Abstract
Sentiment analysis has become an important task in natural language processing because it is used in many different areas. This paper gives a detailed review of sentiment analysis, including its definition, challenges, and uses. Different approaches to sentiment analysis are discussed, focusing on how they have changed and their limitations. Special attention is given to recent improvements with transformer models and transfer learning. Detailed reviews of well-known transformer models like BERT, RoBERTa, XLNet, ELECTRA, DistilBERT, ALBERT, T5, and GPT are provided, looking at their structures and roles in sentiment analysis. In the experimental section, the performance of these eight transformer models is compared across 22 different datasets. The results show that the T5 model consistently performs the best on multiple datasets, demonstrating its flexibility and ability to generalize. XLNet performs very well in understanding irony and sentiments related to products, while ELECTRA and RoBERTa perform best on certain datasets, showing their strengths in specific areas. BERT and DistilBERT often perform the lowest, indicating that they may struggle with complex sentiment tasks despite being computationally efficient.
















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
The datasets are available at https://github.com/hadis-1/Sentiment-Analysis-Datasets.
References
Ravi K, Ravi V (2015) A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Syst 89:14–46. https://doi.org/10.1016/j.knosys.2015.06.015
Rajabi Z, Valavi MR (2021) A survey on sentiment analysis in Persian: a comprehensive system perspective covering challenges and advances in resources and methods. Cognit Comput 13(4):882–902. https://doi.org/10.1007/s12559-021-09886-x
Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 55(7):5731–5780. https://doi.org/10.1007/s10462-022-10144-1
Yue L, Chen W, Li X, Zuo W, Yin M (2019) A survey of sentiment analysis in social media. Knowl Inf Syst 60(2):617–663. https://doi.org/10.1007/s10115-018-1236-4
Khan MT, Durrani M, Ali A, Inayat I, Khalid S, Khan KH (2016) Sentiment analysis and the complex natural language. Complex Adapt Syst Model. https://doi.org/10.1186/s40294-016-0016-9
Basari ASH, Hussin B, Ananta IGP, Zeniarja J (2013) Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization. Procedia Eng 53:453–462. https://doi.org/10.1016/j.proeng.2013.02.059
Mäntylä MV, Graziotin D, Kuutila M (2018) The Evolution of sentiment analysis. Comput Rev 27:16–32. https://doi.org/10.1016/j.cosrev.2017.10.002
Bashiri H, Naderi H (2024) LexiSNTAGMM: an unsupervised framework for sentiment classification in data from distinct domains, synergistically integrating dictionary-based and machine learning approaches. Soc Netw Anal Min. https://doi.org/10.1007/s13278-024-01268-z
Tan KL, Lee CP, Lim KM (2023) A Survey of sentiment analysis: approaches, datasets, and future research. Appl Sci. https://doi.org/10.3390/app13074550
Tun YM, Khaing M (2023) A large-scale sentiment analysis using political tweets. Int J Electr Comput Eng 13(6):6913–6925. https://doi.org/10.11591/ijece.v13i6.pp6913-6925
Saeed Z, Abbasi RA, Maqbool O et al (2019) What’s happening around the world? A survey and framework on event detection techniques on twitter. J Grid Comput 17(2):279–312. https://doi.org/10.1007/s10723-019-09482-2
Suresh P, Gurumoorthy K (2022) Mining of customer review feedback using sentiment analysis for smart phone product. EAI/Springer Innov Commun Comput 12(10):247–259. https://doi.org/10.1007/978-3-030-86165-0_21
Purohit A (2021) Sentiment analysis of customer product reviews using deep learning and compare with other machine learning techniques. Int J Res Appl Sci Eng Technol 9(7):233–239. https://doi.org/10.22214/ijraset.2021.36202
Alslaity A, Orji R (2024) Machine learning techniques for emotion detection and sentiment analysis: current state, challenges, and future directions. Behav Inf Technol 43(1):139–164. https://doi.org/10.1080/0144929X.2022.2156387
Ghanbari-Adivi F, Mosleh M (2019) Text emotion detection in social networks using a novel ensemble classifier based on Parzen Tree Estimator (TPE). Neural Comput Appl 31(12):8971–8983. https://doi.org/10.1007/s00521-019-04230-9
De Bruyne L, De Clercq O, Hoste V (2021) Mixing and matching emotion frameworks: Investigating cross-framework transfer learning for dutch emotion detection. Electron 10(21):2643. https://doi.org/10.3390/electronics10212643
Al Maruf A, Khanam F, Haque MM, Jiyad ZM, Mridha MF, Aung Z (2024) Challenges and opportunities of text-based emotion detection: a survey. IEEE Access 12:18416–18450. https://doi.org/10.1109/ACCESS.2024.3356357
Zhang H, Qian S, Fang Q, Xu C (2021) Multimodal disentangled domain adaption for social media event rumor detection. IEEE Trans Multimed 23:4441–4454. https://doi.org/10.1109/TMM.2020.3042055
Sailunaz K, Alhajj R (2019) Emotion and sentiment analysis from Twitter text. J Comput Sci. https://doi.org/10.1016/j.jocs.2019.05.009
Du K, Xing F, Mao R, Cambria E (2024) Financial sentiment analysis: techniques and applications. ACM Comput Surv 56(9):1–42. https://doi.org/10.1145/3649451
Montoyo A, Martínez-Barco P, Balahur A (2012) Subjectivity and sentiment analysis: an overview of the current state of the area and envisaged developments. Decis Support Syst 53(4):675–679. https://doi.org/10.1016/j.dss.2012.05.022
Khan A et al (2020) Sentiment classification of user reviews using supervised learning techniques with comparative opinion mining perspective. Adv Intell Syst Comput 944:23–29. https://doi.org/10.1007/978-3-030-17798-0_3
Al-Qablan TA, Mohd Noor MH, Al-Betar MA, Khader AT (2023) A survey on sentiment analysis and its applications. Springer, London
Adak A, Pradhan B, Shukla N (2022) Sentiment analysis of customer reviews of food delivery services using deep learning and explainable artificial intelligence: systematic review. Foods 11(10):1500. https://doi.org/10.3390/foods11101500
Shah P et al (2024) A comprehensive review on sentiment analysis of social/web media big data for stock market prediction. Int J Syst Assur Eng Manag 15(6):2011–2018. https://doi.org/10.1007/s13198-023-02214-6
Lappeman J, Goder A, Naicker K, Faruki H, Gordon P (2023) Using sentiment analysis to understand public policy nicknames: obamacare and the affordable care act. J Nonprofit Public Sect Mark 36(3):347–363. https://doi.org/10.1080/10495142.2023.2178588
Aramburo RFP, Moreira MÂL, Fávero LPL, De Araújo Costa IP, Dos Santos M (2022) “Data science in social politics with particular emphasis on sentiment analysis. Procedia Comput Sci 214:420–427. https://doi.org/10.1016/j.procs.2022.11.194
Magtangob RMM, Palaoag TD (2023) Assessment of the healthcare administration of senior citizens from survey data using sentiment analysis. Int J Adv Comput Sci Appl 14(2):389–394. https://doi.org/10.14569/IJACSA.2023.0140247
Georgiou D, MacFarlane A, Russell-Rose T (2015) Extracting sentiment from healthcare survey data: an evaluation of sentiment analysis tools. Proc. 2015 Sci. Inf. Conf. SAI 2015, pp 352–361, https://doi.org/10.1109/SAI.2015.7237168
Srisankar M (2024) A survey on sentiment analysis techniques in the medical domain. Medicon Agric Environ Sci 6(2):4–9. https://doi.org/10.55162/mcaes.06.157
Sudirjo F, Diantoro K, Al Gasawneh JA, Khootimah Azzaakiyyah H, Almaududi Ausat AM (2023) Application of ChatGPT in improving customer sentiment analysis for businesses. J Teknol Dan Sist Inf Bisnis 5(3):283–288. https://doi.org/10.47233/jteksis.v5i3.871
Axhiu M, Veljanoska F, Ciglovska B, Husejni M (2014) the usage of sentiment analysis for hearing the voice of the customer and improving businesses. J Educ Soc Res. https://doi.org/10.5901/jesr.2014.v4n4p401
Anbazhagan K, Singhal P, Gupta M, Saxena K (2024) Sentiment analysis of online customer feedbacks using NLP and supervised learning algorithm. Int J Intell Syst Appl Eng 12(3s):391–397
Cahyo PW, Aesyi US, Santosa BD (2024) Topic sentiment using logistic regression and latent dirichlet allocation as a customer satisfaction analysis model. J Infotel 16(1):1–16. https://doi.org/10.20895/infotel.v16i1.1081
Jain V, Mitra A (2023) Development and application of machine learning algorithms for sentiment analysis in digital manufacturing: a pathway for enhanced customer feedback. Emerg Technol Digit Manuf Smart Factories. https://doi.org/10.4018/979-8-3693-0920-9.ch002
Bhowmik S, Sadik R, Akanda W, Pavel JR (2024) Sentiment analysis with hotel customer reviews using FNet. Bull Electr Eng Informatics 13(2):1298–1306. https://doi.org/10.11591/eei.v13i2.6301
Mawadati A, Ustyannie W, Hindarto Wibowo A, Adelina Simanjuntak R (2024) Analysis of yogyakarta coffee shop visitor reviews to increase customer satisfaction using sentiment analysis. KnE Soc Sci 2024:30–39. https://doi.org/10.18502/kss.v9i10.15693
Bharadwaj L (2023) Sentiment analysis in online product reviews: mining customer opinions for sentiment classification. Int J Multidiscip Res. https://doi.org/10.36948/ijfmr.2023.v05i05.6090
Li H, Yu BXB, Li G, Gao H (2023) Restaurant survival prediction using customer-generated content: an aspect-based sentiment analysis of online reviews. Tour Manag 96:1–33. https://doi.org/10.1016/j.tourman.2022.104707
Ounacer S, Mhamdi D, Ardchir S, Daif A, Azzouazi M (2023) Customer sentiment analysis in hotel reviews through natural language processing techniques. Int J Adv Comput Sci Appl 14(1):569–579. https://doi.org/10.14569/IJACSA.2023.0140162
Nazirkar S, Kulkarni S (2023) Sentiment analysis and customer satisfaction factors based on LSTM and topic modeling. Indian J Sci Technol 16(28):2126–2132. https://doi.org/10.17485/ijst/v16i28.1109
Zakaria A, Siallagan M (2023) Predicting customer satisfaction through sentiment analysis on online review. Int J Curr Sci Res Rev 06(01):515–522. https://doi.org/10.47191/ijcsrr/v6-i1-56
Rana MRR, Nawaz A, Ali T, El-Sherbeeny AM, Ali W (2023) A BiLSTM-CF and BiGRU-based deep sentiment analysis model to explore customer reviews for effective recommendations. Eng Technol Appl Sci Res 13(5):11739–11746. https://doi.org/10.48084/etasr.6278
Andrian B, Simanungkalit T, Budi I, Wicaksono AF (2022) Sentiment analysis on customer satisfaction of digital banking in Indonesia. Int J Adv Comput Sci Appl 13(3):466–473. https://doi.org/10.14569/IJACSA.2022.0130356
Oliveira AS, Renda AI, Correia MB, Antonio N (2022) Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets. Tour Manag Stud 18(1):29–40. https://doi.org/10.18089/tms.2022.180103
Ma’ruf M, Kuncoro AP, Subarkah P, Nida F (2022) Sentiment analysis of customer satisfaction levels on smartphone products using Ensemble Learning. Ilk J Ilm 14(3):339–347. https://doi.org/10.33096/ilkom.v14i3.1377.339-347
Nguyen B, Nguyen VH, Ho T (2021) Sentiment analysis of customer feedback in online food ordering services. Bus Syst Res 12(2):46–59. https://doi.org/10.2478/bsrj-2021-0018
Kathiravan C, Rajasekar A, Velmurgan S, Mahalakshmi P, Chandramouli E, Suresh V, Padmaja B, Dhanalakshmi K (2021) Sentiment analysis and text mining of online customer reviews for digital wallet apps of Fintech industry. Int J Aquat Sci 12(03):2139–2150
Xu Z, Vail C, Kohli AS, Tajdini S (2021) Understanding changes in a brand’s core positioning and customer engagement: a sentiment analysis of a brand-owned Facebook site. J Mark Anal 9(1):3–16. https://doi.org/10.1057/s41270-020-00099-z
A. Purohit, “Sentiment Analysis of Customer Product Reviews using deep Learning and Compare with other Machine Learning Techniques,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VII, pp. 233–239, 2021, https://doi.org/10.22214/ijraset.2021.36202.
