

Keywords

Navigation