Skip to main content
Log in

A novel quasi-oppositional chaotic student psychology-based optimization algorithm for deciphering global complex optimization problems

  • Regular Paper
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

This research work projects a novel quasi-oppositional chaotic student psychology-based optimization (SPBO) (QOCSPBO) algorithm for solving global optimization problems. To tackle the identified flaws of the standard SPBO, the proffered QOCSPBO algorithm combines two search strategies within the standard SPBO framework. The obtained outcomes exhibit that the proposed QOCSPBO algorithm outperforms SPBO and recently published algorithms in optimizing a set of well-known benchmark test functions. The projected QOCSPBO attains the optimal site and size of distributed generation and shunt capacitors in two radial distribution systems contemplating different types load models at three load levels. The obtained results prove that the recommended method can be highly suitable in solving real-time power system optimization problems with constrained and unknown search space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in https://doi.org/10.1016/j.advengsoft.2016.01.008 (for benchmark test functions) [29], https://github.com/P-N-Suganthan (for CEC-C06 2019 benchmark test functions) [126], https://ieeexplore.ieee.org/document/19265, https://www.sba.org.br/revista/vol11/v11a261.htm (for IEEE 33-bus RDS) [132] and control & automation, (for 136-bus RDS) [133].

Abbreviations

ACO:

Ant colony optimization

AGTO:

Artificial gorilla troops optimizer

ALO:

Ant lion optimizer

AO:

Aquila optimizer

AOA:

Arithmetic optimization algorithm

AVOA:

African vulture optimization algorithm

BFOA:

Bacterial forging optimization algorithm

BPSO:

Binary PSO

BSA:

Backtracking search algorithm

CSA:

Crow search algorithm

CS:

Cuckoo search

Cf-PSO:

Constriction factor PSO

CLS:

Chaotic local search

DA:

Dragonfly algorithm

DG:

Distributed generation

DE:

Differential evolution

DMOA:

Dwarf mongoose optimization algorithm

EOSA:

Ebola optimization search algorithm

FFA:

Farmland fertility algorithm

FPA:

Flower pollination algorithm

FGA:

Fuzzy GA

GA:

Genetic algorithm

GABC:

Gbest-guided artificial bee colony

GWO:

Grey wolf optimizer

GSA:

Gravitational search algorithm

HSA:

Harmony search algorithm

IMDE:

Intersect mutation DE

MSA:

Moth search algorithm

MPSO:

Modified PSO

MFO:

Moth flame optimization

MOA:

Metaheuristic optimization algorithm

MVO:

Multi-verse optimizer

PDOA:

Prairie dog optimization algorithm

PL:

Peak load

PSO:

Particle swarm optimization

QOBL:

Quasi-oppositional (QO)-based learning

RDS:

Radial distribution system

RSA:

Reptile search algorithm

SC:

Shunt capacitor

SD:

Standard deviation

SCA:

Sine cosine algorithm

SPBO:

Student psychology-based optimization

SSA:

Salp swarm algorithm

SOS:

Symbiotic organisms search

SHADE:

Success history-based adaptive DE

TF:

Test function

TLBO:

Teaching–learning-based optimization

TOC:

Total operating cost

TVD:

Total voltage deviation

VSI:

Voltage stability index

WCA:

Water cycle algorithm

WOA:

Whale optimization algorithm

\(b_{{{\text{best}}\left( {{\text{new}}} \right)}}\) :

BS in the next iteration

\(b_{{{\text{LL}}}}\) :

Lower limit (LL) of marks

\(b_{{{\text{UL}}}}\) :

Upper limit (UL) marks

\({\text{Ch}}\) :

Chaotic sequence

\(\mu\) :

Control parameter of \({\text{Ch}}\)

\(D\) :

Dimension

\({\text{iter}}_{\max }\) :

Maximum number of iterations

\(j_{{\text{r}}}\) :

Jumping rate

\(K_{i}\) :

Annual cost per unit of \(P_{{{\text{loss}}}}\)

\(K_{p}\) :

Yearly installation cost of DGs

\(K_{C}\) :

Yearly installation cost of SCs

\(K\) :

Initial population

\(K_{{{\text{CLS}}}}\) :

Chaotic local search limit

\(K_{{{\text{opposite}}}}\) :

Opposite of \(K\)

\(K_{{\text{quasi - opposite}}}\) :

Quasi-opposite of \(K\)

\(N_{{{\text{dg}}}}\) :

Number of DGs

\(N_{{{\text{SC}}}}\) :

Number of SCs

\(N_{{{\text{pop}}}}\) :

Number of population

\({\text{OF}}\) :

Objective function

\(P\) :

Real power (kW)

\(P_{{{\text{loss}}}}\) :

Active power loss (kW)

\(P_{{{\text{DG}}}}\) :

Active power DG

\(P_{{{\text{DG}}}}^{{{\text{LL}}}}\) :

LL of \(P_{{{\text{DG}}}}\)