Khattak A et al (2020) Fine-grained sentiment analysis for measuring customer satisfaction using an extended set of fuzzy linguistic hedges. Int J Comput Intell Syst 13(1):744–756. https://doi.org/10.2991/ijcis.d.200513.001
Gang X (2020) Customer sentiment analysis: take restaurant online reviews as an example. Asia-pacific J Converg Res Interchang 6(6):25–33. https://doi.org/10.21742/apjcri.2020.06.03
Firdausi IE, Mukhlash I, Gama ADS, Hidayat N (2020) Sentiment analysis of customer response of telecommunication operator in Twitter using DCNN-SVM Algorithm. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1490/1/012071
Park G, Kwak M (2020) The life cycle of online smartphone reviews: Investigating dynamic change in customer opinion using sentiment analysis. ICIC Express Lett Part B Appl 11(5):509–516. https://doi.org/10.24507/icicelb.11.05.509
Iqbal Z, Yadav M, Masood S (2020) Implementation of supervised learning techniques for sentiment analysis of customer tweets on airline services. Int J Eng Appl Sci Technol 5(3):352–357. https://doi.org/10.33564/ijeast.2020.v05i03.056
Singh U, Saraswat A, Azad HK, Abhishek K, Shitharth S (2022) Towards improving e-commerce customer review analysis for sentiment detection. Sci Rep 12(1):1–15. https://doi.org/10.1038/s41598-022-26432-3
A. Adak, B. Pradhan and N. Shukla, “Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review,” Foods, vol. 11, no. 10, 2022, 10.3390/foods11101500.
Sharma V, Manocha T (2023) Comparative analysis of online fashion retailers using customer sentiment analysis on Twitter. SSRN Electron J. https://doi.org/10.2139/ssrn.4361107
Agarwal S (2022) Deep learning-based sentiment analysis: establishing customer dimension as the lifeblood of business management. Glob Bus Rev 23(1):119–136. https://doi.org/10.1177/0972150919845160
Ilham AA, Bustamin A, Wahyudiarto E (2023) Customer satisfaction assessment system on transactions e-commerce product purchases using sentiment analysis. Int J Adv Sci Eng Inf Technol 13(3):1041–1051. https://doi.org/10.18517/ijaseit.13.3.18273
Arief M, Samsudin NA (2023) Hybrid approach with VADER and multinomial logistic regression for multiclass sentiment analysis in online customer review. Int J Adv Comput Sci Appl 14(12):311–320. https://doi.org/10.14569/IJACSA.2023.0141232
Santhiya S, Sharmila C, Jayadharshini P, Dharshini MN, Dinesh Kumar B, Sandeep K (2023) A comparative analysis of pretrained models for sentiment analysis on restaurant customer reviews (CAPM-SARCR). In: International conference on speech and language technologies for low-resource languages, Springer Nature, Cham, Switzerland, pp 140–147
Jalal MS, Ahamed B, Naim FA, Das A, Huda MN (2023) A novel approach of customer sentiment analysis by CNN based on PWWA. IEEE Reg 10 Humanit Technol Conf R10-HTC pp 301–306, https://doi.org/10.1109/R10-HTC57504.2023.10461936
Pleerux N, Nardkulpat A (2023) Sentiment analysis of restaurant customer satisfaction during COVID-19 pandemic in Pattaya, Thailand. Heliyon 9(11):e22193. https://doi.org/10.1016/j.heliyon.2023.e22193
Pujo Ariesanto Akhamad E, Adi K, Puji Widodo A (2023) Machine learning approach to customer sentiment analysis in twitter airline reviews. E3S Web Conf. https://doi.org/10.1051/e3sconf/202344802044
Bakhit DMA, Nderu L, Ngunyi A (2024) A hybrid neural network model based on transfer learning for Arabic sentiment analysis of customer satisfaction. Eng Reports. https://doi.org/10.1002/eng2.12874
Chen D, Zhengwei H, Yiting T, Jintao M, Khanal R (2024) Emotion and sentiment analysis for intelligent customer service conversation using a multi-task ensemble framework. Cluster Comput 27(2):2099–2115. https://doi.org/10.1007/s10586-023-04073-z
Allimuthu U (2024) Sentiment analysis with hidden markov models for enhanced customer insights. 2024 Int. conf. cogn. robot. intell. syst. (ICC – ROBINS) https://doi.org/10.1109/ICC-ROBINS60238.2024.10533919
Alsemaree O, Alam AS, Gill SS, Uhlig S (2024) Sentiment analysis of Arabic social media texts: a machine learning approach to deciphering customer perceptions. Heliyon 10(9):e27863. https://doi.org/10.1016/j.heliyon.2024.e27863
Hossain MS, Rahman MF, Uddin MK, Hossain MK (2023) Customer sentiment analysis and prediction of halal restaurants using machine learning approaches. J Islam Mark 14(7):1859–1889. https://doi.org/10.1108/JIMA-04-2021-0125
Ahmed AZ, Rodríguez-Díaz M (2020) Significant labels in sentiment analysis of online customer reviews of airlines. Sustain 12(20):1–18. https://doi.org/10.3390/su12208683
Yi S, Liu X (2020) Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review. Complex Intell Syst 6(3):621–634. https://doi.org/10.1007/s40747-020-00155-2
Masarifoglu M et al (2021) Sentiment analysis of customer comments in banking using BERT-based approaches. SIU 2021 - 29th IEEE Conf. Signal Process. Commun. Appl. Proc. https://doi.org/10.1109/SIU53274.2021.9477890.
Luo JM, Vu HQ, Li G, Law R (2021) Understanding service attributes of robot hotels: a sentiment analysis of customer online reviews. Int J Hosp Manag 98:103032. https://doi.org/10.1016/j.ijhm.2021.103032
Aftab MO, Ahmad U, Khalid S, Saud A, Hassan A, Farooq MS (2021) Sentiment analysis of customer for ecommerce by applying AI. In: 4th Int. Conf. Innov. Comput. ICIC 2021, no. ICIC, pp. 1–7. https://doi.org/10.1109/ICIC53490.2021.9693026.
