Skip to main content
Log in

Human activity recognition using fuzzy proximal support vector machine for multicategory classification

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Applying machine learning tools to human activity analysis presents two major challenges: Firstly, the transformation of actions into multiple attributes increases training and testing time significantly. Secondly, the presence of noises and outliers in the dataset adds complexity and makes it difficult to implement the activity detection system efficiently. This paper addresses both of the challenges by proposing a kernel fuzzy proximal support vector machine as a robust classifier for multicategory classification problems. It transforms the input patterns into a higher-dimensional space and assigns each pattern an appropriate membership degree to reduce the effect of noises and outliers. The proposed method only requires the solution of a set of linear equations to obtain the classifiers; thus, it is computationally efficient. The computer simulation results on ten UCI benchmark problems show that the proposed method outperforms established methods in predictive accuracy. Finally, numerical results from three human activity recognition problems validate the applicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Similar type of problems is also present in a variety of other classification tasks in the real world, including credit risk evaluation [57], image retrieval [59], and human identification [34].

  2. Such a map exists iff \(\forall ~h: {\mathbb {R}}^n\longrightarrow {\mathbb {R}}, \int h^2 (x)dx < \infty \), we have \(\displaystyle \int K(p,q) h(p) h(q) dp dq \ge 0\) (see [39]).

  3. There is no global rule to choose the most appropriate kernel function and its associated parameters. However, the performance of SVM depends on the choice of the kernel function and its parameters.

  4. There is no missing value in any dataset.

References

  1. Abe S (2004) Fuzzy LP-SVMs for multiclass problems. In: European symposium on artificial neural networks (ESANN), pp 429–434

  2. Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022) Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer. Expert Syst Appl 191:116158. https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  3. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  4. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  5. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Engrg 391:114570. https://doi.org/10.1016/j.cma.2022.114570

    Article  MathSciNet  MATH  Google Scholar 

  6. Anagnostis A, Benos L, Tsaopoulos D, Tagarakis A, Tsolakis N, Bochtis D (2021) Human activity recognition through recurrent neural networks for human-robot interaction in agriculture. Appl Sci 11:2188. https://doi.org/10.3390/app11052188

    Article  Google Scholar 

  7. Blake CL, Merz CJ (1998) UCI repository for machine learning databases. Department of Information and Computer Sciences, University of California, Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html

  8. Bradley PS, Mangasarian OL (2000) Massive data discrimination via linear support vector machines. Optim Method Softw 13:1–10. https://doi.org/10.1080/10556780008805771

    Article  MathSciNet  MATH  Google Scholar 

  9. Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2:121–167. https://doi.org/10.1023/A:1009715923555

    Article  Google Scholar 

  10. Chathuramali KM, Rodrigo R (2012) Faster human activity recognition with SVM. In: International conference on advances in ICT for emerging regions (ICTer2012). https://doi.org/10.1109/ICTer.2012.6421415

  11. Chen SG, Wu XJ (2018) A new fuzzy twin support vector machine for pattern classification. Int J Mach Learn Cybern 9:1553–1564. https://doi.org/10.1007/s13042-017-0664-x

    Article  Google Scholar 

  12. Chen Z, Zhu Q, Soh YC, Zhang L (2017) Robust human activity recognition using smartphone sensors via CT-PCA and online SVM. IEEE Trans Ind Inform 13:3070–3080. https://doi.org/10.1109/TII.2017.2712746

    Article  Google Scholar 

  13. Concone F, Re GL, Morana M (2019) A fog-based application for human activity recognition using personal smart devices. ACM Trans Internet Technol 19:1–20. https://doi.org/10.1145/3266142

    Article  Google Scholar 

  14. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to algorithms. MIT Press, Cambridge

    MATH  Google Scholar 

  15. Cortes C, Vapnik V (1995) Support vector networks. Mach Learn 20:273–297. https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  16. Cristianini N, Taylor JS (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  17. de Carvalho AC, Freitas A (2009) A tutorial on multi-label classification techniques. Found Comput Intell 5:177–195