\(P_{{{\text{DG}}}}^{{{\text{UL}}}}\) :

UL of \(P_{{{\text{DG}}}}\)

\(Q\) :

Reactive power

\(Q_{{{\text{SC}}}}\) :

Reactive power SC

\(Q_{{{\text{SC}}}}^{{{\text{LL}}}}\) :

LL of SC

\(Q_{{{\text{SC}}}}^{{{\text{UL}}}}\) :

UL of SC

\(Q_{{{\text{loss}}}}\) :

Reactive power loss

\(R_{ij}\) :

Resistance between the ith and jth nodes

\(V^{{{\text{LL}}}}\) :

LL of voltage

\(V^{{{\text{UL}}}}\) :

UL of voltage

\(w_{1} - w_{5}\) :

Weight factors

\(X_{ij}\) :

Reactance between the ith and jth nodes

References

  1. Simpson AR, Dandy GC, Murphy LJ (1994) Genetic algorithms compared to other techniques for pipe optimization. J Water Resour Plan Manag 120(4):423–443. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:4(423)

    Article  Google Scholar 

  2. James C (2003) Introduction to Stochastics search and optimization. Wiley-Interscience. New Jersey.

  3. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci 237:82–117. https://doi.org/10.1016/j.ins.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  4. Parejo JA, Ruiz-Cortés A, Lozano S, Fernandez P (2012) Metaheuristic optimization frameworks: a survey and benchmarking. Soft Comput 16(3):527–561. https://doi.org/10.1007/s00500-011-0754-8

    Article  Google Scholar 

  5. Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q (2011) Multi-objective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1(1):32–49. https://doi.org/10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  6. Hoos HH, Stützle T (2004) Stochastic local search. Elsevier, Foundations and Applications

    MATH  Google Scholar 

  7. Wang GG, Deb S, Gandomi AH, Zhang Z, Alavi AH (2016) Chaotic cuckoo search. Soft Comput 20(9):3349–3362. https://doi.org/10.1007/s00500-015-1726-1

    Article  Google Scholar 

  8. Saremi S, Mirjalili S, Lewis A (2014) Biogeography-based optimization with chaos. Neural Comput Appl 25(5):1077–1097. https://doi.org/10.1007/s00521-014-1597-x

    Article  Google Scholar 

  9. Wang GG, Guo L, Gandomi AH, Hao GS, Wang H (2014) Chaotic krill herd algorithm. Inf Sci 27(4):17–34. https://doi.org/10.1016/j.ins.2014.02.123

    Article  MathSciNet  Google Scholar 

  10. Wang G, Guo L, Wang H, Duan H, Liu L, Li J (2014) Incorporating mutation scheme into krill herd algorithm for global numerical optimization. Neural Comput Appl 24(3):853–871. https://doi.org/10.1007/s00521-012-1304-8

    Article  Google Scholar 

  11. Li HR, Gao YL (2009) Particle swarm optimization algorithm with exponent decreasing inertia weight and stochastic mutation. In: 2009 Second international conference on information and computing science. IEEE vol 1, pp 66–69. https://doi.org/10.1109/ICIC.2009.24.

  12. Zhu Q, Yang Z (2004) An ant colony optimization algorithm based on mutation and dynamic pheromone updating. J Softw 15(2):185–192

    MATH  Google Scholar 

  13. Liang JJ, Suganthan PN (2005) Dynamic multi-swarm particle swarm optimizer with local search. In: 2005 IEEE congress on evolutionary computation vol 1, pp 522–528. https://doi.org/10.1109/CEC.2005.1554727.

  14. Premalatha K, Natarajan AM (2008) A new approach for data clustering based on PSO with local search. Comput Inf Sci 1(4):139–145. https://doi.org/10.5539/cis.v1n4p139

    Article  Google Scholar 

  15. Blum C, Roli A (2008) Hybrid metaheuristics: an introduction. In: Hybrid metaheuristics. Springer, Berlin, Heidelberg pp 1–30. https://doi.org/10.1007/978-3-540-78295-7_1

  16. Shi XH, Liang YC, Lee HP, Lu C, Wang LM (2005) An improved GA and a novel PSO-GA-based hybrid algorithm. Inf Process Lett 93(5):255–261. https://doi.org/10.1016/j.ipl.2004.11.003

    Article  MathSciNet  MATH  Google Scholar 

  17. Mirjalili S, Hashim SZM (2010) A new hybrid PSOGSA algorithm for function optimization. In: 2010 International conference on computer and information application. IEEE pp 374–377. https://doi.org/10.1109/ICCIA.2010.6141614.

  18. Niu B, Li L (2008) A novel PSO-DE-based hybrid algorithm for global optimization. In: International conference on intelligent computing. Springer, Berlin, Heidelberg pp 156–163. https://doi.org/10.1007/978-3-540-85984-0_20.

