Skip to main content

Advertisement

Log in

Comprehensive review and comparative analysis of transformer models in sentiment analysis

  • Review
  • Published:
Knowledge and Information Systems Aims and scope Submit manuscript

Abstract

Sentiment analysis has become an important task in natural language processing because it is used in many different areas. This paper gives a detailed review of sentiment analysis, including its definition, challenges, and uses. Different approaches to sentiment analysis are discussed, focusing on how they have changed and their limitations. Special attention is given to recent improvements with transformer models and transfer learning. Detailed reviews of well-known transformer models like BERT, RoBERTa, XLNet, ELECTRA, DistilBERT, ALBERT, T5, and GPT are provided, looking at their structures and roles in sentiment analysis. In the experimental section, the performance of these eight transformer models is compared across 22 different datasets. The results show that the T5 model consistently performs the best on multiple datasets, demonstrating its flexibility and ability to generalize. XLNet performs very well in understanding irony and sentiments related to products, while ELECTRA and RoBERTa perform best on certain datasets, showing their strengths in specific areas. BERT and DistilBERT often perform the lowest, indicating that they may struggle with complex sentiment tasks despite being computationally efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

The datasets are available at https://github.com/hadis-1/Sentiment-Analysis-Datasets.

Notes

  1. https://github.com/hadis-1/Sentiment-Analysis-Datasets.

References

  1. Ravi K, Ravi V (2015) A survey on opinion mining and sentiment analysis: tasks, approaches and applications. Knowledge-Based Syst 89:14–46. https://doi.org/10.1016/j.knosys.2015.06.015

    Article  Google Scholar 

  2. Rajabi Z, Valavi MR (2021) A survey on sentiment analysis in Persian: a comprehensive system perspective covering challenges and advances in resources and methods. Cognit Comput 13(4):882–902. https://doi.org/10.1007/s12559-021-09886-x

    Article  Google Scholar 

  3. Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev 55(7):5731–5780. https://doi.org/10.1007/s10462-022-10144-1

    Article  Google Scholar 

  4. Yue L, Chen W, Li X, Zuo W, Yin M (2019) A survey of sentiment analysis in social media. Knowl Inf Syst 60(2):617–663. https://doi.org/10.1007/s10115-018-1236-4

    Article  Google Scholar 

  5. Khan MT, Durrani M, Ali A, Inayat I, Khalid S, Khan KH (2016) Sentiment analysis and the complex natural language. Complex Adapt Syst Model. https://doi.org/10.1186/s40294-016-0016-9

    Article  Google Scholar 

  6. Basari ASH, Hussin B, Ananta IGP, Zeniarja J (2013) Opinion mining of movie review using hybrid method of support vector machine and particle swarm optimization. Procedia Eng 53:453–462. https://doi.org/10.1016/j.proeng.2013.02.059

    Article  Google Scholar 

  7. Mäntylä MV, Graziotin D, Kuutila M (2018) The Evolution of sentiment analysis. Comput Rev 27:16–32. https://doi.org/10.1016/j.cosrev.2017.10.002

    Article  Google Scholar 

  8. Bashiri H, Naderi H (2024) LexiSNTAGMM: an unsupervised framework for sentiment classification in data from distinct domains, synergistically integrating dictionary-based and machine learning approaches. Soc Netw Anal Min. https://doi.org/10.1007/s13278-024-01268-z

    Article  Google Scholar 

  9. Tan KL, Lee CP, Lim KM (2023) A Survey of sentiment analysis: approaches, datasets, and future research. Appl Sci. https://doi.org/10.3390/app13074550

    Article  Google Scholar 

  10. Tun YM, Khaing M (2023) A large-scale sentiment analysis using political tweets. Int J Electr Comput Eng 13(6):6913–6925. https://doi.org/10.11591/ijece.v13i6.pp6913-6925

    Article  Google Scholar 

  11. Saeed Z, Abbasi RA, Maqbool O et al (2019) What’s happening around the world? A survey and framework on event detection techniques on twitter. J Grid Comput 17(2):279–312. https://doi.org/10.1007/s10723-019-09482-2

    Article  Google Scholar 

  12. Suresh P, Gurumoorthy K (2022) Mining of customer review feedback using sentiment analysis for smart phone product. EAI/Springer Innov Commun Comput 12(10):247–259. https://doi.org/10.1007/978-3-030-86165-0_21

    Article  Google Scholar 

  13. Purohit A (2021) Sentiment analysis of customer product reviews using deep learning and compare with other machine learning techniques. Int J Res Appl Sci Eng Technol 9(7):233–239. https://doi.org/10.22214/ijraset.2021.36202

    Article  Google Scholar 

  14. Alslaity A, Orji R (2024) Machine learning techniques for emotion detection and sentiment analysis: current state, challenges, and future directions. Behav Inf Technol 43(1):139–164. https://doi.org/10.1080/0144929X.2022.2156387

    Article  Google Scholar 

  15. Ghanbari-Adivi F, Mosleh M (2019) Text emotion detection in social networks using a novel ensemble classifier based on Parzen Tree Estimator (TPE). Neural Comput Appl 31(12):8971–8983. https://doi.org/10.1007/s00521-019-04230-9

    Article  Google Scholar 

  16. De Bruyne L, De Clercq O, Hoste V (2021) Mixing and matching emotion frameworks: Investigating cross-framework transfer learning for dutch emotion detection. Electron 10(21):2643. https://doi.org/10.3390/electronics10212643