    Google Scholar 

  18. Ebadi L, Shafri HZ, Mansor SB, Ashurov R (2013) A review of applying second-generation wavelets for noise removal from remote sensing data. Environ Earth Sci 70:2679–2690. https://doi.org/10.1007/s12665-013-2325-z

    Article  Google Scholar 

  19. Fung GM, Mangasarian OL (2005) Multicategory proximal support vector machine classifiers. Mach Learn 59:77–97

    Article  MATH  Google Scholar 

  20. Gautam N, Singh A, Kumar K, Aggarwal PK (2021) Investigation on performance analysis of support vector machine for classification of abnormal regions in medical image. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-021-02965-9

    Article  Google Scholar 

  21. Graf ABA, Smola AJ, Borer S (2003) Classification in a normalized feature space using support vector machines. IEEE Trans Neural Netw 14:597–605. https://doi.org/10.1109/TNN.2003.811708

    Article  Google Scholar 

  22. Guarracino MR, Cifarelli C, Seref O, Pardalos PM (2007) A classification method based on generalized eigenvalue problems. Optim Method Softw 22:73–81. https://doi.org/10.1080/10556780600883874

    Article  MathSciNet  MATH  Google Scholar 

  23. Jayadeva Khemchandani R, Chandra S (2005) Fuzzy linear proximal support vector machines for multi-category data classification. Neurocomputing 67:426–435. https://doi.org/10.1016/j.neucom.2004.09.002

    Article  Google Scholar 

  24. Jayadeva Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classifications. IEEE Trans Pattern Anal Mach Intell 29:905–910. https://doi.org/10.1109/TPAMI.2007.1068

    Article  Google Scholar 

  25. Ji S, Xu W, Yang M, Yu K (2012) 3D convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35:221–231. https://doi.org/10.1109/TPAMI.2012.59

    Article  Google Scholar 

  26. Jiang X, Yi Z, Lv JC (2006) Fuzzy SVM with a new fuzzy membership function. Neural Comput Appl 15:268–276. https://doi.org/10.1007/s00521-006-0028-z

    Article  Google Scholar 

  27. Khan ZN, Ahmad J (2021) Attention induced multi-head convolutional neural network for human activity recognition. Appl Soft Comput 110:107671. https://doi.org/10.1016/j.asoc.2021.107671

    Article  Google Scholar 

  28. Khemchandani R, Saigal P, Chandra S (2018) Angle-based twin support vector machine. Ann Oper Res 269:387–417. https://doi.org/10.1007/s10479-017-2604-2

    Article  MathSciNet  MATH  Google Scholar 

  29. Kressel UHG (1998) Pairwise classification and support vector machines. Advances in kernel methods: support vector learning, pp 255–268

  30. Kumar DM, Satyanarayana D, Prasad MG (2021) MRI brain tumor detection using optimal possibilistic fuzzy C-means clustering algorithm and adaptive k-nearest neighbor classifier. J Ambient Intell Humaniz Comput 12:2867–2880. https://doi.org/10.1007/s12652-020-02444-7

    Article  Google Scholar 

  31. Laxmi S, Gupta SK (2020) Intuitionistic fuzzy proximal support vector machines for pattern classification. Neural Process Lett 51:2701–2735. https://doi.org/10.1007/s11063-020-10222-x

    Article  Google Scholar 

  32. Lin CF, Wang SD (2002) Fuzzy support vector machines. IEEE Trans Neural Netw 13:464–471. https://doi.org/10.1109/72.991432

    Article  Google Scholar 

  33. Lin W, Sun MT, Poovandran R, Zhang Z (2008) Human activity recognition for video surveillance. In: IEEE international symposium on circuits and systems (ISCAS), pp 2737–2740. https://doi.org/10.1109/ISCAS.2008.4542023

  34. Lu J, Zhang E (2007) Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognit Lett 28:2401–2411. https://doi.org/10.1016/j.patrec.2007.08.004