  19. Holden N, Freitas AA (2008) A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J Artif Evol Appl. https://doi.org/10.1155/2008/316145

    Article  Google Scholar 

  20. Tadj W, Chettih M, Mouattah K (2021) A new hybrid algorithm for estimating confined and leaky aquifers parameters from transient time-drawdown data. Soft Comput 25(24):15463–15476. https://doi.org/10.1007/s00500-021-06224-z

    Article  Google Scholar 

  21. Farh HM, Al-Shaalan AM, Eltamaly AM, Al-Shamma’A AA (2020) A novel crow search algorithm auto-drive PSO for optimal allocation and sizing of renewable distributed generation. IEEE Access 8:27807–27820. https://doi.org/10.1109/ACCESS.2020.2968462

    Article  Google Scholar 

  22. Khalilpourazari S, Pasandideh SHR (2020) Sine-cosine crow search algorithm: theory and applications. Neural Comput Appl 32(12):7725–7742. https://doi.org/10.1007/s00521-019-04530-0

    Article  Google Scholar 

  23. Arora S, Singh H, Sharma M, Sharma S, Anand P (2019) A new hybrid algorithm based on grey wolf optimization and crow search algorithm for unconstrained function optimization and feature selection. IEEE Access 7:26343–26361. https://doi.org/10.1109/ACCESS.2019.2897325

    Article  Google Scholar 

  24. Nemati S, Basiri ME, Ghasem-Aghaee N, Aghdam MH (2009) A novel ACO-GA hybrid algorithm for feature selection in protein function prediction. Expert Syst Appl 36(10):12086–12094. https://doi.org/10.1016/j.eswa.2009.04.023

    Article  Google Scholar 

  25. Lin WY (2010) A GA-DE hybrid evolutionary algorithm for path synthesis of four-bar linkage. Mech Mach Theory 45(8):1096–1107. https://doi.org/10.1016/j.mechmachtheory.2010.03.011

    Article  MATH  Google Scholar 

  26. Duan H, Yu Y, Zhang X, Shao S (2010) Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simul Model Pract Theory 18(8):1104–1115. https://doi.org/10.1016/j.simpat.2009.10.006

    Article  Google Scholar 

  27. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks. IEEE vol 4, pp 1942–1948. https://doi.org/10.1109/ICNN.1995.488968.

  28. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007

    Article  Google Scholar 

  29. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008

    Article  Google Scholar 

  30. Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006

    Article  Google Scholar 

  31. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  32. Mirjalili S (2016) SCA: a sine cosine algorithm for solving optimization problems. Knowl-Based Syst 96:120–133. https://doi.org/10.1016/j.knosys.2015.12.022

    Article  Google Scholar 

  33. Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(2):495–513. https://doi.org/10.1007/s00521-015-1870-7

    Article  Google Scholar 

  34. Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete and multi-objective problems. Neural Comput Appl 27(4):1053–1073. https://doi.org/10.1007/s00521-015-1920-1

    Article  Google Scholar 

  35. Das B, Mukherjee V, Das D (2020) Student psychology based optimization algorithm: a new population based optimization algorithm for solving optimization problems. Adv Eng Softw 146:102804. https://doi.org/10.1016/j.advengsoft.2020.102804

    Article  Google Scholar 

  36. Shayanfar H, Gharehchopogh FS (2018) Farmland fertility: a new metaheuristic algorithm for solving continuous optimization problems. Appl Soft Comput 71:728–746. https://doi.org/10.1016/j.asoc.2018.07.033

    Article  Google Scholar 

  37. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng 158:107408. https://doi.org/10.1016/j.cie.2021.107408

    Article  Google Scholar 

  38. Abdollahzadeh B, Gharehchopogh FS, Mirjalili S (2021) Artificial gorilla troops optimizer: a new nature-inspired metaheuristic algorithm for global optimization problems. Int J Intell Syst 36(10):5887–5958. https://doi.org/10.1002/int.22535

    Article  Google Scholar 

  39. Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH (2022) Prairie dog optimization algorithm. Neural Comput Appl 34(22):20017–20065. https://doi.org/10.1007/s00521-022-07530-9

    Article  Google Scholar 

  40. Agushaka JO, Ezugwu AE, Abualigah L (2022) Dwarf mongoose optimization algorithm. Comput Methods Appl Mech Eng 391:114570. https://doi.org/10.1016/j.cma.2022.114570

    Article  MathSciNet  MATH  Google Scholar 

  41. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-Qaness MA, Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic optimization algorithm. Comput Ind Eng 157:107250. https://doi.org/10.1016/j.cie.2021.107250

    Article  Google Scholar 

  42. Abualigah L, Abd Elaziz M, Sumari P, Geem ZW, Gandomi AH (2022) Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer. Expert Syst Appl 191:116158. https://doi.org/10.1016/j.eswa.2021.116158

    Article  Google Scholar 

  43. Oyelade ON, Ezugwu AES, Mohamed TI, Abualigah L (2022) Ebola optimization search algorithm: a new nature-inspired metaheuristic optimization algorithm. IEEE Access 10:16150–16177. https://doi.org/10.1109/ACCESS.2022.3147821