    Article  Google Scholar 

  17. Al Maruf A, Khanam F, Haque MM, Jiyad ZM, Mridha MF, Aung Z (2024) Challenges and opportunities of text-based emotion detection: a survey. IEEE Access 12:18416–18450. https://doi.org/10.1109/ACCESS.2024.3356357

    Article  Google Scholar 

  18. Zhang H, Qian S, Fang Q, Xu C (2021) Multimodal disentangled domain adaption for social media event rumor detection. IEEE Trans Multimed 23:4441–4454. https://doi.org/10.1109/TMM.2020.3042055

    Article  Google Scholar 

  19. Sailunaz K, Alhajj R (2019) Emotion and sentiment analysis from Twitter text. J Comput Sci. https://doi.org/10.1016/j.jocs.2019.05.009

    Article  Google Scholar 

  20. Du K, Xing F, Mao R, Cambria E (2024) Financial sentiment analysis: techniques and applications. ACM Comput Surv 56(9):1–42. https://doi.org/10.1145/3649451

    Article  Google Scholar 

  21. Montoyo A, Martínez-Barco P, Balahur A (2012) Subjectivity and sentiment analysis: an overview of the current state of the area and envisaged developments. Decis Support Syst 53(4):675–679. https://doi.org/10.1016/j.dss.2012.05.022

    Article  Google Scholar 

  22. Khan A et al (2020) Sentiment classification of user reviews using supervised learning techniques with comparative opinion mining perspective. Adv Intell Syst Comput 944:23–29. https://doi.org/10.1007/978-3-030-17798-0_3

    Article  Google Scholar 

  23. Al-Qablan TA, Mohd Noor MH, Al-Betar MA, Khader AT (2023) A survey on sentiment analysis and its applications. Springer, London

    Book  Google Scholar 

  24. Adak A, Pradhan B, Shukla N (2022) Sentiment analysis of customer reviews of food delivery services using deep learning and explainable artificial intelligence: systematic review. Foods 11(10):1500. https://doi.org/10.3390/foods11101500

    Article  Google Scholar 

  25. Shah P et al (2024) A comprehensive review on sentiment analysis of social/web media big data for stock market prediction. Int J Syst Assur Eng Manag 15(6):2011–2018. https://doi.org/10.1007/s13198-023-02214-6

    Article  Google Scholar 

  26. Lappeman J, Goder A, Naicker K, Faruki H, Gordon P (2023) Using sentiment analysis to understand public policy nicknames: obamacare and the affordable care act. J Nonprofit Public Sect Mark 36(3):347–363. https://doi.org/10.1080/10495142.2023.2178588

    Article  Google Scholar 

  27. Aramburo RFP, Moreira MÂL, Fávero LPL, De Araújo Costa IP, Dos Santos M (2022) “Data science in social politics with particular emphasis on sentiment analysis. Procedia Comput Sci 214:420–427. https://doi.org/10.1016/j.procs.2022.11.194

    Article  Google Scholar 

  28. Magtangob RMM, Palaoag TD (2023) Assessment of the healthcare administration of senior citizens from survey data using sentiment analysis. Int J Adv Comput Sci Appl 14(2):389–394. https://doi.org/10.14569/IJACSA.2023.0140247

    Article  Google Scholar 

  29. Georgiou D, MacFarlane A, Russell-Rose T (2015) Extracting sentiment from healthcare survey data: an evaluation of sentiment analysis tools. Proc. 2015 Sci. Inf. Conf. SAI 2015, pp 352–361, https://doi.org/10.1109/SAI.2015.7237168

  30. Srisankar M (2024) A survey on sentiment analysis techniques in the medical domain. Medicon Agric Environ Sci 6(2):4–9. https://doi.org/10.55162/mcaes.06.157

    Article  Google Scholar 

  31. Sudirjo F, Diantoro K, Al Gasawneh JA, Khootimah Azzaakiyyah H, Almaududi Ausat AM (2023) Application of ChatGPT in improving customer sentiment analysis for businesses. J Teknol Dan Sist Inf Bisnis 5(3):283–288. https://doi.org/10.47233/jteksis.v5i3.871

    Article  Google Scholar 

  32. Axhiu M, Veljanoska F, Ciglovska B, Husejni M (2014) the usage of sentiment analysis for hearing the voice of the customer and improving businesses. J Educ Soc Res. https://doi.org/10.5901/jesr.2014.v4n4p401

    Article  Google Scholar 

  33. Anbazhagan K, Singhal P, Gupta M, Saxena K (2024) Sentiment analysis of online customer feedbacks using NLP and supervised learning algorithm. Int J Intell Syst Appl Eng 12(3s):391–397

    Google Scholar 

  34. Cahyo PW, Aesyi US, Santosa BD (2024) Topic sentiment using logistic regression and latent dirichlet allocation as a customer satisfaction analysis model. J Infotel 16(1):1–16. https://doi.org/10.20895/infotel.v16i1.1081

    Article  Google Scholar 

  35. Jain V, Mitra A (2023) Development and application of machine learning algorithms for sentiment analysis in digital manufacturing: a pathway for enhanced customer feedback. Emerg Technol Digit Manuf Smart Factories. https://doi.org/10.4018/979-8-3693-0920-9.ch002