    Article  Google Scholar 

  35. Mangasarian OL, Wild EW (2001) Proximal support vector machine classifiers. In: Proceedings KDD-2001: knowledge discovery and data mining, pp 77–86. https://doi.org/10.1145/502512.502527

  36. Mangasarian OL, Wild EW (2005) Multisurface proximal support vector machine classification via generalized eigenvalues. IEEE Trans Pattern Anal Mach Intell 28:69–74. https://doi.org/10.1109/TPAMI.2006.17

    Article  Google Scholar 

  37. Mao Y, Zhou X, Pi D, Sun Y, Wong ST (2005) Multiclass cancer classification by using fuzzy support vector machine and binary decision tree with gene selection. Biomed Res Int 2005:160–171. https://doi.org/10.1155/JBB.2005.160

    Article  Google Scholar 

  38. Meng H, Pears N, Bailey C (2007) A human action recognition system for embedded computer vision application. In: IEEE conference on computer vision and pattern recognition, pp. 1–6. https://doi.org/10.1109/CVPR.2007.383420

  39. Mercer J (1909) Functions of positive and negative type and their connection with the theory of integral equations. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 209:415–446

    MATH  Google Scholar 

  40. Merentes N, Nikodem K (2010) Remarks on strongly convex functions. Aequationes Math 80:193–199. https://doi.org/10.1007/s00010-010-0043-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Murad A, Pyun JY (2017) Deep recurrent neural networks for human activity recognition. Sensors 17:2556. https://doi.org/10.3390/s17112556

    Article  Google Scholar 

  42. Oyelade ON, Ezugwu AES, Mohamed TI, Abualigah L (2022) Ebola optimization search algorithm: a new nature-inspired metaheuristic optimization algorithm. IEEE Access 10:16150–16177. https://doi.org/10.1109/ACCESS.2022.3147821

    Article  Google Scholar 

  43. Poursaeidi MH, Kundakcioglu OE (2014) Robust support vector machines for multiple instance learning. Ann Oper Res 216:205–227. https://doi.org/10.1007/s10479-012-1241-z

    Article  MathSciNet  MATH  Google Scholar 

  44. Pareek P, Thakkar A (2021) A survey on video-based human action recognition: recent updates, datasets, challenges, and applications. Artif Intell Rev 54:2259–2322. https://doi.org/10.1007/s10462-020-09904-8

    Article  Google Scholar 

  45. Sartakhti JS, Afrabandpey H, Ghadiri N (2019) Fuzzy least squares twin support vector machines. Eng Appl Artif Intell 85:402–409. https://doi.org/10.1016/j.engappai.2019.06.018

    Article  Google Scholar 

  46. Shao YH, Deng NY, Chen WJ, Wang Z (2012) Improved generalized eigenvalue proximal support vector machine. IEEE Signal Process Lett 20:213–216. https://doi.org/10.1109/LSP.2012.2216874

    Article  Google Scholar 

  47. Shao YH, Zhang CH, Wang XB, Deng NY (2011) Improvements on twin support vector machines. IEEE Trans Neural Netw 22:962–968. https://doi.org/10.1109/TNN.2011.2130540

    Article  Google Scholar 

  48. Suto J, Oniga S (2018) Efficiency investigation of artificial neural networks in human activity recognition. J Ambient Intell Humaniz Comput 9:1049–1060. https://doi.org/10.1007/s12652-017-0513-5

    Article  Google Scholar 

  49. Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300. https://doi.org/10.1023/A:1018628609742

    Article  Google Scholar 

  50. Tarafdar P, Bose I (2020) Recognition of human activities for wellness management using a smartphone and a smartwatch: A boosting approach. Decis Support Syst 140:113426. https://doi.org/10.1016/j.dss.2020.113426

    Article  Google Scholar 

  51. Tian Y, Deng Z, Luo J, Li Y (2018) An intuitionistic fuzzy set based S\(^3\)VM model for binary classification with mislabeled information. Fuzzy Optim Decis Mak 17:475–494. https://doi.org/10.1007/s10700-017-9282-z