    Article  Google Scholar 

  44. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH (2021) The arithmetic optimization algorithm. Comput Methods Appl Mech Eng 376:113609. https://doi.org/10.1016/j.cma.2020.113609

    Article  MathSciNet  MATH  Google Scholar 

  45. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1(1):67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  46. Pal RS, Mukherjee V (2021) A novel population based maximum point tracking algorithm to overcome partial shading issues in solar photovoltaic technology. Energy Convers Manag 244:114470. https://doi.org/10.1016/j.enconman.2021.114470

    Article  Google Scholar 

  47. Roy R, Mukherjee V, Singh RP (2021) Model order reduction of proton exchange membrane fuel cell system using student psychology based optimization algorithm. Int J Hydrog Energy 46(75):37367–37378. https://doi.org/10.1016/j.ijhydene.2021.09.009

    Article  Google Scholar 

  48. Mudi J, Shiva CK, Mukherjee V (2021) An optimal control of integrated hybrid power system with FACTS devices using student psychology-based optimization algorithm. Adv Theory Simul 4(9):2100147. https://doi.org/10.1002/adts.202100147

    Article  Google Scholar 

  49. Patra DK, Si T, Mondal S, Mukherjee P (2021) Breast DCE-MRI segmentation for lesion detection by multi-level thresholding using student psychological based optimization. Biomed Signal Process Control 69:102925. https://doi.org/10.1016/j.bspc.2021.102925

    Article  Google Scholar 

  50. Dash SK, Mishra S (2021) Optimal allocation of photovoltaic units in radial distribution networks using a new student psychology based optimization algorithm. Int J Electr Eng Inform. https://doi.org/10.15676/ijeei.2020.13.2.5

    Article  Google Scholar 

  51. Nayak S, Si T, Sarkar A (2021) Breast MRI registration using metaheuristic algorithms. In: 2021 10th international conference on internet of everything, microwave engineering, communication and networks (IEMECON). IEEE pp 1–6. https://doi.org/10.1109/IEMECON53809.2021.9689097.

  52. Basu S, Basu M (2021) Modified student psychology based optimization algorithm for economic dispatch problems. Appl Artif Intell. https://doi.org/10.1080/08839514.2021.1985050

    Article  Google Scholar 

  53. Sasmito A, Pratiwi AB (2021) Chaotic student psychology based optimization algorithm for bi-objective permutation flowshop scheduling problem. Int J Intell Eng Syst 14(3):109–118. https://doi.org/10.2226/ijies2021.0630.10

    Article  Google Scholar 

  54. Dash SK, Pani S, Mishra S (2022) Multi-objective optimal allocation of DSTATCOM using an improved student psychology based algorithm. In: Innovation in electrical power engineering, communication, and computing technology. Springer, Singapore pp 391–402. https://doi.org/10.1007/978-981-16-7076-3_34.

  55. Du X, Jia L, Haq IU (2022) Fault diagnosis based on SPBO-SDAE and transformer neural network for rotating machinery. Measurement 188:110545. https://doi.org/10.1016/j.measurement.2021.110545

    Article  Google Scholar 

  56. Biswas PP, Suganthan PN, Amaratunga GA (2018) Distribution network reconfiguration together with distributed generator and shunt capacitor allocation for loss minimization. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE pp 1–7. https://doi.org/10.1109/CEC.2018.8477894.

  57. Dixit M, Kundu P, Jariwala HR (2017) Incorporation of distributed generation and shunt capacitor in radial distribution system for techno-economic benefits. Eng Sci Technol Int J 20(2):482–493. https://doi.org/10.1016/j.jestch.2017.01.003

    Article  Google Scholar 

  58. Imran M, Kowsalya M (2014) Optimal distributed generation and capacitor placement in power distribution networks for power loss minimization. In: 2014 International conference on advances in electrical engineering (ICAEE). IEEE 1–6. https://doi.org/10.1109/ICAEE.2014.6838519.

  59. Mohamed EA, Mohamed AAA, Mitani Y (2018) Hybrid GMSA for optimal placement and sizing of distributed generation and shunt capacitors. J Eng Sci Technol Rev. https://doi.org/10.25103/jestr.111.07

    Article  Google Scholar 

  60. Uchendu M (2020) Placement of distributed generation and shunt capacitor in distribution network using cuckoo search algorithm. Niger J Technol Dev 17(2):79–87. https://doi.org/10.4314/njtd.v17i2.2

    Article  Google Scholar 

  61. Saonerkar AK, Bagde BY (2014) Optimized DG placement in radial distribution system with reconfiguration and capacitor placement using genetic algorithm. In: 2014 IEEE international conference on advanced communications, control and computing technologies. IEEE, pp 1077–1083. https://doi.org/10.1109/ICACCCT.2014.7019263.