Capuano N, Greco L, Ritrovato P, Vento M (2021) Sentiment analysis for customer relationship management: an incremental learning approach. Appl Intell 51(6):3339–3352. https://doi.org/10.1007/s10489-020-01984-x
Park S, Cho J, Park K, Shin H (2021) Customer sentiment analysis with more sensibility. Eng Appl Artif Intell 104:104356. https://doi.org/10.1016/j.engappai.2021.104356
Saeed Z, Ayaz Abbasi R, Razzak MI, Xu G (2019) Event detection in twitter stream using weighted dynamic heartbeat graph approach. IEEE Comput Intell Mag 14(3):29–38. https://doi.org/10.1109/MCI.2019.2919395
Uma R, Aafreen Sana H, Jawahar P, Rishitha BV (2022) Support vector machine and convolutional neural network approach to customer review sentiment analysis. In: 2022 1st Int. Conf. Comput. Sci. Technol. ICCST 2022 - Proc., pp 239–243. https://doi.org/10.1109/ICCST55948.2022.10040381
Matarat K (2024) Enhancing hotel management: a sentiment analysis approach to assessing customer impressions on environment-based reviews. Int J Prof Bus Rev 9(1):e04152. https://doi.org/10.26668/businessreview/2024.v9i1.4152
Shi Y, Li L, Li H, Li A, Lin Y (2024) Aspect-level sentiment analysis of customer reviews based on neural multi-task learning. J Theory Pract Eng Sci 4(04):1–8. https://doi.org/10.53469/jtpes.2024.04(04).01
Habbat N, Anoun H, Hassouni L (2023) Combination of GRU and CNN deep learning models for sentiment analysis on french customer reviews using XLNet model. IEEE Eng Manag Rev 51(1):41–51. https://doi.org/10.1109/EMR.2022.3208818
Akre P, Malu R, Jha A, Tekade Y, Bisen W (2023) Sentiment analysis using opinion mining on customer review. Int J Eng Manag Res 13(4):41–44
Hicham N, Karim S, Habbat N (2023) Customer sentiment analysis for Arabic social media using a novel ensemble machine learning approach. Int J Electr Comput Eng 13(4):4504–4515. https://doi.org/10.11591/ijece.v13i4.pp4504-4515
Khan SI, Athawale SV, Borawake MP, Naniwadekar MY (2023) Sentiment analysis of customer reviews using pre-trained language models. Int J Intell Syst Appl Eng 11(7s):614–620
Habibi M, Kusumaningtyas K (2023) Customer experience analysis skincare products through social media data using topic modeling and sentiment analysis. J Sci Appl Eng 6(1):1. https://doi.org/10.31328/jsae.v6i1.4169
Shahhosseini M, Khalili Nasr A (2024) What attributes affect customer satisfaction in green restaurants? An aspect-based sentiment analysis approach. J Travel Tour Mark 41(4):472–490. https://doi.org/10.1080/10548408.2024.2306358
Rashiq Nazar S, Bhattasali T (2021) Sentiment analysis of customer reviews. Azerbaijan J High Perform Comput 4(1):113–125. https://doi.org/10.32010/26166127.2021.4.1.113.125
Durairaj AK, Chinnalagu A (2021) Transformer based Contextual model for sentiment analysis of customer reviews: a fine-tuned BERT a sequence learning BERT model for sentiment analysis. Int J Adv Comput Sci Appl 12(11):474–480. https://doi.org/10.14569/IJACSA.2021.0121153
Christanto HJ, Singgalen YA (2022) Sentiment analysis of customer feedback reviews towards hotel’s products and services in Labuan Bajo. J Inf Syst Informatics 4(4):805–822. https://doi.org/10.51519/journalisi.v4i4.294
Ruger AH, Suyanto M, Kurniawan MP (2021) Sentimen Analisis Pelanggan Shopee di Twitter dengan Algoritma Naive Bayes. J Inf Technol 1(2):26–29. https://doi.org/10.46229/jifotech.v1i2.282
Pöferlein M (2021) Sentiment analysis of German texts in finance: improving and testing the BPW dictionary. J Bank Financ Econ 2022(2 16):5–24. https://doi.org/10.7172/2353-6845.jbfe.2021.2.1
Issam A, Mounir AK, Saida EM, Fatna EM (2022) Financial sentiment analysis of tweets based on deep learning approach. Indones J Electr Eng Comput Sci 25(3):1759–1770. https://doi.org/10.11591/ijeecs.v25.i3.pp1759-1770
Cristescu MP, Nerişanu RA, Mara DA (2022) Using data mining in the sentiment analysis process on the financial market. J Soc Econ Stat 11(1–2):36–58. https://doi.org/10.2478/jses-2022-0003
Bagadhi VV, Alrajawy I, Babu KS (2022) A sentiment analysis model for the strategic financial management challenges in startups. J Posit Sch 6(8):4700–4706
Yekrangi M, Abdolvand N (2021) Financial markets sentiment analysis: developing a specialized Lexicon. J Intell Inf Syst 57(1):127–146. https://doi.org/10.1007/s10844-020-00630-9
Souissi F, Trichilli Y, Abbes MB (2020) Googling investor’s sentiment, financial stress and dynamics of European market indexes: a Markov chain analysis. Int J Bond Deriv 4(2):152. https://doi.org/10.1504/ijbd.2020.109354
Kilimci ZH (2020) Financial sentiment analysis with Deep Ensemble Models (DEMs) for stock market prediction. J Fac Eng Archit Gazi Univ 35(2):635–650. https://doi.org/10.17341/gazimmfd.501551
Kumar K, Kumar GR, Rao JN (2020) Use sentiment analysis to predict future price movement in the stock market. Int J Adv Res Eng Technol 11(11):1123–1130
Gumus A, Sakar CO (2021) Stock market prediction by combining stock price information and sentiment analysis. Int J Adv Eng Pure Sci 33(1):18–27. https://doi.org/10.7240/jeps.683952
Kalbandi I, Jare A, Kale O, Borole H, Navsare S (2021) Stock market prediction using LSTM. Int J Adv Res Sci Commun Technol 12(11):123–128. https://doi.org/10.48175/ijarsct-877
Sahu C, Dewangan KK (2023) Stock market prediction using Twitter. Int J Sci Res Eng Manag 07(10):1–11. https://doi.org/10.55041/ijsrem26020
Kedar SV (2021) stock market increase and decrease using twitter sentiment analysis and ARIMA model. Turkish J Comput Math Educ 12(1S):146–161. https://doi.org/10.17762/turcomat.v12i1s.1596
Sharma K, Bhalla R (2022) Decision support machine- a hybrid model for sentiment analysis of news headlines of stock market. Int J Electr Comput Eng Syst 13(9):791–798. https://doi.org/10.32985/ijeces.13.9.7
Janková Z (2023) Critical review of text mining and sentiment analysis for stock market prediction. J Bus Econ Manag 24(1):177–198. https://doi.org/10.3846/jbem.2023.18805
Ahangari M, Sebti A (2023) A hybrid approach to sentiment analysis of Iranian stock market user’s opinions. Int J Eng Trans A Basics 36(3):573–584. https://doi.org/10.5829/ije.2023.36.03c.18
Kasture P, Shirsath K (2024) Enhancing stock market prediction: a hybrid RNN-LSTM framework with sentiment analysis. Indian J Sci Technol 17(18):1880–1888. https://doi.org/10.17485/ijst/v17i18.466
Li X, Ming H (2023) Stock market prediction using reinforcement learning with sentiment analysis. Int J Cybern Inform 12(1):1–20. https://doi.org/10.5121/ijci.2023.120101
Aslim MF, Firmansyah G, Tjahjono B, Akbar H, Widodo AM (2023) Utilization of LSTM (Long Short Term Memory) based sentiment analysis for stock price prediction. Asian J Soc Humanit 1(12):1241–1255. https://doi.org/10.59888/ajosh.v1i12.141
Jiang N, Ti C, Mao Y, Wu T (2021) “Analysis on relationship between bitcoin price trend and sentiment of bitcoin related tweets by ML and NLP”, ICMLCA 2021–2nd Int. Conf Mach Learn Comput Appl 10(1):437–441
Kumar A, Srivastava V, Chaubey MK, Sehgal M (2023) Bitcoin price prediction using sentiment analysis and long short-term memory (LSTM). Int J Intell Syst Appl Eng 11(7s):480–485
Lade M, Welekar R, Dadiyala C (2023) Bitcoin price prediction and NFT generator based on sentiment analysis. Int J Next-Generation Comput. https://doi.org/10.47164/ijngc.v14i1.1043
Fakharchian S (2023) Designing a forecasting assistant of the Bitcoin price based on deep learning using market sentiment analysis and multiple feature extraction. Soft Comput 27(24):18803–18827. https://doi.org/10.1007/s00500-023-09028-5
Tjahyana LJ, Lesmana F (2024) Entity sentiment analysis with the Netray monitoring tool in Indonesian online news media on the fuel price hike. Inf Media 99:106–125. https://doi.org/10.15388/Im.2024.99.6
Bute H, Singh A, Nandurbarkar S, Wagle SA, Pareek P (2024) Bitcoin price prediction using twitter sentiment analysis. Int J Intell Syst Appl Eng 12(17s):469–477
Yang J, Wang Y, Li X (2022) Prediction of stock price direction using the LASSO-LSTM model combines technical indicators and financial sentiment analysis. PeerJ Comput Sci 8:1–27. https://doi.org/10.7717/PEERJ-CS.1148
Ho TT, Huang Y (2021) Stock price movement prediction using sentiment analysis and candlestick chart representation. Sensors. https://doi.org/10.3390/s21237957
Lakatos R, Bogacsovics G, Hajdu A (2022) Predicting the direction of the oil price trend using sentiment analysis. In: 2022 IEEE 2nd Conf. Inf. Technol. Data Sci. CITDS 2022 - Proc., pp 177–182. https://doi.org/10.1109/CITDS54976.2022.9914158.
Swathi T, Kasiviswanath N, Rao AA (2022) An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis. Appl Intell 52(12):13675–13688. https://doi.org/10.1007/s10489-022-03175-2
Jing N, Wu Z, Wang H (2021) A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Syst Appl 178:115019. https://doi.org/10.1016/j.eswa.2021.115019
Srijiranon K, Lertratanakham Y, Tanantong T (2022) A hybrid framework using PCA, EMD and LSTM methods for stock market price prediction with sentiment analysis. Appl Sci. https://doi.org/10.3390/app122110823
Chiong R, Fan Z, Hu Z, Dhakal S (2023) A novel ensemble learning approach for stock market prediction based on sentiment analysis and the sliding window method. IEEE Trans Comput Soc Syst 10(5):2613–2623. https://doi.org/10.1109/TCSS.2022.3182375
Dhabe P, Chandak A, Deshpande O, Fandade P, Chandak N, Oswal Y (2023) Stock market trend prediction along with twitter sentiment analysis. In: Intelligent computing and networking: Proceedings of IC-ICN 2022, Springer Nature Singapore, pp 45–59
Abdelfattah BA, Darwish SM, Elkaffas SM (2024) Enhancing the prediction of stock market movement using neutrosophic-logic-based sentiment analysis. J Theor Appl Electron Commer Res 19(1):116–134. https://doi.org/10.3390/jtaer19010007
Gupta AK, Kumar V, Verma A, Yadav P, Kumar N, Sain M (2024) Unveiling stock market trends through predictive analytics and sentiment analysis: insightfulequity. In: Proc. - Int. Conf. Comput. Power, Commun. Technol. IC2PCT 2024 vol 5. pp 1558–1566. https://doi.org/10.1109/IC2PCT60090.2024.10486483.