    Article  MathSciNet  MATH  Google Scholar 

  52. Tian YJ, Ju XC, Qi ZQ, Shi Y (2014) Improved twin support vector machine. Sci China Math 57:417–432. https://doi.org/10.1007/s11425-013-4718-6

    Article  MathSciNet  MATH  Google Scholar 

  53. Tsujinishi D, Abe S (2003) Fuzzy least squares support vector machines for multiclass problems. Neural Netw 16:785–792. https://doi.org/10.1016/S0893-6080(03)00110-2

    Article  Google Scholar 

  54. Vapnik V (1995) the nature of statistical learning theory. Springer, Berlin

    Book  MATH  Google Scholar 

  55. VenkateswarLal P, Nitta GR, Prasad A (2019) Ensemble of texture and shape descriptors using support vector machine classification for face recognition. J Ambient Intell Humaniz Comput. https://doi.org/10.1007/s12652-019-01192-7

    Article  Google Scholar 

  56. Viji C, Rajkumar N, Suganthi ST, Venkatachalam K, Pandiyan S (2020) An improved approach for automatic spine canal segmentation using probabilistic boosting tree (PBT) with fuzzy support vector machine. J Ambient Intell Humaniz Comput 12:6527–6536. https://doi.org/10.1007/s12652-020-02267-6

    Article  Google Scholar 

  57. Wang Y, Wang S, Lai KK (2005) A new fuzzy support vector machine to evaluate credit risk. IEEE Trans Fuzzy Syst 13:820–831. https://doi.org/10.1109/TFUZZ.2005.859320

    Article  Google Scholar 

  58. Wu H, Pan W, Xiong X, Xu S (2014) Human activity recognition based on the combined SVM & HMM. In: IEEE international conference on information and automation (ICIA), pp. 219–224. https://doi.org/10.1109/ICInfA.2014.6932656

  59. Wu K, Yap KH (2006) Fuzzy SVM for content-based image retrieval: a pseudo-label support vector machine framework. IEEE Comput Intell Mag 1:10–16. https://doi.org/10.1109/MCI.2006.1626490

    Article  Google Scholar 

  60. Xia H, Hu BQ (2006) Feature selection using fuzzy support vector machines. Fuzzy Optim Decis Mak 5:187–192. https://doi.org/10.1007/s10700-006-7336-8

    Article  MATH  Google Scholar 

  61. Yan X, Bai Y, Fang SC, Luo J (2018) A proximal quadratic surface support vector machine for semi-supervised binary classification. Soft Comput 22:6905–6919. https://doi.org/10.1007/s00500-017-2751-z

    Article  MATH  Google Scholar 

  62. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MATH  Google Scholar 

  63. Zaniewicz Ł, Jaroszewicz S (2017) \(L_p\)-Support vector machines for uplift modeling. Knowl Inf Syst 53:269–296. https://doi.org/10.1007/s10115-017-1040-6

    Article  Google Scholar 

  64. Zhang W, Yu L, Yoshida T, Wang Q (2019) Feature weighted confidence to incorporate prior knowledge into support vector machines for classification. Knowl Inf Syst 58:371–397. https://doi.org/10.1007/s10115-018-1165-2

    Article  Google Scholar 

  65. Zhong X, Li J, Dou H, Deng S, Wang G, Jiang Y, Wang Y, Zhou Z, Wang L, Yan F (2013) Fuzzy nonlinear proximal support vector machine for land extraction based on remote sensing image. PLoS ONE 8:69434. https://doi.org/10.1371/journal.pone.0069434

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for the recommendation, valuable comments and the interesting suggestions which have considerably improved the presentation of the paper. The first author is also grateful to the Ministry of Human Resource Development, India, for financial support, to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in preparing the manuscript.

Corresponding author

Correspondence to S. K. Gupta.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laxmi, S., Kumar, S. & Gupta, S.K. Human activity recognition using fuzzy proximal support vector machine for multicategory classification. Knowl Inf Syst 65, 4585–4611 (2023). https://doi.org/10.1007/s10115-023-01911-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01911-9

Keywords

Navigation