Skip to main content
Log in

Near-optimal Steiner tree computation powered by node embeddings

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Steiner minimum tree problem on a graph, i.e., finding a tree with the minimum weight that covers the set of terminal nodes, is a classical NP-hard problem. Thus, we develop a method based on supervised learning to produce a near-optimal Steiner tree in this paper. It contains three main phases, namely node embedding, candidate set generation, and tree construction. Leveraged on compressed sensing, we devise a novel node embedding that exhibits a good nature of reversibility for sparse linear aggregations, which powers learning a mapping function from the terminal set to the optimal Steiner tree. Finally, we propose efficient pruning techniques to improve the solution quality. The experimental results show that our approach delivers high-quality solutions and runs faster than the competitors by one or two orders of magnitude on graphs with more than 200 nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of supporting data

The datasets used in the paper can be found at the following link: http://steinlib.zib.de/steinlib.php.

Notes

  1. http://steinlib.zib.de/steinlib.php.

References

  1. Karp RM (1972) Reducibility among combinatorial problems. In: Miller RE, Thatcher JW (eds.) Proceedings of a symposium on the complexity of computer computations, Held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, USA. The IBM Research Symposia Series, pp. 85–103. Plenum Press, New York

  2. Elbassuoni S, Ramanath M, Schenkel R, Sydow M, Weikum G (2009) Language-model-based ranking for queries on rdf-graphs. In: Proceedings of the 18th ACM conference on information and knowledge management, pp 977–986

  3. Li H-Y, Qu Y-Z (2011) Kreag: keyword query approach over rdf data based on entity-triple association graph. Jisuanji Xuebao Chin J Comput 34(5):825–835

    Article  Google Scholar 

  4. Izquierdo YT. García GM, Menendez ES, Casanova MA, Dartayre F, Levy CH (2018) Quiow: a keyword-based query processing tool for rdf datasets and relational databases. In: International conference on database and expert systems applications, pp 259–269. Springer

  5. Dom M, Lokshtanov D, Saurabh S (2014) Kernelization lower bounds through colors and ids. ACM Trans Algorithms (TALG) 11(2):1–20

    Article  MathSciNet  MATH  Google Scholar 

  6. Dreyfus SE, Wagner RA (1971) The steiner problem in graphs. Networks 1(3):195–207

    Article  MathSciNet  MATH  Google Scholar 

  7. Byrka J, Grandoni F, Rothvoß T, Sanità L (2013) Steiner tree approximation via iterative randomized rounding. J ACM (JACM) 60(1):1–33

    Article  MathSciNet  MATH  Google Scholar 

  8. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79(8):2554–2558

    Article  MathSciNet  MATH  Google Scholar 

  9. Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864

  10. Candes EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  11. Fredman ML, Tarjan RE (1987) Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM (JACM) 34(3):596–615

    Article  MathSciNet  MATH  Google Scholar 

  12. Erickson RE, Monma CL, Veinott AF Jr (1987) Send-and-split method for minimum-concave-cost network flows. Math Oper Res 12(4):634–664

    Article  MathSciNet  MATH  Google Scholar 

  13. Hougardy S, Silvanus J, Vygen J (2017) Dijkstra meets steiner: a fast exact goal-oriented steiner tree algorithm. Math Program Comput 9(2):135–202

    Article  MathSciNet  MATH  Google Scholar 

  14. Vygen J (2011) Faster algorithm for optimum steiner trees. Inf Process Lett 111(21–22):1075–1079

    Article  MathSciNet  MATH  Google Scholar 

  15. Chlebík M, Chlebíková J (2002) Approximation hardness of the steiner tree problem on graphs. In: Scandinavian Workshop on Algorithm Theory, pp 170–179. Springer

  16. Prömel HJ, Steger A (2000) A new approximation algorithm for the steiner tree problem with performance ratio 5/3. J Algorithms 36(1):89–101

    Article  MathSciNet  MATH  Google Scholar 

  17. Zelikovsky A (1993) A faster approximation algorithm for the steiner tree problem in graphs. Inf Process Lett 46(2):79–83