Chatziloizos GM, Gunopulos D, Konstantinou K (2024) Deep learning for stock market prediction using sentiment and technical analysis. SN Comput Sci. https://doi.org/10.1007/s42979-024-02651-5
de Carosia AEO, da Silva AEA, Coelho GP (2024) Predicting the Brazilian stock market with sentiment analysis, technical indicators and stock prices: a deep learning approach. Comput Econ. https://doi.org/10.1007/s10614-024-10636-y
Zhang W, Gong X, Wang C, Ye X (2021) Predicting stock market volatility based on textual sentiment: a nonlinear analysis. J Forecast 40(8):1479–1500. https://doi.org/10.1002/for.2777
Damayanti L, Lhaksmana KM (2024) Sentiment analysis of the 2024 Indonesia presidential election on twitter. Sinkron 8(2):938–946. https://doi.org/10.33395/sinkron.v8i2.13379
Azzawagama Firdaus A, Yudhana A, Riadi I (2024) Prediction of Indonesian presidential election results using sentiment analysis with Naïve Bayes method. J Media Inform Budidarma 8(1):41–50
Mantika AM, Triayudi A, Aldisa RT (2024) “Sentiment analysis on twitter using Naïve Bayes and logistic regression for the 2024 presidential election”, SaNa. J Blockchain, NFTs Metaverse Technol 2(1):44–55
Khan A, Zhang H, Boudjellal N, Ahmad A, Khan M (2023) Improving sentiment analysis in election-based conversations on twitter with ElecBERT language model. Comput Mater Contin 76(3):3345–3361. https://doi.org/10.32604/cmc.2023.041520
Hananto AL, Nardilasari AP, Fauzi A, Hananto A, Priyatna B, Rahman AY (2023) Best algorithm in sentiment analysis of presidential election in Indonesia on twitter. Int J Intell Syst Appl Eng 11(6s):473–481
Ayami YM, Nyirenda M (2023) Towards election forecasting using sentiment analysis: the Zambia general elections 2021. Zambia ICT J 7(1):47–51. https://doi.org/10.33260/zictjournal.v7i1.148
Olabanjo O, Wusu A, Padonu R, Afisi O, Mazzara M (2023) Twitter sentiment analysis of lagos State 2023 gubernatorial election using BERT”. J Adv Res Soc Sci 6(2):59–75. https://doi.org/10.33422/jarss.v6i2.1027
Iqbal BM, Lhaksmana KM, Setiawan EB (2023) 2024 presidential election sentiment analysis in news media using support vector machine. J Comput Syst Inform 4(2):397–404. https://doi.org/10.47065/josyc.v4i2.3051
Yavari A, Hassanpour H, Cami BR, Mahdavi M (2022) Election prediction based on sentiment analysis using twitter data. Int J Eng Trans B Appl 35(2):372–379. https://doi.org/10.5829/ije.2022.35.02b.13
Rahmanulloh NU, Santoso I (2022) Delineation of the early 2024 election map: sentiment analysis approach to twitter data. J Online Inform 7(2):226–235. https://doi.org/10.15575/join.v7i2.925
Chauhan P, Sharma N, Sikka G (2021) The emergence of social media data and sentiment analysis in election prediction. J Ambient Intell Humaniz Comput 12(2):2601–2627. https://doi.org/10.1007/s12652-020-02423-y
Endsuy ARD (2021) Sentiment analysis between VADER and EDA for the US presidential election 2020 on twitter datasets. J Appl Data Sci 2(1):8–18. https://doi.org/10.47738/jads.v2i1.17
Babac MB (2021) Sentiment analysis of president trump’stweets: from winning the election to the fight against COVID-19. Commun Manag Rev 6(September):1–22. https://doi.org/10.22522/cmr20210272
Khurana Batra P, Saxena A, Shruti, Goel C (2020) Election result prediction using twitter sentiments analysis. In: PDGC 2020 - 2020 6th Int. Conf Parallel Distrib Grid Comput pp 182–185. https://doi.org/10.1109/PDGC50313.2020.9315789
Buntoro GA, Arifin R, Syaifuddiin GN, Selamat A, Krejcar O, Fujita H (2021) Implementation of a machine learning algorithm for sentiment analysis of Indonesia’s 2019 presidential election. IIUM Eng J 22(1):78–92. https://doi.org/10.31436/IIUMEJ.V22I1.1532
Indra Z, Setiawan A, Jusman Y (1803) Implementation of machine learning for sentiment analysis of social and political orientation in Pekanbaru City. J Phys Conf Ser 1:2021. https://doi.org/10.1088/1742-6596/1803/1/012032
Yadav D, Sharma A, Ahmad S, Chandra U (2020) Political sentiment analysis on delhi using machine learning. Adv Math Sci J 9(3):1247–1258. https://doi.org/10.37418/amsj.9.3.50
Safra Zaabar L, Ridzwan Yaakub M, Iqbal M, Latiffi A (2022) Combination of Lexicon based and machine learning techniques in the development of political tweet sentiment analysis model. Int J Synerg Eng Technol 3(2):72–83
Amrullah M (2023) Interpreting U.S. Public opinion on cross-strait relations during president tsai ing-wen’s first term in office: a twitter sentiment analysis. J Glob Area Stud 7(4):55–81. https://doi.org/10.31720/jga.7.4.3
Alvi Q, Ali SF, Ahmed SB, Khan NA, Javed M, Nobanee H (2023) On the frontiers of Twitter data and sentiment analysis in election prediction: a review. PeerJ Comput Sci 9:1–25. https://doi.org/10.7717/peerj-cs.1517
Abercrombie G, Batista-Navarro R (2020) Sentiment and position-taking analysis of parliamentary debates: a systematic literature review. J Comput Soc Sci 3(1):245–270. https://doi.org/10.1007/s42001-019-00060-w
Abbas AK, Salih AK, Hussein HA, Hussein QM, Abdulwahhab SA (2020) Twitter sentiment analysis using an ensemble majority vote classifier. J Southwest Jiaotong Univ 55(1):1–7. https://doi.org/10.35741/issn.0258-2724.55.1.9
Chaudhry HN et al (2021) Sentiment analysis of before and after elections: Twitter data of U.S. election 2020. Electron 10(17):1–26. https://doi.org/10.3390/electronics10172082
Ali RH, Pinto G, Lawrie E, Linstead EJ (2022) A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election. J Big Data. https://doi.org/10.1186/s40537-022-00633-z
Onyenwe I, Nwagbo S, Mbeledogu N, Onyedinma E (2020) The impact of political party/candidate on the election results from a sentiment analysis perspective using #AnambraDecides2017 tweets. Soc Netw Anal Min 10(1):1–17. https://doi.org/10.1007/s13278-020-00667-2
Kinyua JD, Mutigwe C, Cushing DJ, Poggi M (2021) An analysis of the impact of President Trump’s tweets on the DJIA and S&P 500 using machine learning and sentiment analysis. J Behav Exp Financ 29:100447. https://doi.org/10.1016/j.jbef.2020.100447
Watimin NH, Zanuddin H, Rahamad MS (2023) Religious and racial tension breakout: an online pre-crisis detection strategy via sentiment analysis for riot crime prevention. Soc Netw Anal Min. https://doi.org/10.1007/s13278-023-01086-9
Kumar A, Shekhar S (2024) Hybrid model of unsupervised and supervised learning for multiclass sentiment analysis based on users’ reviews on healthcare web forums. J Auton Intell 7(4):1–16. https://doi.org/10.32629/jai.v7i4.971
Shanmuganathan V, de Albuquerque VHC, Barbosa PCS, dos Reis MC, Dhiman G, Shah MA (2023) Retracted: software based sentiment analysis of clinical data for healthcare sector. IET Softw 17(4):787–796. https://doi.org/10.1049/sfw2.12115
Panchal DS, Shelke MB, Kawathekar SS, Deshmukh SN (2023) Prediction of healthcare quality using sentiment analysis. Indian J Sci Technol 16(21):1603–1613. https://doi.org/10.17485/ijst/v16i21.2506
Edirisinghe R, Asanka D (2023) Sentiment reason mining framework for analyzing twitter discourse on critical issues in US healthcare industry. In: Proc. - Int. Res. Conf. Smart Comput. Syst. Eng. SCSE 2023, vol 6. pp 1–8. https://doi.org/10.1109/SCSE59836.2023.10215010
Shen A, Chow KP (2022) Entity-based integration framework on social unrest event detection in social media. Electron. https://doi.org/10.3390/electronics11203416
Al-Mashhadany AK, Sadiq AT, Ali SM, Ahmed AA (2022) Healthcare assessment for beauty centers using hybrid sentiment analysis. Indones J Electr Eng Comput Sci 28(2):890–897. https://doi.org/10.11591/ijeecs.v28.i2.pp890-897
Leong KH, Dahnil DP (2022) Classification of healthcare service reviews with sentiment analysis to refine user satisfaction. Int J Electr Comput Eng Syst 13(4):323–330. https://doi.org/10.32985/IJECES.13.4.8
Paul R, Pandit A, Bhardwaj R (2022) Transforming healthcare through sentiment analysis: tool for patient satisfaction. J Algebr Stat 13(3):3962–3980
Shah AM, Yan X, Tariq S, Shah SAA (2021) Tracking patients healthcare experiences during the COVID-19 outbreak: topic modeling and sentiment analysis of doctor reviews. J Eng Res 9(3):219–239. https://doi.org/10.36909/jer.v9i3A.8703
Zhou P et al (2022) METS CoV: a dataset of medical entity and targeted sentiment on COVID-19 related tweets. Adv Neural Inf Process Syst 35(NeurIPS 2022):1–17
Dai J, Lyu F, Yu L, Zhou Z, He Y (2024) Medical service quality evaluation based on LDA and sentiment analysis: Examples of seven chronic diseases. Digit Heal. https://doi.org/10.1177/20552076241233864
Suganya P, Vijaiprabhu G, Sivakumar G, Sathishkumar K (2024) Navigating sentiment analysis horizons : comprehensive survey on machine learning approaches for unstructured data in medical sciences and science and technology. Int J Pharm Res Technol 14(1):72–78. https://doi.org/10.31838/ijprt/14.01.08
Khine AH, Wettayaprasit W, Duangsuwan J (2024) A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification. Artif Intell Med. https://doi.org/10.1016/j.artmed.2023.102758
Kaur P, Malhi AK, Pannu HS (2024) Sentiment analysis of linguistic cues to assist medical image classification. Multimed Tools Appl 83(10):30847–30866. https://doi.org/10.1007/s11042-023-16538-9
Elbers DC et al (2023) Sentiment analysis of medical record notes for lung cancer patients at the Department of Veterans Affairs. PLoS ONE 18:1–12. https://doi.org/10.1371/journal.pone.0280931
Edara DC, Vanukuri LP, Sistla V, Kolli VKK (2023) Sentiment analysis and text categorization of cancer medical records with LSTM. J Ambient Intell Humaniz Comput 14(5):5309–5325. https://doi.org/10.1007/s12652-019-01399-8
Zhao Y, Zhang L, Zeng C, Lu W, Chen Y, Fan T (2023) Construction of an aspect-level sentiment analysis model for online medical reviews. Inf Process Manag 60(6):103513. https://doi.org/10.1016/j.ipm.2023.103513
Ye Z, Li R, Wu J (2022) Dynamic demand evaluation of COVID-19 medical facilities in Wuhan based on public sentiment. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph19127045
Ouerhani N, Maalel A, Ben Ghézala H (2022) SMAD: SMart assistant during and after a medical emergency case based on deep learning sentiment analysis: the pandemic COVID 19 case. Cluster Comput 25(5):3671–3681
Tomas JP, Ancheta C, Deocadiz N, Marzona R (2022) Sentiment analysis on medical personal protective equipment (PPE) shops customer reviews. In: Proc. - 2022 12th Int. Conf. Softw. Technol. Eng. ICSTE 2022, pp 138–146. https://doi.org/10.1109/ICSTE57415.2022.00028.