  62. Khodabakhshian A, Andishgar MH (2016) Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. Int J Electr Power Energy Syst 82:599–607. https://doi.org/10.1016/j.ijepes.2016.04.002

    Article  Google Scholar 

  63. Abou El-Ela AA, El-Sehiemy RA, Abbas AS (2018) Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm. IEEE Syst J 12(4):3629–3636. https://doi.org/10.1109/JSYST.2018.2796847

    Article  Google Scholar 

  64. Dehghani M, Montazeri Z, Malik OP (2020) Optimal sizing and placement of capacitor banks and distributed generation in distribution systems using spring search algorithm. Int J Emerg Electr Power Syst. https://doi.org/10.1515/ijeeps-2019-0217

    Article  Google Scholar 

  65. Naik SG, Khatod DK, Sharma MP (2013) Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. Int J Electr Power Energy Syst 53:967–973. https://doi.org/10.1016/j.ijepes.2013.06.008

    Article  Google Scholar 

  66. Aman MM, Jasmon GB, Solangi KH, Bakar AHA, Mokhlis H (2013) Optimum simultaneous DG and capacitor placement on the basis of minimization of power losses. Int J Comput Electr Eng 5(5):516. https://doi.org/10.7763/IJCEE.2013.V5.764

    Article  Google Scholar 

  67. Reddy SC, Prasad PVN, Laxmi AJ (2013) Placement of distributed generator, capacitor and DG and capacitor in distribution system for loss reduction and reliability improvement. Editors-in-Chief 198.

  68. Baghipour R, Hosseini SM (2012) Placement of DG and capacitor for loss reduction, reliability and voltage improvement in distribution networks using BPSO. Int J Intell Syst Appl 4(12):57. https://doi.org/10.5815/ijisa.2012.12.08

    Article  Google Scholar 

  69. Balu K, Mukherjee V (2020) Siting and sizing of distributed generation and shunt capacitor banks in radial distribution system using constriction factor particle swarm optimization. Electr Power Compon Syst 48(6–7):697–710. https://doi.org/10.1080/15325008.2020.1797935

    Article  Google Scholar 

  70. Fadel W, Kilic U, Taskin S (2017) Placement of DG, Cb, and Tcsc in radial distribution system for power loss minimization using backtracking search algorithm. Electr Eng 99(3):791–802. https://doi.org/10.1007/s00202-016-0448-4

    Article  Google Scholar 

  71. Tizhoosh HR (2005) Opposition-based learning: a new scheme for machine intelligence. In: International conference on computational intelligence for modelling, control and automation and international conference on intelligent agents, web technologies and internet commerce (CIMCA-IAWTIC'06). IEEE vol l, pp 695–701. https://doi.org/10.1109/CIMCA.2005.1631345

  72. Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition versus randomness in soft computing techniques. Appl Soft Comput 8(2):906–918. https://doi.org/10.1016/j.asoc.2007.07.010

    Article  Google Scholar 

  73. Wang H, Wu Z, Rahnamayan S, Liu Y, Ventresca M (2011) Enhancing particle swarm optimization using generalized opposition-based learning. Inf Sci 181(20):4699–4714. https://doi.org/10.1016/j.ins.2011.03.016

    Article  MathSciNet  Google Scholar 

  74. Ewees AA, Abd Elaziz M, Houssein EH (2018) Improved grasshopper optimization algorithm using opposition-based learning. Expert Syst Appl 112:156–172. https://doi.org/10.1016/j.eswa.2018.06.023

    Article  Google Scholar 

  75. Tubishat M, Idris N, Shuib L, Abushariah MA, Mirjalili S (2020) Improved salp swarm algorithm based on opposition based learning and novel local search algorithm for feature selection. Expert Syst Appl 145:113122. https://doi.org/10.1016/j.eswa.2019.113122

    Article  Google Scholar 

  76. Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230. https://doi.org/10.1016/j.eswa.2018.10.050

    Article  Google Scholar 

  77. Shekhawat S, Saxena A (2020) Development and applications of an intelligent crow search algorithm based on opposition based learning. ISA Trans 99:210–230. https://doi.org/10.1016/j.isatra.2019.09.004

    Article  Google Scholar 

  78. Gupta S, Deep K, Heidari AA, Moayedi H, Wang M (2020) Opposition-based learning Harris hawks optimization with advanced transition rules: principles and analysis. Expert Syst Appl 158:113510. https://doi.org/10.1016/j.eswa.2020.113510

    Article  Google Scholar 

  79. Long W, Jiao J, Liang X, Cai S, Xu M (2019) A random opposition-based learning grey wolf optimizer. IEEE Access 7:113810–113825. https://doi.org/10.1109/ACCESS.2019.2934994

    Article  Google Scholar 

  80. Silveira LAD, Soncco-Álvarez JL, Lima TAD, Ayala-Rincón M (2016) Memetic and opposition-based learning genetic algorithms for sorting unsigned genomes by translocations. In: Advances in nature and biologically inspired computing. Springer, Cham, pp 73–85. https://doi.org/10.1007/978-3-319-27400-3_7.