    Article  Google Scholar 

  36. Bhowmik S, Sadik R, Akanda W, Pavel JR (2024) Sentiment analysis with hotel customer reviews using FNet. Bull Electr Eng Informatics 13(2):1298–1306. https://doi.org/10.11591/eei.v13i2.6301

    Article  Google Scholar 

  37. Mawadati A, Ustyannie W, Hindarto Wibowo A, Adelina Simanjuntak R (2024) Analysis of yogyakarta coffee shop visitor reviews to increase customer satisfaction using sentiment analysis. KnE Soc Sci 2024:30–39. https://doi.org/10.18502/kss.v9i10.15693

    Article  Google Scholar 

  38. Bharadwaj L (2023) Sentiment analysis in online product reviews: mining customer opinions for sentiment classification. Int J Multidiscip Res. https://doi.org/10.36948/ijfmr.2023.v05i05.6090

    Article  Google Scholar 

  39. Li H, Yu BXB, Li G, Gao H (2023) Restaurant survival prediction using customer-generated content: an aspect-based sentiment analysis of online reviews. Tour Manag 96:1–33. https://doi.org/10.1016/j.tourman.2022.104707

    Article  Google Scholar 

  40. Ounacer S, Mhamdi D, Ardchir S, Daif A, Azzouazi M (2023) Customer sentiment analysis in hotel reviews through natural language processing techniques. Int J Adv Comput Sci Appl 14(1):569–579. https://doi.org/10.14569/IJACSA.2023.0140162

    Article  Google Scholar 

  41. Nazirkar S, Kulkarni S (2023) Sentiment analysis and customer satisfaction factors based on LSTM and topic modeling. Indian J Sci Technol 16(28):2126–2132. https://doi.org/10.17485/ijst/v16i28.1109

    Article  Google Scholar 

  42. Zakaria A, Siallagan M (2023) Predicting customer satisfaction through sentiment analysis on online review. Int J Curr Sci Res Rev 06(01):515–522. https://doi.org/10.47191/ijcsrr/v6-i1-56

    Article  Google Scholar 

  43. Rana MRR, Nawaz A, Ali T, El-Sherbeeny AM, Ali W (2023) A BiLSTM-CF and BiGRU-based deep sentiment analysis model to explore customer reviews for effective recommendations. Eng Technol Appl Sci Res 13(5):11739–11746. https://doi.org/10.48084/etasr.6278

    Article  Google Scholar 

  44. Andrian B, Simanungkalit T, Budi I, Wicaksono AF (2022) Sentiment analysis on customer satisfaction of digital banking in Indonesia. Int J Adv Comput Sci Appl 13(3):466–473. https://doi.org/10.14569/IJACSA.2022.0130356

    Article  Google Scholar 

  45. Oliveira AS, Renda AI, Correia MB, Antonio N (2022) Hotel customer segmentation and sentiment analysis through online reviews: An analysis of selected European markets. Tour Manag Stud 18(1):29–40. https://doi.org/10.18089/tms.2022.180103

    Article  Google Scholar 

  46. Ma’ruf M, Kuncoro AP, Subarkah P, Nida F (2022) Sentiment analysis of customer satisfaction levels on smartphone products using Ensemble Learning. Ilk J Ilm 14(3):339–347. https://doi.org/10.33096/ilkom.v14i3.1377.339-347

    Article  Google Scholar 

  47. Nguyen B, Nguyen VH, Ho T (2021) Sentiment analysis of customer feedback in online food ordering services. Bus Syst Res 12(2):46–59. https://doi.org/10.2478/bsrj-2021-0018

    Article  MathSciNet  Google Scholar 

  48. Kathiravan C, Rajasekar A, Velmurgan S, Mahalakshmi P, Chandramouli E, Suresh V, Padmaja B, Dhanalakshmi K (2021) Sentiment analysis and text mining of online customer reviews for digital wallet apps of Fintech industry. Int J Aquat Sci 12(03):2139–2150

    Google Scholar 

  49. Xu Z, Vail C, Kohli AS, Tajdini S (2021) Understanding changes in a brand’s core positioning and customer engagement: a sentiment analysis of a brand-owned Facebook site. J Mark Anal 9(1):3–16. https://doi.org/10.1057/s41270-020-00099-z

    Article  Google Scholar 

  50. A. Purohit, “Sentiment Analysis of Customer Product Reviews using deep Learning and Compare with other Machine Learning Techniques,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VII, pp. 233–239, 2021, https://doi.org/10.22214/ijraset.2021.36202.