Obiedat R, Al-Qaisi L, Qaddoura R, Harfoushi O, Al-Zoubi AM (2021) An intelligent hybrid sentiment analyzer for personal protective medical equipments based on word embedding technique: the covid-19 era. Symmetry (Basel) 13(12):2021. https://doi.org/10.3390/sym13122287
Zhou Q, Su L, Wu L, Jiang D (2021) Deep personalized medical recommendations based on the integration of rating features and review sentiment analysis. Wirel Commun Mob Comput. https://doi.org/10.1155/2021/5551318
Yousef RNM, Tiun S, Omar N, Alshari EM (2020) Enhance medical sentiment vectors through document embedding using recurrent neural network. Int J Adv Comput Sci Appl 11(4):372–378. https://doi.org/10.14569/IJACSA.2020.0110452
Chintalapudi N, Battineni G, Di Canio M, Sagaro GG, Amenta F (2021) Text mining with sentiment analysis on seafarers’ medical documents. Int J Inf Manag Data Insights 1(1):100005. https://doi.org/10.1016/j.jjimei.2020.100005
Ruiz-Núñez C et al (2023) Sentiment analysis on twitter: role of healthcare professionals in the global conversation during the AstraZeneca vaccine suspension. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph20032225
Dumbach P, Schwinn L, Löhr T, Do PL, Eskofier BM (2023) Artificial intelligence trend analysis on healthcare podcasts using topic modeling and sentiment analysis: a data-driven approach. Evol Intell. https://doi.org/10.1007/s12065-023-00878-4
Fischer I, Steiger HJ (2020) Toward automatic evaluation of medical abstracts: The current value of sentiment analysis and machine learning for classification of the importance of PubMed abstracts of randomized trials for stroke. J Stroke Cerebrovasc Dis 29(9):105042. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105042
Ghosh A, Umer S, Khan MK, Rout RK, Dhara BC (2023) Smart sentiment analysis system for pain detection using cutting edge techniques in a smart healthcare framework. Cluster Comput 26(1):119–135. https://doi.org/10.1007/s10586-022-03552-z
Lal M, Neduncheliyan S (2024) Enhanced V-Net approach for the emotion recognition and sentiment analysis in the healthcare data. Multimed Tools Appl. https://doi.org/10.1007/s11042-024-18364-z
Xiong G, Yan K, Zhou X (2022) A distributed learning based sentiment analysis methods with Web applications. World Wide Web 25(5):1905–1922. https://doi.org/10.1007/s11280-021-00994-0
Zhang H et al (2022) Leveraging statistical information in fine-grained financial sentiment analysis. World Wide Web 25(2):513–531. https://doi.org/10.1007/s11280-021-00993-1
Yin H, Song X, Yang S, Li J (2022) Sentiment analysis and topic modeling for COVID-19 vaccine discussions. World Wide Web 25(3):1067–1083. https://doi.org/10.1007/s11280-022-01029-y
Hammad Dhahi SHD, Waleed J (2022) Tweet sentiment polarity detection based on semantic similarity. Diyala J Pure Sci 18(2):46–64. https://doi.org/10.24237/djps.1802.576B
Sygkounas E, Rizzo G, Troncy R (2016) Sentiment polarity detection from Amazon reviews: an experimental study. Commun Comput Inf Sci 641:108–120. https://doi.org/10.1007/978-3-319-46565-4_8
Arunachalam N, Josephine Sneka S, Madhumathi G (2017) A survey on text classification techniques for sentiment polarity detection. In: 2017 Innov. Power Adv. Comput. Technol. i-PACT 2017, vol 2017. pp 1–5. https://doi.org/10.1109/IPACT.2017.8245127.
Ahmed N, Al Aghbari Z, Girija S (2023) A systematic survey on multimodal emotion recognition using learning algorithms. Intell Syst Appl 17(2022):200171. https://doi.org/10.1016/j.iswa.2022.200171
Das R, Singh TD (2023) Multimodal sentiment analysis: a survey of methods, trends, and challenges. ACM Comput Surv. https://doi.org/10.1145/3586075
Singh U, Abhishek K, Azad HK (2024) A survey of cutting-edge multimodal sentiment analysis. ACM Comput Surv 56(9):1–38. https://doi.org/10.1145/3652149
Nkongolo M (2023) Enhancing search engine precision and user experience through sentiment-based polysemy resolution. Int J Intell Syst 2023:1–24. https://doi.org/10.1155/2023/1784394
Yekrangi M, Nikolov NS (2023) Domain-specific sentiment analysis: an optimized deep learning approach for the financial markets. IEEE Access 11(July):70248–70262. https://doi.org/10.1109/ACCESS.2023.3293733
Ahmad SR, Bakar AA, Yaakub MR (2019) A review of feature selection techniques in sentiment analysis. Intell Data Anal 23(1):159–189. https://doi.org/10.3233/IDA-173763
Cui J, Wang Z, Ho SB, Cambria E (2023) Survey on sentiment analysis: evolution of research methods and topics. Springer. https://doi.org/10.1007/s10462-022-10386-z
K. Ravi and V. Ravi, A survey on opinion mining and sentiment analysis: Tasks, approaches and applications, vol. 89, no. November. 2015. https://doi.org/10.1016/j.knosys.2015.06.015.
Yin F, Wang Y, Liu J, Lin L (2020) The Construction of sentiment lexicon based on context-dependent part-of-speech chunks for semantic disambiguation. IEEE Access 8:63359–63367. https://doi.org/10.1109/ACCESS.2020.2984284
Krishna MM, Vankara J (2023) Detection of sarcasm using bi-directional RNN based deep learning model in sentiment analysis. J Adv Res Appl Sci Eng Technol 31(2):352–362. https://doi.org/10.37934/araset.31.2.352362
Bhakuni M, Kumar K, Sonia C, Iwendi AS (2022) “Evolution and evaluation: sarcasm analysis for twitter data using sentiment analysis. J Sensors. https://doi.org/10.1155/2022/6287559
Katyayan P, Joshi N (2022) Sarcasm detection algorithms based on sentiment strength. Intell Data Anal. https://doi.org/10.1002/9781119544487.ch14
Alaramma SK, Habu AA, Yau BI, Madaki AG (2023) Sentiment analysis of sarcasm detection in social media. Gadau J Pure Allied Sci. 2(1):76–82. https://doi.org/10.54117/gjpas.v2i1.72
Tahayna BMA, Ayyasamy RK, Akbar R (2022) Automatic sentiment annotation of idiomatic expressions for sentiment analysis task. IEEE Access 10(October):122234–122242. https://doi.org/10.1109/ACCESS.2022.3222233
Gupta S, Singh R, Singh J (2020) A hybrid approach for enhancing accuracy and detecting sarcasm in sentiment analysis. In: 2020 IEEE Int. Conf. Comput. Power Commun. Technol. GUCON 2020, pp 130–134, https://doi.org/10.1109/GUCON48875.2020.9231140
Lubis AR, Fatmi Y, Witarsyah D (2023) Sentiment analysis in social media: handling noisy data and detecting sarcasm using a deep learning approach. In: Int. Conf. Electr. Eng. Comput. Sci. Informatics, no. September, pp 595–599. https://doi.org/10.1109/EECSI59885.2023.10295681
Prasanna MSM, Shaila SG, Vadivel A (2023) Polarity classification on twitter data for classifying sarcasm using clause pattern for sentiment analysis. Multimedia Tools Appl. https://doi.org/10.1007/s11042-023-14909-w
Vitman O, Kostiuk Y, Sidorov G, Gelbukh A (2023) Sarcasm detection framework using context, emotion and sentiment features. Expert Syst Appl 234:121068. https://doi.org/10.1016/j.eswa.2023.121068
Zhang Y et al (2023) A Multitask learning model for multimodal sarcasm, sentiment and emotion recognition in conversations. Inf Fusion 93:282–301. https://doi.org/10.1016/j.inffus.2023.01.005
Phukan A, Pal S, Ekbal A (2024) Hybrid quantum-classical neural network for multimodal multitask sarcasm, emotion, and sentiment analysis. IEEE Trans Comput Soc Syst. https://doi.org/10.1109/TCSS.2024.3388016
Liu H, Wei R, Tu G, Lin J, Liu C, Jiang D (2024) Sarcasm driven by sentiment: A sentiment-aware hierarchical fusion network for multimodal sarcasm detection. Inf. Fusion 108:102353. https://doi.org/10.1016/j.inffus.2024.102353
Huang M, Xie H, Rao Y, Feng J, Wang FL (2020) Sentiment strength detection with a context-dependent lexicon-based convolutional neural network. Inf Sci (Ny) 520:389–399. https://doi.org/10.1016/j.ins.2020.02.026
Deng L, Liu B, Li Z, Ma J, Li H (2023) Context-dependent multimodal sentiment analysis based on a complex attention mechanism. Electron 12(16):1–13. https://doi.org/10.3390/electronics12163516
Königstein N (2023) Dynamic and context-dependent stock price prediction using attention modules and news sentiment. vol 5. no. 3–4. Springer International Publishing, https://doi.org/10.1007/s42521-023-00089-7.
Sefara TJ, Rangata MR (2024) Domain-specific sentiment analysis of tweets using machine learning methods. Commun Comput Inf Sci 1985:468–482. https://doi.org/10.1007/978-3-031-48858-0_37
Shaukat K et al (2020) Domain specific lexicon generation through sentiment analysis. Int J Emerg Technol Learn 15(9):190–204. https://doi.org/10.3991/ijet.v15i09.13109
Kotelnikova AV, Vychegzhanin SV, Kotelnikov EV (2023) Cross-domain sentiment analysis based on small in-domain fine-tuning. IEEE Access 11(May):41061–41074. https://doi.org/10.1109/ACCESS.2023.3269720
Complexity, “Retraction: Cross-Domain End-To-End Aspect-Based Sentiment Analysis with Domain-Dependent Embeddings (Complexity (2021) 2021 (5529312) https://doi.org/10.1155/2021/5529312),” Complexity, vol. 2024. pp. 1–1, Jan. 24, 2024. https://doi.org/10.1155/2024/9798167.