  81. Rahnamayan S, Tizhoosh HR, Salama MM (2008) Opposition-based differential evolution. IEEE Trans Evol Comput 12(1):64–79. https://doi.org/10.1109/TEVC.2007.894200

    Article  Google Scholar 

  82. Abd Elaziz M, Oliva D (2018) Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Convers Manag 171:1843–1859. https://doi.org/10.1016/j.enconman.2018.05.062

    Article  Google Scholar 

  83. Dinkar SK, Deep K (2018) An efficient opposition based Lévy Flight Antlion optimizer for optimization problems. J Comput Sci 29:119–141. https://doi.org/10.1016/j.jocs.2018.10.002

    Article  Google Scholar 

  84. Rahnamayan S, Tizhoosh HR, Salama MM (2007) Quasi-oppositional differential evolution. In: 2007 IEEE congress on evolutionary computation. IEEE pp 2229–2236. https://doi.org/10.1109/CEC.2007.4424748

  85. Rao RV, Rai DP (2017) Optimization of submerged arc welding process parameters using quasi-oppositional based Jaya algorithm. J Mech Sci Technol 31(5):2513–2522. https://doi.org/10.1007/s12206-017-0449-x

    Article  Google Scholar 

  86. Ahandani MA, Abbasfam J, Kharrati H (2022) Parameter identification of permanent magnet synchronous motors using quasi-opposition-based particle swarm optimization and hybrid chaotic particle swarm optimization algorithms. Appl Intell. https://doi.org/10.1007/s10489-022-03223-x

    Article  Google Scholar 

  87. Zheng T, Luo W (2019) An enhanced lightning attachment procedure optimization with quasi-opposition-based learning and dimensional search strategies. Comput Intell Neurosci. https://doi.org/10.1155/2019/1589303

    Article  Google Scholar 

  88. Mandal B, Roy PK (2013) Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int J Electr Power Energy Syst 53:123–134. https://doi.org/10.1016/j.ijepes.2013.04.011

    Article  Google Scholar 

  89. Roy PK, Mandal D (2011) Quasi-oppositional biogeography-based optimization for multi-objective optimal power flow. Electr Power Compon Syst 40(2):236–256. https://doi.org/10.1080/15325008.2011.629337

    Article  Google Scholar 

  90. Sharma S, Bhattacharjee S, Bhattacharya A (2016) Quasi-oppositional Swine influenza model based optimization with quarantine for optimal allocation of DG in radial distribution network. Int J Electr Power Energy Syst 74:348–373. https://doi.org/10.1016/j.ijepes.2015.07.034

    Article  Google Scholar 

  91. Shiva CK, Mukherjee V (2015) A novel quasi-oppositional harmony search algorithm for automatic generation control of power system. Appl Soft Comput 35:749–765. https://doi.org/10.1016/j.asoc.2015.05.054

    Article  Google Scholar 

  92. Basu M (2016) Quasi-oppositional group search optimization for multi-area dynamic economic dispatch. Int J Electr Power Energy Syst 78:356–367. https://doi.org/10.1016/j.ijepes.2015.11.120

    Article  Google Scholar 

  93. Tavazoei MS, Haeri M (2007) Comparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithms. Appl Math Comput 187(2):1076–1085. https://doi.org/10.1016/j.amc.2006.09.087

    Article  MathSciNet  MATH  Google Scholar 

  94. Alatas B, Akin E, Ozer AB (2009) Chaos embedded particle swarm optimization algorithms. Chaos Solitons Fractals 40(4):1715–1734. https://doi.org/10.1016/j.chaos.2007.09.063

    Article  MathSciNet  MATH  Google Scholar 

  95. Ji J, Gao S, Wang S, Tang Y, Yu H, Todo Y (2017) Self-adaptive gravitational search algorithm with a modified chaotic local search. IEEE Access 5:17881–17895. https://doi.org/10.1109/ACCESS.2017.2748957

    Article  Google Scholar 

  96. Guo Z, Zhang W, Wang S (2021) Improved gravitational search algorithm based on chaotic local search. Int J Bio-Inspired Comput 17(3):154–164. https://doi.org/10.1504/IJBIC.2021.114873

    Article  Google Scholar 

  97. Gao S, Yu Y, Wang Y, Wang J, Cheng J, Zhou M (2019) Chaotic local search-based differential evolution algorithms for optimization. IEEE Trans Syst Man Cybern Syst 51(6):3954–3967. https://doi.org/10.1109/TSMC.2019.2956121

    Article  Google Scholar 

  98. Jia D, Zheng G, Khan MK (2011) An effective memetic differential evolution algorithm based on chaotic local search. Inf Sci 181(15):175–3187. https://doi.org/10.1016/j.ins.2011.03.018

    Article  Google Scholar 

  99. Guo Z, Huang H, Deng C, Yue X, Wu Z (2015) An enhanced differential evolution with elite chaotic local search. Comput Intell Neurosci. https://doi.org/10.1155/2015/583759