  51. Khattak A et al (2020) Fine-grained sentiment analysis for measuring customer satisfaction using an extended set of fuzzy linguistic hedges. Int J Comput Intell Syst 13(1):744–756. https://doi.org/10.2991/ijcis.d.200513.001

    Article  Google Scholar 

  52. Gang X (2020) Customer sentiment analysis: take restaurant online reviews as an example. Asia-pacific J Converg Res Interchang 6(6):25–33. https://doi.org/10.21742/apjcri.2020.06.03

    Article  Google Scholar 

  53. Firdausi IE, Mukhlash I, Gama ADS, Hidayat N (2020) Sentiment analysis of customer response of telecommunication operator in Twitter using DCNN-SVM Algorithm. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/1490/1/012071

    Article  Google Scholar 

  54. Park G, Kwak M (2020) The life cycle of online smartphone reviews: Investigating dynamic change in customer opinion using sentiment analysis. ICIC Express Lett Part B Appl 11(5):509–516. https://doi.org/10.24507/icicelb.11.05.509

    Article  Google Scholar 

  55. Iqbal Z, Yadav M, Masood S (2020) Implementation of supervised learning techniques for sentiment analysis of customer tweets on airline services. Int J Eng Appl Sci Technol 5(3):352–357. https://doi.org/10.33564/ijeast.2020.v05i03.056

    Article  Google Scholar 

  56. Singh U, Saraswat A, Azad HK, Abhishek K, Shitharth S (2022) Towards improving e-commerce customer review analysis for sentiment detection. Sci Rep 12(1):1–15. https://doi.org/10.1038/s41598-022-26432-3

    Article  Google Scholar 

  57. A. Adak, B. Pradhan and N. Shukla, “Sentiment Analysis of Customer Reviews of Food Delivery Services Using Deep Learning and Explainable Artificial Intelligence: Systematic Review,” Foods, vol. 11, no. 10, 2022, 10.3390/foods11101500.

  58. Sharma V, Manocha T (2023) Comparative analysis of online fashion retailers using customer sentiment analysis on Twitter. SSRN Electron J. https://doi.org/10.2139/ssrn.4361107

    Article  Google Scholar 

  59. Agarwal S (2022) Deep learning-based sentiment analysis: establishing customer dimension as the lifeblood of business management. Glob Bus Rev 23(1):119–136. https://doi.org/10.1177/0972150919845160

    Article  Google Scholar 

  60. Ilham AA, Bustamin A, Wahyudiarto E (2023) Customer satisfaction assessment system on transactions e-commerce product purchases using sentiment analysis. Int J Adv Sci Eng Inf Technol 13(3):1041–1051. https://doi.org/10.18517/ijaseit.13.3.18273

    Article  Google Scholar 

  61. Arief M, Samsudin NA (2023) Hybrid approach with VADER and multinomial logistic regression for multiclass sentiment analysis in online customer review. Int J Adv Comput Sci Appl 14(12):311–320. https://doi.org/10.14569/IJACSA.2023.0141232

    Article  Google Scholar 

  62. Santhiya S, Sharmila C, Jayadharshini P, Dharshini MN, Dinesh Kumar B, Sandeep K (2023) A comparative analysis of pretrained models for sentiment analysis on restaurant customer reviews (CAPM-SARCR). In: International conference on speech and language technologies for low-resource languages, Springer Nature, Cham, Switzerland, pp 140–147

  63. Jalal MS, Ahamed B, Naim FA, Das A, Huda MN (2023) A novel approach of customer sentiment analysis by CNN based on PWWA. IEEE Reg 10 Humanit Technol Conf R10-HTC pp 301–306, https://doi.org/10.1109/R10-HTC57504.2023.10461936

  64. Pleerux N, Nardkulpat A (2023) Sentiment analysis of restaurant customer satisfaction during COVID-19 pandemic in Pattaya, Thailand. Heliyon 9(11):e22193. https://doi.org/10.1016/j.heliyon.2023.e22193

    Article  Google Scholar 

  65. Pujo Ariesanto Akhamad E, Adi K, Puji Widodo A (2023) Machine learning approach to customer sentiment analysis in twitter airline reviews. E3S Web Conf. https://doi.org/10.1051/e3sconf/202344802044

    Article  Google Scholar 

  66. Bakhit DMA, Nderu L, Ngunyi A (2024) A hybrid neural network model based on transfer learning for Arabic sentiment analysis of customer satisfaction. Eng Reports. https://doi.org/10.1002/eng2.12874

    Article  Google Scholar 

  67. Chen D, Zhengwei H, Yiting T, Jintao M, Khanal R (2024) Emotion and sentiment analysis for intelligent customer service conversation using a multi-task ensemble framework. Cluster Comput 27(2):2099–2115. https://doi.org/10.1007/s10586-023-04073-z

    Article  Google Scholar 

  68. Allimuthu U (2024) Sentiment analysis with hidden markov models for enhanced customer insights. 2024 Int. conf. cogn. robot. intell. syst. (ICC – ROBINS) https://doi.org/10.1109/ICC-ROBINS60238.2024.10533919

  69. Alsemaree O, Alam AS, Gill SS, Uhlig S (2024) Sentiment analysis of Arabic social media texts: a machine learning approach to deciphering customer perceptions. Heliyon 10(9):e27863. https://doi.org/10.1016/j.heliyon.2024.e27863

    Article  Google Scholar 

  70. Hossain MS, Rahman MF, Uddin MK, Hossain MK (2023) Customer sentiment analysis and prediction of halal restaurants using machine learning approaches. J Islam Mark 14(7):1859–1889. https://doi.org/10.1108/JIMA-04-2021-0125

    Article  Google Scholar 

  71. Ahmed AZ, Rodríguez-Díaz M (2020) Significant labels in sentiment analysis of online customer reviews of airlines. Sustain 12(20):1–18. https://doi.org/10.3390/su12208683

    Article  Google Scholar 

  72. Yi S, Liu X (2020) Machine learning based customer sentiment analysis for recommending shoppers, shops based on customers’ review. Complex Intell Syst 6(3):621–634. https://doi.org/10.1007/s40747-020-00155-2

    Article  MathSciNet  Google Scholar 

  73. Masarifoglu M et al (2021) Sentiment analysis of customer comments in banking using BERT-based approaches. SIU 2021 - 29th IEEE Conf. Signal Process. Commun. Appl. Proc. https://doi.org/10.1109/SIU53274.2021.9477890.