Na M, Tingxin W, Xu J, Xiaohui L (2023) “Cross-domain text sentiment classification based on auxiliary classification networks. Xitong Fangzhen Xuebao/J Syst Simul 35(4):721–733. https://doi.org/10.16182/j.issn1004731x.joss.21-1283
Brazdil P et al (2022) Semi-automatic approaches for exploiting shifter patterns in domain-specific sentiment analysis. Mathematics 10(18):1–24. https://doi.org/10.3390/math10183232
Lee J, Frasincar F, Truşcǎ MM (2023) A cross-domain aspect-based sentiment classification by masking the domain-specific words. Proc ACM Symp Appl Comput. https://doi.org/10.1145/3555776.3577633
Agarwal B (2023) Financial sentiment analysis model utilizing knowledge-base and domain-specific representation. Multimed Tools Appl 82(6):8899–8920. https://doi.org/10.1007/s11042-022-12181-y
Zhao C, Wang S, Li D, Liu X, Yang X, Liu J (2021) Cross-domain sentiment classification via parameter transferring and attention sharing mechanism. Inf Sci (Ny) 578:281–296. https://doi.org/10.1016/j.ins.2021.07.001
Kong Y, Xu Z, Mei M (2023) Cross-domain sentiment analysis based on feature projection and multi-source attention in IoT. Sensors. https://doi.org/10.3390/s23167282
Fu Y, Liu Y (2022) Contrastive transformer based domain adaptation for multi-source cross-domain sentiment classification. Knowl-Based Syst 245:108649. https://doi.org/10.1016/j.knosys.2022.108649
Panahandeh Nigjeh M, Ghanbari S (2024) Leveraging ParsBERT for cross-domain polarity sentiment classification of Persian social media comments. Multimed. Tools Appl 83(4):10677–10694. https://doi.org/10.1007/s11042-023-16067-5
Fan Y, Mi X, Nie Y (2024) Cross-domain discriminative subspace classification algorithm for review text sentiment recognition oriented e-commerce platforms. IEEE Trans Consum Electron 70(1):3455–3463. https://doi.org/10.1109/TCE.2024.3372503
Jnoub N, Al Machot F, Klas W (2020) A domain independent classification model for sentiment analysis using neural models. Appl Sci. https://doi.org/10.3390/APP10186221
Ahmed M, Chen Q, Li Z (2020) Constructing domain-dependent sentiment dictionary for sentiment analysis. Neural Comput Appl 32(18):14719–14732. https://doi.org/10.1007/s00521-020-04824-8
Michelle P, Ruskanda PZ, Purwarianti A (2020) Development of domain-specific lexicon for aspect-based sentiment analysis. In: 2020 7th Int. Conf. Adv. Informatics Concepts, Theory Appl. ICAICTA 2020, pp 1–6. https://doi.org/10.1109/ICAICTA49861.2020.9429059
Geethapriya A, Valli S (2021) An enhanced approach to map domain-specific words in cross-domain sentiment analysis. Inf Syst Front 23(3):791–805. https://doi.org/10.1007/s10796-020-10094-5
Fiok K, Karwowski W, Gutierrez E, Wilamowski M (2021) Analysis of sentiment in tweets addressed to a single domain-specific Twitter account: Comparison of model performance and explainability of predictions. Expert Syst Appl 186:115771. https://doi.org/10.1016/j.eswa.2021.115771
Mohamad Beigi O, Moattar MH (2021) Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification. Knowledge-Based Syst 213:106423. https://doi.org/10.1016/j.knosys.2020.106423
Naznin F, Mahanta AK (2023) Techniques for improving the performance of unsupervised approach to sentiment analysis. Indones J Electr Eng Informatics 11(2):402–415. https://doi.org/10.52549/ijeei.v11i2.4187
Singh S, Kaur H, Kanozia R, Kaur G (2023) Empirical analysis of supervised and unsupervised machine learning algorithms with aspect-based sentiment analysis. Appl Comput Syst 28(1):125–136. https://doi.org/10.2478/acss-2023-0012
Tripathy A, De UC, Dash BB, Patra SS, Pattanayak BK, Pandey TN (2023) Sentiment clustering using the unsupervised machine learning approach. In: Proc. 2023 6th Int. Conf. Recent Trends Adv. Comput. ICRTAC 2023, pp 397–402. https://doi.org/10.1109/ICRTAC59277.2023.10480817
Limboi S, Diosan L (2022) An unsupervised approach for Twitter Sentiment Analysis of USA 2020 Presidential Election. In: 16th Int. Conf. Innov. Intell. Syst. Appl. INISTA 2022, pp 1–6. https://doi.org/10.1109/INISTA55318.2022.9894264
Prayoga NR et al (2020) Unsupervised twitter sentiment analysis on the revision of indonesian code law and the anti-corruption law using combination method of opinion word and agglomerative hierarchical clustering. Emit Int J Eng Technol 8(1):200–220. https://doi.org/10.24003/emitter.v8i1.477
Wang W, Li B, Feng D, Zhang A, Wan S (2020) The OL-DAWE model: tweet polarity sentiment analysis with data augmentation. IEEE Access 8:40118–40128. https://doi.org/10.1109/ACCESS.2020.2976196
Xiang R, Chersoni E, Lu Q, Huang CR, Li W, Long Y (2021) Lexical data augmentation for sentiment analysis. J Assoc Inf Sci Technol 72(11):1432–1447. https://doi.org/10.1002/asi.24493
Wang L, Xu X, Liu C, Chen Z (2022) M-DA: a multifeature text data-augmentation model for improving accuracy of Chinese sentiment analysis. Sci Program 2022:1–13. https://doi.org/10.1155/2022/3264378
Küçük D, Arıcı N (2024) Stance and sentiment analysis of health-related tweets with data augmentation. J Sci Ind Res (India) 83(4):381–391. https://doi.org/10.56042/jsir.v83i4.1012
Taneja K, Vashishtha J, Ratnoo S (2023) Transformer based unsupervised learning approach for imbalanced text sentiment analysis of e-commerce reviews. Procedia Comput Sci 00(2023):2318–2331. https://doi.org/10.1016/j.procs.2024.04.220
Badr H, Wanas N, Fayek M (2024) unsupervised domain adaptation via weighted sequential discriminative feature learning for sentiment analysis. Appl Sci. https://doi.org/10.3390/app14010406
Liu S, Lee K, Lee I (2020) Document-level multi-topic sentiment classification of Email data with BiLSTM and data augmentation. Knowl-Based Syst 197:105918. https://doi.org/10.1016/j.knosys.2020.105918
Xue J, Li Y, Li Z, Cui Y, Zhang S, Wang S (2023) A cross-domain generative data augmentation framework for aspect-based sentiment analysis. Electron. https://doi.org/10.3390/electronics12132949
Sanagar S, Gupta D (2020) Unsupervised genre-based multidomain sentiment lexicon learning using corpus-generated polarity seed words. IEEE Access 8:118050–118071. https://doi.org/10.1109/ACCESS.2020.3005242
Yadav A, Jha CK, Sharan A, Vaish V (2020) Sentiment analysis of financial news using unsupervised approach. Procedia Comput Sci 167(2019):589–598. https://doi.org/10.1016/j.procs.2020.03.325
Viegas F, Alvim MS, Canuto S, Rosa T, Gonçalves MA, Rocha L (2020) Exploiting semantic relationships for unsupervised expansion of sentiment lexicons. Inf Syst 94:101606. https://doi.org/10.1016/j.is.2020.101606
Wang B, He W, Yang Z, Xiong S (2020) An unsupervised sentiment classification method based on multi-level fuzzy computing and multi-criteria fusion. IEEE Access 8:145422–145434. https://doi.org/10.1109/ACCESS.2020.3014849
Al-Ghuribi SM, Mohd Noah SA, Tiun S (2020) Unsupervised semantic approach of aspect-based sentiment analysis for large-scale user reviews. IEEE Access 8:218592–218613. https://doi.org/10.1109/ACCESS.2020.3042312
Dai Y, Liu J, Zhang J, Fu H, Xu Z (2021) Unsupervised sentiment analysis by transferring multi-source knowledge. Cognit Comput 13(5):1185–1197. https://doi.org/10.1007/s12559-020-09792-8
Vashishtha S, Susan S (2021) Highlighting keyphrases using senti-scoring and fuzzy entropy for unsupervised sentiment analysis. Expert Syst Appl 169:114323. https://doi.org/10.1016/j.eswa.2020.114323
Mukhtar N, Abid Khan M, Chiragh N, Nazir S, Ullah Jan A (2022) An Intelligent unsupervised approach for handling context-dependent words in Urdu sentiment analysis. ACM Trans Asian Low-Resource Lang Inf Process. https://doi.org/10.1145/3510830
Jia X, Li C, Zeng M, Wang L, Mi Q (2023) An improved unified domain adversarial category-wise alignment network for unsupervised cross-domain sentiment classification. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2023.107108