    Article  MathSciNet  MATH  Google Scholar 

  18. Robins G, Zelikovsky A (2005) Tighter bounds for graph steiner tree approximation. J. Discret. Math. 19(1):122–134

    MathSciNet  MATH  Google Scholar 

  19. Beyer S, Chimani M (2019) Strong steiner tree approximations in practice. ACM J Exp Algorithmics 24(1):1–711733

    Article  MathSciNet  MATH  Google Scholar 

  20. Takahashi H, et al (1980) An approximate solution for the steiner problem in graphs

  21. Vahdati Daneshmand S (2004) Algorithmic approaches to the steiner problem in networks. PhD thesis, University of Mannheim

  22. Pajor T, Uchoa E, Werneck RF (2018) A robust and scalable algorithm for the steiner problem in graphs. Math Program Comput 10(1):69–118

    Article  MathSciNet  MATH  Google Scholar 

  23. Hagberg AA, Schult DA, Swart PJ (2008) Exploring network structure, dynamics, and function using networkx. In: Proceedings of the 7th Python in Science Conference, pp. 11–15

  24. de Aragão MP, Uchoa E, Werneck RFF (2001) Dual heuristics on the exact solution of large steiner problems. Electron Notes Discret Math 7:150–153. https://doi.org/10.1016/S1571-0653(04)00247-1

    Article  MathSciNet  MATH  Google Scholar 

  25. Fischetti M, Leitner M, Ljubic I, Luipersbeck M, Monaci M, Resch M, Salvagnin D, Sinnl M (2017) Thinning out steiner trees: a node-based model for uniform edge costs. Math Program Comput 9(2):203–229. https://doi.org/10.1007/s12532-016-0111-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Sun Y, Brazil M, Thomas DA, Halgamuge SK (2019) The fast heuristic algorithms and post-processing techniques to design large and low-cost communication networks. IEEE/ACM Trans Netw 27(1):375–388. https://doi.org/10.1109/TNET.2018.2888864

    Article  Google Scholar 

  27. Traub V, Zenklusen R (2022) Local search for weighted tree augmentation and steiner tree. In: Naor JS, Buchbinder N (eds.) Proceedings of the 2022 ACM-SIAM symposium on discrete algorithms, SODA 2022, virtual conference/alexandria, VA, USA, January 9–12, 2022, pp 3253–3272. SIAM. https://doi.org/10.1137/1.9781611977073.128

  28. Bonnet É, Sikora F (2018) The PACE 2018 parameterized algorithms and computational experiments challenge: the third iteration. In: Paul C, Pilipczuk M (eds.) 13th International Symposium on Parameterized and Exact Computation, IPEC 2018, August 20–24, 2018, Helsinki, Finland. LIPIcs, vol 115, pp 26–12615. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, https://doi.org/10.4230/LIPIcs.IPEC.2018.26

  29. Ljubic I (2021) Solving steiner trees: Recent advances, challenges, and perspectives. Networks 77(2):177–204. https://doi.org/10.1002/net.22005

    Article  MathSciNet  Google Scholar 

  30. Rehfeldt D, Koch T (2023) Implications, conflicts, and reductions for steiner trees. Math Program 197(2):903–966. https://doi.org/10.1007/s10107-021-01757-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Jayadeva Bhaumik B (1994) A neural network for the steiner minimal tree problem. Biol. Cybern. 70(5), 485–494

  32. Pornavalai C, Shiratori N, Chakraborty G (1996) Neural network for optimal Steiner tree computation. Neural Process Lett 3(3):139–149

    Article  Google Scholar 

  33. Pornavalai C, Chakraborty G, Shiratori N (1995) Neural networks for solving constrained steiner tree problem. In: Proceedings of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1867–1870 . IEEE

  34. Vinyals O, Fortunato M, Jaitly N (2015) Pointer networks. In: Advances in neural information processing systems, pp 2692–2700

  35. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907

  36. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y (2017) Graph attention networks. arXiv preprint arXiv:1710.10903

  37. Joshi CK, Laurent T, Bresson X (2019) An efficient graph convolutional network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227