  74. Luo JM, Vu HQ, Li G, Law R (2021) Understanding service attributes of robot hotels: a sentiment analysis of customer online reviews. Int J Hosp Manag 98:103032. https://doi.org/10.1016/j.ijhm.2021.103032

    Article  Google Scholar 

  75. Aftab MO, Ahmad U, Khalid S, Saud A, Hassan A, Farooq MS (2021) Sentiment analysis of customer for ecommerce by applying AI. In: 4th Int. Conf. Innov. Comput. ICIC 2021, no. ICIC, pp. 1–7. https://doi.org/10.1109/ICIC53490.2021.9693026.

  76. Capuano N, Greco L, Ritrovato P, Vento M (2021) Sentiment analysis for customer relationship management: an incremental learning approach. Appl Intell 51(6):3339–3352. https://doi.org/10.1007/s10489-020-01984-x

    Article  Google Scholar 

  77. Park S, Cho J, Park K, Shin H (2021) Customer sentiment analysis with more sensibility. Eng Appl Artif Intell 104:104356. https://doi.org/10.1016/j.engappai.2021.104356

    Article  Google Scholar 

  78. Saeed Z, Ayaz Abbasi R, Razzak MI, Xu G (2019) Event detection in twitter stream using weighted dynamic heartbeat graph approach. IEEE Comput Intell Mag 14(3):29–38. https://doi.org/10.1109/MCI.2019.2919395

    Article  Google Scholar 

  79. Uma R, Aafreen Sana H, Jawahar P, Rishitha BV (2022) Support vector machine and convolutional neural network approach to customer review sentiment analysis. In: 2022 1st Int. Conf. Comput. Sci. Technol. ICCST 2022 - Proc., pp 239–243. https://doi.org/10.1109/ICCST55948.2022.10040381

  80. Matarat K (2024) Enhancing hotel management: a sentiment analysis approach to assessing customer impressions on environment-based reviews. Int J Prof Bus Rev 9(1):e04152. https://doi.org/10.26668/businessreview/2024.v9i1.4152

    Article  Google Scholar 

  81. Shi Y, Li L, Li H, Li A, Lin Y (2024) Aspect-level sentiment analysis of customer reviews based on neural multi-task learning. J Theory Pract Eng Sci 4(04):1–8. https://doi.org/10.53469/jtpes.2024.04(04).01

    Article  Google Scholar 

  82. Habbat N, Anoun H, Hassouni L (2023) Combination of GRU and CNN deep learning models for sentiment analysis on french customer reviews using XLNet model. IEEE Eng Manag Rev 51(1):41–51. https://doi.org/10.1109/EMR.2022.3208818

    Article  Google Scholar 

  83. Akre P, Malu R, Jha A, Tekade Y, Bisen W (2023) Sentiment analysis using opinion mining on customer review. Int J Eng Manag Res 13(4):41–44

    Google Scholar 

  84. Hicham N, Karim S, Habbat N (2023) Customer sentiment analysis for Arabic social media using a novel ensemble machine learning approach. Int J Electr Comput Eng 13(4):4504–4515. https://doi.org/10.11591/ijece.v13i4.pp4504-4515

    Article  Google Scholar 

  85. Khan SI, Athawale SV, Borawake MP, Naniwadekar MY (2023) Sentiment analysis of customer reviews using pre-trained language models. Int J Intell Syst Appl Eng 11(7s):614–620

    Google Scholar 

  86. Habibi M, Kusumaningtyas K (2023) Customer experience analysis skincare products through social media data using topic modeling and sentiment analysis. J Sci Appl Eng 6(1):1. https://doi.org/10.31328/jsae.v6i1.4169

    Article  Google Scholar 

  87. Shahhosseini M, Khalili Nasr A (2024) What attributes affect customer satisfaction in green restaurants? An aspect-based sentiment analysis approach. J Travel Tour Mark 41(4):472–490. https://doi.org/10.1080/10548408.2024.2306358

    Article  Google Scholar 

  88. Rashiq Nazar S, Bhattasali T (2021) Sentiment analysis of customer reviews. Azerbaijan J High Perform Comput 4(1):113–125. https://doi.org/10.32010/26166127.2021.4.1.113.125

    Article  Google Scholar 

  89. Durairaj AK, Chinnalagu A (2021) Transformer based Contextual model for sentiment analysis of customer reviews: a fine-tuned BERT a sequence learning BERT model for sentiment analysis. Int J Adv Comput Sci Appl 12(11):474–480. https://doi.org/10.14569/IJACSA.2021.0121153

    Article  Google Scholar 

  90. Christanto HJ, Singgalen YA (2022) Sentiment analysis of customer feedback reviews towards hotel’s products and services in Labuan Bajo. J Inf Syst Informatics 4(4):805–822. https://doi.org/10.51519/journalisi.v4i4.294