Ding F, Kang X, Nakagawa S, Ren F (2023) Neuro or symbolic? Fine-tuned transformer with unsupervised LDA topic clustering for text sentiment analysis. IEEE Trans Affect Comput 15(2):1–15. https://doi.org/10.1109/taffc.2023.3279318
Wang Y, Han H, He X, Zhai R (2023) A two-stage unsupervised sentiment analysis method. Multimed Tools Appl 82(17):26527–26544. https://doi.org/10.1007/s11042-023-14864-6
Wang Z, He S, Xu G, Ren M (2024) Will sentiment analysis need subculture? A new data augmentation approach. J Assoc Inf Sci Technol 75(6):655–670. https://doi.org/10.1002/asi.24872
Li G, Wang H, Ding Y, Zhou K, Yan X (2023) Data augmentation for aspect-based sentiment analysis. Int J Mach Learn Cybern 14(1):125–133. https://doi.org/10.1007/s13042-022-01535-5
Chao G, Liu J, Wang M, Chu D (2023) Data augmentation for sentiment classification with semantic preservation and diversity. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2023.111038
Luo J, Bouazizi M, Ohtsuki T (2021) Data augmentation for sentiment analysis using sentence compression-based SeqGAN with data screening. IEEE Access 9:99922–99931. https://doi.org/10.1109/ACCESS.2021.3094023
Abonizio HQ, Paraiso EC, Barbon S (2022) Toward text data augmentation for sentiment analysis. IEEE Trans Artif Intell 3(5):657–668. https://doi.org/10.1109/TAI.2021.3114390
Koch A, Huynh TLD, Wang M (2024) News sentiment and international equity markets during BREXIT period: a textual and connectedness analysis. Int J Financ Econ 29(1):5–34. https://doi.org/10.1002/ijfe.2635
Dey P, Dey S (2023) Sentiment analysis of text and emoji data for twitter network. Al Bahir J Eng Pure Sci. https://doi.org/10.55810/2313-0083.1034
Kumar TP, Vardhan BV (2022) A pragmatic approach to emoji based multimodal sentiment analysis using deep neural networks. J Algebr Stat 13(1):473–482
Velampalli S, Muniyappa C, Saxena A (2022) Performance evaluation of sentiment analysis on text and emoji data using end-to-end, transfer learning, distributed and explainable AI models. J Adv Inf Technol 13(2):167–172. https://doi.org/10.12720/jait.13.2.167-172
Usiju Ijairi M, Abdullahi M, Hayatu Hassan I (2023) Sentiment classification of tweets with explicit word negations and emoji using deep learning. Int J Softw Eng Comput Syst 9(2):93–104. https://doi.org/10.15282/ijsecs.9.2.2023.3.0114
Jagadishwari V, Indulekha A, Raghu K, Harshini P (2021) Sentiment analysis of social media text-emoticon post with machine learning models contribution title. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/2070/1/012079
Fernández-Gavilanes M, Costa-Montenegro E, García-Méndez S, González-Castaño FJ, Juncal-Martínez J (2021) Evaluation of online emoji description resources for sentiment analysis purposes. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.115279
Alfreihat M, Almousa O, Tashtoush Y, AlSobeh A, Mansour K, Migdady H (2024) Emo-SL framework: emoji sentiment lexicon using text-based features and machine learning for sentiment analysis. IEEE Access 12:81793–81812. https://doi.org/10.1109/ACCESS.2024.3382836
Yinxia LOU, Zhang Y, Fei LI, Qian T, Donghong JI (2020) Emoji-based sentiment analysis using attention networks. ACM Trans Asian Low-Resource Lang Inf Process. https://doi.org/10.1145/3389035
Chen Z et al (2021) Emoji-powered sentiment and emotion detection from software developers’ communication data. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3424308
Kastrati M, Kastrati Z, Shariq Imran A, Biba M (2024) Leveraging distant supervision and deep learning for twitter sentiment and emotion classification. J Intell Inf Syst. https://doi.org/10.1007/s10844-024-00845-0
Mahimaidoss NK, Sathianesan GW (2024) Emotion identification in twitter using deep learning based methodology. J Electr Eng Technol 19(3):1891–1908. https://doi.org/10.1007/s42835-023-01683-w
Che SP, Wang X, Zhang S, Kim JH (2024) Effect of daily new cases of COVID-19 on public sentiment and concern: deep learning-based sentiment classification and semantic network analysis. J Public Heal 32(3):509–528. https://doi.org/10.1007/s10389-023-01833-4
Srinivasarao U, Sharaff A (2024) Sentiment analysis from email pattern using feature selection algorithm. Expert Syst 41(2):1–22. https://doi.org/10.1111/exsy.12867
Kejriwal R, Garg M, Sarin G (2024) Predict financial text sentiment: an empirical examination. Vilakshan - XIMB J Manag 21(1):44–54. https://doi.org/10.1108/xjm-06-2022-0148
Li Z, Zou Z (2024) Punctuation and lexicon aid representation: a hybrid model for short text sentiment analysis on social media platform. J King Saud Univ Comput Inf Sci 36(3):102010. https://doi.org/10.1016/j.jksuci.2024.102010
Harris M, Jacobson J, Provetti A (2024) Sentiment and time-series analysis of direct-message conversations. Forensic Sci Int Digit Investig 49:301753. https://doi.org/10.1016/j.fsidi.2024.301753
Almohanadi A, Yokoyama S (2023) Emotion mapping: sentiment analysis using emoji in twitter data from Japan in the COVID-19 Era. In: Proc. 2023 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2023, pp 666–669. https://doi.org/10.1145/3625007.3627511
Chen J, Yao Z, Zhao S, Zhang Y (2023) Fusion pre-trained emoji feature enhancement for sentiment analysis. ACM Trans Asian Low-Resource Lang Inf Process. https://doi.org/10.1145/3578582
Maity K, Saha S, Bhattacharyya P (2023) Emoji, sentiment and emotion aided cyberbullying detection in Hinglish. IEEE Trans Comput Soc Syst 10(5):2411–2420. https://doi.org/10.1109/TCSS.2022.3183046
Liu C et al (2021) Improving sentiment analysis accuracy with emoji embedding. J Saf Sci Resil 2(4):246–252. https://doi.org/10.1016/j.jnlssr.2021.10.003
Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev. https://doi.org/10.1007/s10462-022-10144-1
Kumar A, Singh JP (2019) Demonetization in India: good or bad in context of social media. SSRN Electron J. https://doi.org/10.2139/ssrn.3349021
Park S, Kim Y (2016) Building thesaurus lexicon using dictionary-based approach for sentiment classification. In: 2016 IEEE/ACIS 14th Int. Conf. Softw. Eng. Res. Manag. Appl. SERA 2016, pp 39–44. https://doi.org/10.1109/SERA.2016.7516126.
Littman ML, Turney PD (2003) Measuring praise and criticism: inference of semantic orientation from association. ACM Trans Inf Syst 21(4):315–346
Hu N, Bose I, Koh NS, Liu L (2012) Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decis Support Syst 52(3):674–684. https://doi.org/10.1016/j.dss.2011.11.002
Cao Q, Duan W, Gan Q (2011) Exploring determinants of voting for the ‘helpfulness’ of online user reviews: a text mining approach. Decis Support Syst 50(2):511–521. https://doi.org/10.1016/j.dss.2010.11.009
Maks I, Vossen P (2011) A verb lexicon model for deep sentiment analysis and opinion mining Applications. In: Proc. Annu. Meet. Assoc. Comput. Linguist., pp 10–18.
Bordes A, Glorot X, Weston J, Bengio Y (2014) A semantic matching energy function for learning with multi-relational data: Application to word-sense disambiguation. Mach Learn 94(2):233–259. https://doi.org/10.1007/s10994-013-5363-6
Bhaskar J, Sruthi K, Nedungadi P (2015) Hybrid approach for emotion classification of audio conversation based on text and speech mining. In: Procedia Computer Science, Elsevier Masson SAS, 2015, pp 635–643. https://doi.org/10.1016/j.procs.2015.02.112.
Baccianella S, Esuli A, Sebastiani F (2010) SENTIWORDNET 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proc. 7th Int. Conf. Lang. Resour. Eval. Lr. 2010, vol 0. pp 2200–2204.
Pang B, Lee L (2004) A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proc. Annu. Meet. Assoc. Comput. Linguist., pp 271–278.