    Article  Google Scholar 

  100. Yi J, Li X, Chu CH, Gao L (2019) Parallel chaotic local search enhanced harmony search algorithm for engineering design optimization. J Intell Manuf 30(1):405–428. https://doi.org/10.1007/s10845-016-1255-5

    Article  Google Scholar 

  101. Xia X (2012) Particle swarm optimization method based on chaotic local search and roulette wheel mechanism. Phys Procedia 24:269–275. https://doi.org/10.1016/j.phpro.2012.02.040

    Article  Google Scholar 

  102. Yu Y, Gao S, Cheng S, Wang Y, Song S, Yuan F (2018) CBSO: a memetic brain storm optimization with chaotic local search. Memet Comput 10(4):353–367. https://doi.org/10.1007/s12293-017-0247-0

    Article  Google Scholar 

  103. Hussien AG, Amin M (2022) A self-adaptive Harris Hawks optimization algorithm with opposition-based learning and chaotic local search strategy for global optimization and feature selection. Int J Mach Learn Cybern 13(2):309–336. https://doi.org/10.1007/s13042-021-01326-4

    Article  Google Scholar 

  104. Zhao F, Liu Y, Shao Z, Jiang X, Zhang C, Wang J (2016) A chaotic local search based bacterial foraging algorithm and its application to a permutation flow-shop scheduling problem. Int J Comput Integr Manuf 29(9):962–981. https://doi.org/10.1080/0951192X.2015.1130240

    Article  Google Scholar 

  105. Gharehchopogh FS, Maleki I, Dizaji ZA (2022) Chaotic vortex search algorithm: metaheuristic algorithm for feature selection. Evol Intel 15(3):1777–1808. https://doi.org/10.1007/s12065-021-00590-1

    Article  Google Scholar 

  106. Sayed GI, Darwish A, Hassanien AE (2018) A new chaotic whale optimization algorithm for features selection. J Classif 35(2):300–344. https://doi.org/10.1007/s00357-018-9261-2

    Article  MathSciNet  MATH  Google Scholar 

  107. Anand P, Arora S (2020) A novel chaotic selfish herd optimizer for global optimization and feature selection. Artif Intell Rev 53(2):1441–1486. https://doi.org/10.1007/s10462-019-09707-6

    Article  Google Scholar 

  108. Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragonfly algorithm: an improved metaheuristic algorithm for feature selection. Appl Intell 49:188–205. https://doi.org/10.1007/s10489-018-1261-8

    Article  Google Scholar 

  109. Too J, Abdullah AR (2020) Chaotic atom search optimization for feature selection. Arab J Sci Eng 45(8):6063–6079. https://doi.org/10.1007/s13369-020-04486-7

    Article  Google Scholar 

  110. Ouertani MW, Manita G, Korbaa O (2021) Chaotic lightning search algorithm. Soft Comput 25:2039–2055. https://doi.org/10.1007/s00500-020-05273-0

    Article  Google Scholar 

  111. Kelidari M, Hamidzadeh J (2021) Feature selection by using chaotic cuckoo optimization algorithm with levy flight, opposition-based learning and disruption operator. Soft Comput 25(4):2911–2933. https://doi.org/10.1007/s00500-020-05349-x

    Article  Google Scholar 

  112. Ayar M, Isazadeh A, Gharehchopogh FS, Seyedi M (2022) Chaotic-based divide-and-conquer feature selection method and its application in cardiac arrhythmia classification. J Supercomput. https://doi.org/10.1007/s11227-021-04108-5

    Article  Google Scholar 

  113. Mohmmadzadeh H, Gharehchopogh FS (2021) An efficient binary chaotic symbiotic organisms search algorithm approaches for feature selection problems. J Supercomput 77(8):9102–9144. https://doi.org/10.1007/s11227-021-03626-6

    Article  Google Scholar 

  114. Asghari K, Masdari M, Gharehchopogh FS, Saneifard R (2021) Multi-swarm and chaotic whale-particle swarm optimization algorithm with a selection method based on roulette wheel. Expert Syst 38(8):12779. https://doi.org/10.1111/exsy.12779

    Article  Google Scholar 

  115. Mohammadzadeh A, Masdari M, Gharehchopogh FS, Jafarian A (2021) Improved chaotic binary grey wolf optimization algorithm for workflow scheduling in green cloud computing. Evol Intell 14:1997–2025. https://doi.org/10.1007/s12065-020-00479-5

    Article  Google Scholar 

  116. Dizaji ZA, Gharehchopogh FS (2015) A hybrid of ant colony optimization and chaos optimization algorithms approach for software cost estimation. Indian J Sci Technol 8(2):128. https://doi.org/10.17485/ijst/2015/v8i2/57776