    Article  Google Scholar 

  91. Ruger AH, Suyanto M, Kurniawan MP (2021) Sentimen Analisis Pelanggan Shopee di Twitter dengan Algoritma Naive Bayes. J Inf Technol 1(2):26–29. https://doi.org/10.46229/jifotech.v1i2.282

    Article  Google Scholar 

  92. Pöferlein M (2021) Sentiment analysis of German texts in finance: improving and testing the BPW dictionary. J Bank Financ Econ 2022(2 16):5–24. https://doi.org/10.7172/2353-6845.jbfe.2021.2.1

    Article  Google Scholar 

  93. Issam A, Mounir AK, Saida EM, Fatna EM (2022) Financial sentiment analysis of tweets based on deep learning approach. Indones J Electr Eng Comput Sci 25(3):1759–1770. https://doi.org/10.11591/ijeecs.v25.i3.pp1759-1770

    Article  Google Scholar 

  94. Cristescu MP, Nerişanu RA, Mara DA (2022) Using data mining in the sentiment analysis process on the financial market. J Soc Econ Stat 11(1–2):36–58. https://doi.org/10.2478/jses-2022-0003

    Article  Google Scholar 

  95. Bagadhi VV, Alrajawy I, Babu KS (2022) A sentiment analysis model for the strategic financial management challenges in startups. J Posit Sch 6(8):4700–4706

    Google Scholar 

  96. Yekrangi M, Abdolvand N (2021) Financial markets sentiment analysis: developing a specialized Lexicon. J Intell Inf Syst 57(1):127–146. https://doi.org/10.1007/s10844-020-00630-9

    Article  Google Scholar 

  97. Souissi F, Trichilli Y, Abbes MB (2020) Googling investor’s sentiment, financial stress and dynamics of European market indexes: a Markov chain analysis. Int J Bond Deriv 4(2):152. https://doi.org/10.1504/ijbd.2020.109354

    Article  Google Scholar 

  98. Kilimci ZH (2020) Financial sentiment analysis with Deep Ensemble Models (DEMs) for stock market prediction. J Fac Eng Archit Gazi Univ 35(2):635–650. https://doi.org/10.17341/gazimmfd.501551

    Article  Google Scholar 

  99. Kumar K, Kumar GR, Rao JN (2020) Use sentiment analysis to predict future price movement in the stock market. Int J Adv Res Eng Technol 11(11):1123–1130

    Google Scholar 

  100. Gumus A, Sakar CO (2021) Stock market prediction by combining stock price information and sentiment analysis. Int J Adv Eng Pure Sci 33(1):18–27. https://doi.org/10.7240/jeps.683952

    Article  Google Scholar 

  101. Kalbandi I, Jare A, Kale O, Borole H, Navsare S (2021) Stock market prediction using LSTM. Int J Adv Res Sci Commun Technol 12(11):123–128. https://doi.org/10.48175/ijarsct-877

    Article  Google Scholar 

  102. Sahu C, Dewangan KK (2023) Stock market prediction using Twitter. Int J Sci Res Eng Manag 07(10):1–11. https://doi.org/10.55041/ijsrem26020

    Article  Google Scholar 

  103. Kedar SV (2021) stock market increase and decrease using twitter sentiment analysis and ARIMA model. Turkish J Comput Math Educ 12(1S):146–161. https://doi.org/10.17762/turcomat.v12i1s.1596

    Article  MathSciNet  Google Scholar 

  104. Sharma K, Bhalla R (2022) Decision support machine- a hybrid model for sentiment analysis of news headlines of stock market. Int J Electr Comput Eng Syst 13(9):791–798. https://doi.org/10.32985/ijeces.13.9.7

    Article  Google Scholar 

  105. Janková Z (2023) Critical review of text mining and sentiment analysis for stock market prediction. J Bus Econ Manag 24(1):177–198. https://doi.org/10.3846/jbem.2023.18805

    Article  MathSciNet  Google Scholar 

  106. Ahangari M, Sebti A (2023) A hybrid approach to sentiment analysis of Iranian stock market user’s opinions. Int J Eng Trans A Basics 36(3):573–584. https://doi.org/10.5829/ije.2023.36.03c.18

    Article  Google Scholar 

  107. Kasture P, Shirsath K (2024) Enhancing stock market prediction: a hybrid RNN-LSTM framework with sentiment analysis. Indian J Sci Technol 17(18):1880–1888. https://doi.org/10.17485/ijst/v17i18.466

    Article  Google Scholar 

  108. Li X, Ming H (2023) Stock market prediction using reinforcement learning with sentiment analysis. Int J Cybern Inform 12(1):1–20. https://doi.org/10.5121/ijci.2023.120101

    Article  Google Scholar 

  109. Aslim MF, Firmansyah G, Tjahjono B, Akbar H, Widodo AM (2023) Utilization of LSTM (Long Short Term Memory) based sentiment analysis for stock price prediction. Asian J Soc Humanit 1(12):1241–1255. https://doi.org/10.59888/ajosh.v1i12.141

    Article  Google Scholar 

  110. Jiang N, Ti C, Mao Y, Wu T (2021) “Analysis on relationship between bitcoin price trend and sentiment of bitcoin related tweets by ML and NLP”, ICMLCA 2021–2nd Int. Conf Mach Learn Comput Appl 10(1):437–441

    Google Scholar 

  111. Kumar A, Srivastava V, Chaubey MK, Sehgal M (2023) Bitcoin price prediction using sentiment analysis and long short-term memory (LSTM). Int J Intell Syst Appl Eng 11(7s):480–485