Titov I, McDonald R (2008) Modeling online reviews with multi-grain topic models. In: Proceeding 17th Int. Conf. World Wide Web 2008, WWW’08, pp 111–120. https://doi.org/10.1145/1367497.1367513
Dang Y, Zhang Y, Chen H (2010) A lexicon-enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst 25(4):46–53. https://doi.org/10.1109/MIS.2009.105
Rushdi Saleh M, Martín-Valdivia MT, Montejo-Ráez A, Ureña-López LA (2011) Experiments with SVM to classify opinions in different domains. Expert Syst Appl 38(12):14799–14804. https://doi.org/10.1016/j.eswa.2011.05.070
Bai X (2011) Predicting consumer sentiments from online text. Decis Support Syst 50(4):732–742. https://doi.org/10.1016/j.dss.2010.08.024
Zhang Z, Ye Q, Zhang Z, Li Y (2011) Sentiment classification of internet restaurant reviews written in Cantonese. Expert Syst Appl 38(6):7674–7682. https://doi.org/10.1016/j.eswa.2010.12.147
Tan LKW, Na JC, Theng YL, Chang K (2012) Phrase-level sentiment polarity classification using rule-based typed dependencies and additional complex phrases consideration. J Comput Sci Technol 27(3):650–666. https://doi.org/10.1007/s11390-012-1251-y
Wang G, Sun J, Ma J, Xu K, Gu J (2014) Sentiment classification: The contribution of ensemble learning. Decis Support Syst 57(1):77–93. https://doi.org/10.1016/j.dss.2013.08.002
Moraes R, Valiati JF, Gavião Neto WP (2013) Document-level sentiment classification: an empirical comparison between SVM and ANN. Expert Syst Appl 40(2):621–633. https://doi.org/10.1016/j.eswa.2012.07.059
Ghiassi M, Skinner J, Zimbra D (2013) Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst Appl 40(16):6266–6282. https://doi.org/10.1016/j.eswa.2013.05.057
Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength detection for the social web. J Am Soc Inf Sci Technol 63(1):163–173. https://doi.org/10.1002/asi.21662
Akhtar MS, Gupta D, Ekbal A, Bhattacharyya P (2017) Feature selection and ensemble construction: a two-step method for aspect based sentiment analysis. Knowledge-Based Syst 125:116–135. https://doi.org/10.1016/j.knosys.2017.03.020
Onal AMEBI, Acarturk C (2017) Does the Strength of Sentiment Matter? A Regression Based Approach on Turkish Social Media. In: Lecture Notes in Computer Science, vol 10260. Cham: Springer International Publishing, https://doi.org/10.1007/978-3-319-59569-6
Prabowo R, Thelwall M (2009) Sentiment analysis: A combined approach. J Informetr 3(2):143–157. https://doi.org/10.1016/j.joi.2009.01.003
Abbasi A, France S, Zhang Z, Chen H (2011) Selecting attributes for sentiment classification using feature relation networks. IEEE Trans Knowl Data Eng 23(3):447–462. https://doi.org/10.1109/TKDE.2010.110
Xia R, Zong C, Li S (2011) Ensemble of feature sets and classification algorithms for sentiment classification. Inf Sci (Ny) 181(6):1138–1152. https://doi.org/10.1016/j.ins.2010.11.023
Chen LS, Liu CH, Chiu HJ (2011) A neural network based approach for sentiment classification in the blogosphere. J Informetr 5(2):313–322. https://doi.org/10.1016/j.joi.2011.01.003
Balahur A, Hermida JM, Montoyo A (2012) Detecting implicit expressions of emotion in text: a comparative analysis. Decis Support Syst 53(4):742–753. https://doi.org/10.1016/j.dss.2012.05.024
Abdul-Mageed M, Diab M, Kübler S (2014) SAMAR: Subjectivity and sentiment analysis for Arabic social media. Comput Speech Lang 28(1):20–37. https://doi.org/10.1016/j.csl.2013.03.001
Ortigosa A, Martín JM, Carro RM (2014) Sentiment analysis in Facebook and its application to e-learning. Comput Human Behav 31(1):527–541. https://doi.org/10.1016/j.chb.2013.05.024
Vo DT, Zhang Y (2015) Target-dependent twitter sentiment classification with rich automatic features. IJCAI Int Jt Conf Artif Intell 2015:1347–1353
Rill S, Reinel D, Scheidt J, Zicari RV (2014) PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowledge-Based Syst 69(1):24–33. https://doi.org/10.1016/j.knosys.2014.05.008
Ahmad M, Aftab S, Bashir MS, Hameed N (2018) Sentiment analysis using SVM: a systematic literature review. Int J Adv Comput Sci Appl 9(2):182–188. https://doi.org/10.14569/IJACSA.2018.090226
Yenduri G et al (2024) GPT (Generative Pre-Trained Transformer) - a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. IEEE Access 12:54608–54649. https://doi.org/10.1109/ACCESS.2024.3389497
Yitong JI (2024) Impact of temporal context on recommender systems along global timeline. Nanyang Technological University, https://doi.org/10.32657/10356/173690
Yuan H, Bi J, Li S, Zhang J, Zhou MC (2024) An improved LSTM-based prediction approach for resources and workload in large-scale data centers. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2024.3383512
Alshawi AAA, Tanha J, Balafar MA (2024) An attention-based convolutional recurrent neural networks for scene text recognition. IEEE Access 12:8123–8134. https://doi.org/10.1109/ACCESS.2024.3352748
Kowlagi N et al (2023) A stronger baseline for automatic pfirrmann grading of lumbar spine Mri using deep learning. In: Proc. - Int. Symp. Biomed. Imaging, vol 2023. https://doi.org/10.1109/ISBI53787.2023.10230814
Vaswani A et al (2017) Attention is all you need. Adv Neural Inf Process Syst 2017:5999–6009
Reza S, Ferreira MC, Machado JJM, Tavares JMRS (2022) A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Syst Appl 202:117275. https://doi.org/10.1016/j.eswa.2022.117275
Jim JR, Talukder MAR, Malakar P, Kabir MM, Nur K, Mridha MF (2024) Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Nat Lang Process J 6:100059. https://doi.org/10.1016/j.nlp.2024.100059
Cheruku R, Hussain K, Kavati I, Reddy AM, Reddy KS (2024) Sentiment classification with modified RoBERTa and recurrent neural networks. Multimed Tools Appl 83(10):29399–29417. https://doi.org/10.1007/s11042-023-16833-5
Jain M, Jain N, Lee YH, Winkler S, Dev S (2023) A survey on transfer learning. IEEE Trans Knowl Data Eng 2023:6005–6008. https://doi.org/10.1109/IGARSS52108.2023.10281791
Raptis S, Ilioudis C, Theodorou K (2024) From pixels to prognosis: unveiling radiomics models with SHAP and LIME for enhanced interpretability. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/ad34db
Ghafouri A, Abbasi M, Naderi H (2023) AriaBERT: a pre-trained Persian BERT model for natural language understanding. doi.org/https://doi.org/10.21203/rs.3.rs-3558473/v1
Shreyashree S, Sunagar P, Rajarajeswari S, Kanavalli A (2022) A literature review on bidirectional encoder representations from transformers. vol 336. Springer Singapore, https://doi.org/10.1007/978-981-16-6723-7_23
Broscheit S (2019) Investigating entity knowledge in BERT with simple neural end-to-end entity linking. In: CoNLL 2019 - 23rd Conf. Comput. Nat. Lang. Learn. Proc. Conf., pp 677–685. https://doi.org/10.18653/v1/k19-1063
Liu Y et al (2019) RoBERTa: a robustly optimized BERT pretraining approach. [Online]. Available: http://arxiv.org/abs/1907.11692
Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: Generalized autoregressive pretraining for language understanding. Adv Neural Inf Process Syst 32:1–11
Clark K, Luong MT, Le QV, Manning CD (2020) Electra: Pre-training text encoders as discriminators rather than generators. In: 8th Int. Conf. Learn. Represent. ICLR 2020, pp 1–18.
Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. pp 2–6. [Online]. Available: http://arxiv.org/abs/1910.01108
Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2020) Albert: a Lite Bert for Self-Supervised Learning of Language Representations. In: 8th Int. Conf. Learn. Represent. ICLR 2020, pp 1–17.
Raffel C et al (2020) Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21:1–67
Budzianowski P, Vulić I (2019) Hello, It’s GPT-2 - How can I help you? Towards the use of pretrained language models for task-oriented dialogue systems. In: EMNLP-IJCNLP 2019 - Proc. 3rd Work. Neural Gener. Transl., pp 15–22. https://doi.org/10.18653/v1/d19-5602
Carvalho J, Plastino A (2021) On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis, vol 54. no. 3. Springer Netherlands, https://doi.org/10.1007/s10462-020-09895-6
Lochter JV, Zanetti RF, Reller D, Almeida TA (2016) Short text opinion detection using ensemble of classifiers and semantic indexing. Expert Syst Appl 62(November):243–249. https://doi.org/10.1016/j.eswa.2016.06.025
Zarisfi Kermani F, Sadeghi F, Eslami E (2020) Solving the twitter sentiment analysis problem based on a machine learning-based approach. Evol Intell 13(3):381–398. https://doi.org/10.1007/s12065-019-00301-x
Speriosu M, Sudan N, Upadhyay S, Baldridge J (2011) Twitter polarity classification with label propagation over lexical links and the follower graph. In: Work. Unsupervised Learn. NLP 2011 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2011 - Proc., pp 53–63.
Gonçalves P et al (2020) Bazinga! Caracterizando e Detectando Sarcasmo e Ironia no Twitter. https://doi.org/10.5753/brasnam.2015.6778
Chen L, Wang W, Nagarajan M, Wang S, Sheth AP (2012) Extracting diverse sentiment expressions with target-dependent polarity from Twitter. In: ICWSM 2012 - Proc. 6th Int. AAAI Conf. Weblogs Soc. Media, pp 50–57. https://doi.org/10.1609/icwsm.v6i1.14252
Argueta C, Chen YS (2014) Multi-lingual sentiment analysis of social data based on emotion-bearing patterns. In: Soc. 2014 - 2nd Work. Nat. Lang. Process. Soc. Media, conjunction with COLING 2014, no. 101, pp 38–43. https://doi.org/10.3115/v1/w14-5906
Basnin N, Nahar N, Anika FA, Hossain MS, Andersson K (2021) Deep learning approach to classify Parkinson’s disease from MRI samples, vol 12960. LNAI. Springer International Publishing. https://doi.org/10.1007/978-3-030-86993-9_48
Pawar KK, Deshmukh RR (2015) Twitter sentiment classification on sanders data using hybrid approach. IOSR J Comput Eng Ver I 17(4):2278–2661. https://doi.org/10.9790/0661-1741118123
Nakov P, Kozareva Z, Ritter A, Rosenthal S, Stoyanov V, Wilson T (2013) SemEval-2013 task 2: Sentiment analysis in Twitter. In: *SEM 2013 - 2nd Jt. Conf. Lex. Comput. Semant., vol 2. no. SemEval pp 312–320.
Ghosh A et al (2015) SemEval-2015 Task 11: sentiment analysis of figurative language in twitter. In: SemEval 2015 - 9th Int. Work. Semant. Eval. co-located with 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. NAACL-HLT 2015 - Proc., no. SemEval pp 470–478. https://doi.org/10.18653/v1/s15-2080
Rosenthal S, Farra N, Nakov P (2017) SemEval-2017 Task 4: sentiment analysis in twitter. In: Proc. Annu. Meet. Assoc. Comput. Linguist., pp 502–518. https://doi.org/10.18653/v1/s17-2088.
Mohammad SM, Bravo-Marquez F, Salameh M, Kiritchenko S (2018) SemEval-2018 Task 1: Affect in tweets. In: NAACL HLT 2018 - Int. Work. Semant. Eval. SemEval 2018 - Proc. 12th Work., pp 1–17. https://doi.org/10.18653/v1/s18-1001
Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. Processing, vol., pp 1–6.
Saif H, Fernandez M, He Y, Alani H (2013) Evaluation datasets for Twitter sentiment analysis a survey and a new dataset, the STS-Gold. In: CEUR Workshop Proc., vol 1096. pp 9–21
Dong L, Wei F, Tan C, Tang D, Zhou M, Xu K (2014) Adaptive recursive neural network for target-dependent twitter sentiment classification. In: 52nd Annu. Meet. Assoc. Comput. Linguist. ACL 2014 - Proc. Conf., vol 2. pp 49–54. https://doi.org/10.3115/v1/p14-2009
Hutto CJ, Gilbert E (2014) VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proc. 8th Int. Conf. Weblogs Soc. Media, ICWSM 2014, no. May, pp 216–225. https://doi.org/10.1609/icwsm.v8i1.14550
Li Q et al (2022) A survey on text classification: from traditional to deep learning. ACM Trans Intell Syst Technol. https://doi.org/10.1145/3495162
Acknowledgements
Not applicable.
Funding
No funding was received for conducting this study.
Author information
Authors and Affiliations
Contributions
All authors contributed to the design and implementation of the research, analysis of the results and to the writing of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethics approval
Not applicable.
Consent to participate
Not applicable.
Consent for publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bashiri, H., Naderi, H. Comprehensive review and comparative analysis of transformer models in sentiment analysis. Knowl Inf Syst 66, 7305–7361 (2024). https://doi.org/10.1007/s10115-024-02214-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10115-024-02214-3