  38. Nowak A, Villar S, Bandeira AS, Bruna J (2017) A note on learning algorithms for quadratic assignment with graph neural networks. In: Proceeding of the 34th International Conference on Machine Learning (ICML), vol. 1050, p. 22

  39. Ma Q, Ge S, He D, Thaker D, Drori I (2019) Combinatorial optimization by graph pointer networks and hierarchical reinforcement learning. arXiv preprint arXiv:1911.04936

  40. Bello I, Pham H, Le QV, Norouzi M, Bengio S (2016) Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940

  41. Nazari M, Oroojlooy A, Snyder L, Takác M (2018) Reinforcement learning for solving the vehicle routing problem. In: Advances in neural information processing systems, pp 9839–9849

  42. Kool W, Van Hoof H, Welling M (2018) Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475

  43. Deudon M, Cournut P, Lacoste A, Adulyasak Y, Rousseau L-M (2018) Learning heuristics for the tsp by policy gradient. In: International conference on the integration of constraint programming, artificial intelligence, and operations research, pp 170–181. Springer

  44. Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: Online learning of social representations. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 701–710

  45. Abolghasemi V, Ferdowsi S, Sanei S (2012) A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing. Signal Process 92(4):999–1009

    Article  Google Scholar 

  46. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  47. Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    MathSciNet  MATH  Google Scholar 

  48. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666. https://doi.org/10.1109/TIT.2007.909108

    Article  MathSciNet  MATH  Google Scholar 

  49. Lee KJ, Lee B (2022) End-to-end deep learning architecture for separating maternal and fetal ecgs using w-net. IEEE Access 10:39782–39788. https://doi.org/10.1109/ACCESS.2022.3166925

    Article  Google Scholar 

  50. Zhang Y, Xu M, Mao X, Wang J (2022) Uncertainty modeling in generative compressed sensing. In: Chaudhuri K, Jegelka S, Song L, Szepesvári C, Niu G, Sabato S (eds) International conference on machine learning, ICML 2022, 17–23 July 2022, Baltimore, Maryland, USA. Proceedings of machine learning research, vol 162, pp 26655–26668. PMLR. https://proceedings.mlr.press/v162/zhang22ai.html

  51. Xie S, Tu Z (2015) Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision, pp 1395–1403

  52. Duin CW (1994) Steiner’s problem in graphs: Approximation, reduction, variation. PhD thesis, Faculteit der Economische Wetenschappen en Econometrie

  53. Dowsland KA (1991) Hill-climbing, simulated annealing and the steiner problem in graphs. Eng Optim 5:479

    Google Scholar 

  54. Prim RC (1957) Shortest connection networks and some generalizations. The Bell Syst Tech J 36(6):1389–1401

    Article  Google Scholar 

  55. Kruskal JB (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7(1):48–50

    Article  MathSciNet  MATH  Google Scholar 

  56. Nesetril J, Milková E, Nesetrilová H (2001) Otakar boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discret Math 233(1–3):3–36

    Article  MathSciNet  MATH  Google Scholar 

  57. Erdős P, Rényi A (1964) On the strength of connectedness of a random graph. Acta Mathematica Academiae Scientiarum Hungarica 12(1–2):261–267

    Article  MathSciNet  MATH  Google Scholar 

  58. Koch T, Martin A, Vo S (2001) Steinlib: an updated library on steiner tree problems in graphs. Springer, Berlin

    Google Scholar 

  59. Hagberg A, Swart P, S Chult D (2008) Exploring network structure, dynamics, and function using networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States)

Download references

Funding

This work was substantially supported by the National Natural Science Foundation of China (Grant No. 61902074). The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. BY was involved in methodology, writing, and evaluation. WZ was involved in conceptualization of this study, methodology, writing, and editing.

Corresponding author

Correspondence to Weiguo Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Consent to participate

Not applicable.

Consent for publication

All of the material is owned by the authors and/or no permissions are required.

Ethical approval

Not applicable.

Human and animal ethics

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zheng, W. Near-optimal Steiner tree computation powered by node embeddings. Knowl Inf Syst 65, 4563–4583 (2023). https://doi.org/10.1007/s10115-023-01893-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01893-8

Keywords

Navigation