    Google Scholar 

  112. Lade M, Welekar R, Dadiyala C (2023) Bitcoin price prediction and NFT generator based on sentiment analysis. Int J Next-Generation Comput. https://doi.org/10.47164/ijngc.v14i1.1043

    Article  Google Scholar 

  113. Fakharchian S (2023) Designing a forecasting assistant of the Bitcoin price based on deep learning using market sentiment analysis and multiple feature extraction. Soft Comput 27(24):18803–18827. https://doi.org/10.1007/s00500-023-09028-5

    Article  Google Scholar 

  114. Tjahyana LJ, Lesmana F (2024) Entity sentiment analysis with the Netray monitoring tool in Indonesian online news media on the fuel price hike. Inf Media 99:106–125. https://doi.org/10.15388/Im.2024.99.6

    Article  Google Scholar 

  115. Bute H, Singh A, Nandurbarkar S, Wagle SA, Pareek P (2024) Bitcoin price prediction using twitter sentiment analysis. Int J Intell Syst Appl Eng 12(17s):469–477

    Google Scholar 

  116. Yang J, Wang Y, Li X (2022) Prediction of stock price direction using the LASSO-LSTM model combines technical indicators and financial sentiment analysis. PeerJ Comput Sci 8:1–27. https://doi.org/10.7717/PEERJ-CS.1148

    Article  Google Scholar 

  117. Ho TT, Huang Y (2021) Stock price movement prediction using sentiment analysis and candlestick chart representation. Sensors. https://doi.org/10.3390/s21237957

    Article  Google Scholar 

  118. Lakatos R, Bogacsovics G, Hajdu A (2022) Predicting the direction of the oil price trend using sentiment analysis. In: 2022 IEEE 2nd Conf. Inf. Technol. Data Sci. CITDS 2022 - Proc., pp 177–182. https://doi.org/10.1109/CITDS54976.2022.9914158.

  119. Swathi T, Kasiviswanath N, Rao AA (2022) An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis. Appl Intell 52(12):13675–13688. https://doi.org/10.1007/s10489-022-03175-2

    Article  Google Scholar 

  120. Jing N, Wu Z, Wang H (2021) A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Syst Appl 178:115019. https://doi.org/10.1016/j.eswa.2021.115019

    Article  Google Scholar 

  121. Srijiranon K, Lertratanakham Y, Tanantong T (2022) A hybrid framework using PCA, EMD and LSTM methods for stock market price prediction with sentiment analysis. Appl Sci. https://doi.org/10.3390/app122110823

    Article  Google Scholar 

  122. Chiong R, Fan Z, Hu Z, Dhakal S (2023) A novel ensemble learning approach for stock market prediction based on sentiment analysis and the sliding window method. IEEE Trans Comput Soc Syst 10(5):2613–2623. https://doi.org/10.1109/TCSS.2022.3182375

    Article  Google Scholar 

  123. Dhabe P, Chandak A, Deshpande O, Fandade P, Chandak N, Oswal Y (2023) Stock market trend prediction along with twitter sentiment analysis. In: Intelligent computing and networking: Proceedings of IC-ICN 2022, Springer Nature Singapore, pp 45–59

  124. Abdelfattah BA, Darwish SM, Elkaffas SM (2024) Enhancing the prediction of stock market movement using neutrosophic-logic-based sentiment analysis. J Theor Appl Electron Commer Res 19(1):116–134. https://doi.org/10.3390/jtaer19010007

    Article  Google Scholar 

  125. Gupta AK, Kumar V, Verma A, Yadav P, Kumar N, Sain M (2024) Unveiling stock market trends through predictive analytics and sentiment analysis: insightfulequity. In: Proc. - Int. Conf. Comput. Power, Commun. Technol. IC2PCT 2024 vol 5. pp 1558–1566. https://doi.org/10.1109/IC2PCT60090.2024.10486483.

  126. Chatziloizos GM, Gunopulos D, Konstantinou K (2024) Deep learning for stock market prediction using sentiment and technical analysis. SN Comput Sci. https://doi.org/10.1007/s42979-024-02651-5

    Article  Google Scholar 

  127. de Carosia AEO, da Silva AEA, Coelho GP (2024) Predicting the Brazilian stock market with sentiment analysis, technical indicators and stock prices: a deep learning approach. Comput Econ. https://doi.org/10.1007/s10614-024-10636-y

    Article  Google Scholar 

  128. Zhang W, Gong X, Wang C, Ye X (2021) Predicting stock market volatility based on textual sentiment: a nonlinear analysis. J Forecast 40(8):1479–1500. https://doi.org/10.1002/for.2777

    Article  MathSciNet  Google Scholar 

  129. Damayanti L, Lhaksmana KM (2024) Sentiment analysis of the 2024 Indonesia presidential election on twitter. Sinkron 8(2):938–946. https://doi.org/10.33395/sinkron.v8i2.13379

    Article  Google Scholar 

  130. Azzawagama Firdaus A, Yudhana A, Riadi I (2024) Prediction of Indonesian presidential election results using sentiment analysis with Naïve Bayes method. J Media Inform Budidarma 8(1):41–50