    Article  Google Scholar 

  117. Balu K, Mukherjee V (2023) Optimal allocation of electric vehicle charging stations and renewable distributed generation with battery energy storage in radial distribution system considering time sequence characteristics of generation and load demand. J Energy Storage 59:106533. https://doi.org/10.1016/j.est.2022.106533

    Article  Google Scholar 

  118. Truong KH, Nallagownden P, Baharudin Z, Vo DN (2019) A quasi-oppositional-chaotic symbiotic organisms search algorithm for global optimization problems. Appl Soft Comput 77:567–583. https://doi.org/10.1016/j.asoc.2019.01.043

    Article  Google Scholar 

  119. Truong KH, Nallagownden P, Elamvazuthi I, Vo DN (2020) A quasi-oppositional-chaotic symbiotic organisms search algorithm for optimal allocation of DG in radial distribution networks. Appl Soft Comput 88:106067. https://doi.org/10.1016/j.asoc.2020.106067

    Article  Google Scholar 

  120. Saha S, Mukherjee V (2018) A novel quasi-oppositional chaotic antlion optimizer for global optimization. Appl Intell 48(9):2628–2660. https://doi.org/10.1007/s10489-017-1097-7

    Article  Google Scholar 

  121. Turgut MS, Turgut OE, Abualigah L (2022) Chaotic quasi-oppositional arithmetic optimization algorithm for thermo-economic design of a shell and tube condenser running with different refrigerant mixture pairs. Neural Comput Appl. https://doi.org/10.1007/s00521-022-06899-x

    Article  Google Scholar 

  122. Paul C, Roy PK, Mukherjee V (2021) Application of chaotic quasi-oppositional whale optimization algorithm on CHPED problem integrated with wind-solar-EVs. Int Trans Electr Energy Syst 31(11):13124. https://doi.org/10.1002/2050-7038.13124

    Article  Google Scholar 

  123. Chen H, Li W, Yang X (2020) A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Syst Appl 158:113612. https://doi.org/10.1016/j.eswa.2020.113612

    Article  Google Scholar 

  124. Roy PK, Sultana S (2020) Optimal reconfiguration of capacitor based radial distribution system using chaotic quasi oppositional chemical reaction optimization. Microsyst Technol. https://doi.org/10.1007/s00542-020-04885-8

    Article  Google Scholar 

  125. Balu K, Mukherjee V (2022) A novel quasi-oppositional chaotic Harris hawk’s optimization algorithm for optimal siting and sizing of distributed generation in radial distribution system. Neural Process Lett 54(5):4051–4121. https://doi.org/10.1007/s11063-022-10800-1

    Article  Google Scholar 

  126. Price KV, Awad NH, Ali MZ, Suganthan PN (2018) Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. In: Technical Report. Nanyang Technological University, Singapore

  127. Teng JH (2003) A direct approach for distribution system load flow solutions. IEEE Trans Power Deliv 18(3):882–887. https://doi.org/10.1109/TPWRD.2003.813818

    Article  MathSciNet  Google Scholar 

  128. Singh D, Singh D, Verma K (2009) Multi-objective optimization for DG planning with load models. IEEE Trans Power Syst 24(1):427–436. https://doi.org/10.1109/TPWRS.2008.2009483

    Article  MathSciNet  Google Scholar 

  129. Jin J, Rothrock L, McDermott PL, Barnes M (2010) Using the analytic hierarchy process to examine judgment consistency in a complex multi attribute task. IEEE Trans Syst Man Cybern Part A 40(5):1105–1115. https://doi.org/10.1109/TSMCA.2010.2045119

    Article  Google Scholar 

  130. Chakravorty M, Das D (2001) Voltage stability analysis of radial distribution networks. Int J Electr Power Energy Syst 23(2):129–135. https://doi.org/10.1016/S0142-0615(00)00040-5

    Article  Google Scholar 

  131. Balu K, Mukherjee V (2021) Optimal siting and sizing of distributed generation in radial distribution system using a novel student psychology-based optimization algorithm. Neural Comput Appl 33(22):15639–15667. https://doi.org/10.1007/s00521-021-06185-2

    Article  Google Scholar 

  132. Baran ME, Wu FF (1989) Network reconfiguration in distribution systems for loss reduction and load balancing. IEEE Power Eng Rev 9(4):101–102. https://doi.org/10.1109/61.25627

    Article  Google Scholar 

  133. Mantovani JRS, Casari F, Romero R (2000) Reconfiguration of radial systems using the voltage drop criterion. SBA Control Autom 11 (03). https://www.sba.org.br/revista/vol11/v11a261.htm

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. KB and VM performed material preparation, data collection and analysis. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Korra Balu.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest. We have also not received any funding support for this work.

Human and animal rights

This research does not involve any harmful impact to human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balu, K., Mukherjee, V. A novel quasi-oppositional chaotic student psychology-based optimization algorithm for deciphering global complex optimization problems. Knowl Inf Syst 65, 5387–5477 (2023). https://doi.org/10.1007/s10115-023-01931-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-023-01931-5

Keywords

Navigation