    Article  Google Scholar 

  131. Mantika AM, Triayudi A, Aldisa RT (2024) “Sentiment analysis on twitter using Naïve Bayes and logistic regression for the 2024 presidential election”, SaNa. J Blockchain, NFTs Metaverse Technol 2(1):44–55

    Article  Google Scholar 

  132. Khan A, Zhang H, Boudjellal N, Ahmad A, Khan M (2023) Improving sentiment analysis in election-based conversations on twitter with ElecBERT language model. Comput Mater Contin 76(3):3345–3361. https://doi.org/10.32604/cmc.2023.041520

    Article  Google Scholar 

  133. Hananto AL, Nardilasari AP, Fauzi A, Hananto A, Priyatna B, Rahman AY (2023) Best algorithm in sentiment analysis of presidential election in Indonesia on twitter. Int J Intell Syst Appl Eng 11(6s):473–481

    Google Scholar 

  134. Ayami YM, Nyirenda M (2023) Towards election forecasting using sentiment analysis: the Zambia general elections 2021. Zambia ICT J 7(1):47–51. https://doi.org/10.33260/zictjournal.v7i1.148

    Article  Google Scholar 

  135. Olabanjo O, Wusu A, Padonu R, Afisi O, Mazzara M (2023) Twitter sentiment analysis of lagos State 2023 gubernatorial election using BERT”. J Adv Res Soc Sci 6(2):59–75. https://doi.org/10.33422/jarss.v6i2.1027

    Article  Google Scholar 

  136. Iqbal BM, Lhaksmana KM, Setiawan EB (2023) 2024 presidential election sentiment analysis in news media using support vector machine. J Comput Syst Inform 4(2):397–404. https://doi.org/10.47065/josyc.v4i2.3051

    Article  Google Scholar 

  137. Yavari A, Hassanpour H, Cami BR, Mahdavi M (2022) Election prediction based on sentiment analysis using twitter data. Int J Eng Trans B Appl 35(2):372–379. https://doi.org/10.5829/ije.2022.35.02b.13

    Article  Google Scholar 

  138. Rahmanulloh NU, Santoso I (2022) Delineation of the early 2024 election map: sentiment analysis approach to twitter data. J Online Inform 7(2):226–235. https://doi.org/10.15575/join.v7i2.925

    Article  Google Scholar 

  139. Chauhan P, Sharma N, Sikka G (2021) The emergence of social media data and sentiment analysis in election prediction. J Ambient Intell Humaniz Comput 12(2):2601–2627. https://doi.org/10.1007/s12652-020-02423-y

    Article  Google Scholar 

  140. Endsuy ARD (2021) Sentiment analysis between VADER and EDA for the US presidential election 2020 on twitter datasets. J Appl Data Sci 2(1):8–18. https://doi.org/10.47738/jads.v2i1.17

    Article  Google Scholar 

  141. Babac MB (2021) Sentiment analysis of president trump’stweets: from winning the election to the fight against COVID-19. Commun Manag Rev 6(September):1–22. https://doi.org/10.22522/cmr20210272

    Article  Google Scholar 

  142. Khurana Batra P, Saxena A, Shruti, Goel C (2020) Election result prediction using twitter sentiments analysis. In: PDGC 2020 - 2020 6th Int. Conf Parallel Distrib Grid Comput pp 182–185. https://doi.org/10.1109/PDGC50313.2020.9315789

  143. Buntoro GA, Arifin R, Syaifuddiin GN, Selamat A, Krejcar O, Fujita H (2021) Implementation of a machine learning algorithm for sentiment analysis of Indonesia’s 2019 presidential election. IIUM Eng J 22(1):78–92. https://doi.org/10.31436/IIUMEJ.V22I1.1532

    Article  Google Scholar 

  144. Indra Z, Setiawan A, Jusman Y (1803) Implementation of machine learning for sentiment analysis of social and political orientation in Pekanbaru City. J Phys Conf Ser 1:2021. https://doi.org/10.1088/1742-6596/1803/1/012032

    Article  Google Scholar 

  145. Yadav D, Sharma A, Ahmad S, Chandra U (2020) Political sentiment analysis on delhi using machine learning. Adv Math Sci J 9(3):1247–1258. https://doi.org/10.37418/amsj.9.3.50

    Article  Google Scholar 

  146. Safra Zaabar L, Ridzwan Yaakub M, Iqbal M, Latiffi A (2022) Combination of Lexicon based and machine learning techniques in the development of political tweet sentiment analysis model. Int J Synerg Eng Technol 3(2):72–83

    Google Scholar 

  147. Amrullah M (2023) Interpreting U.S. Public opinion on cross-strait relations during president tsai ing-wen’s first term in office: a twitter sentiment analysis. J Glob Area Stud 7(4):55–81. https://doi.org/10.31720/jga.7.4.3

    Article  Google Scholar 

  148. Alvi Q, Ali SF, Ahmed SB, Khan NA, Javed M, Nobanee H (2023) On the frontiers of Twitter data and sentiment analysis in election prediction: a review. PeerJ Comput Sci 9:1–25. https://doi.org/10.7717/peerj-cs.1517

    Article  Google Scholar 

  149. Abercrombie G, Batista-Navarro R (2020) Sentiment and position-taking analysis of parliamentary debates: a systematic literature review. J Comput Soc Sci 3(1):245–270. https://doi.org/10.1007/s42001-019-00060-w

    Article  Google Scholar 

  150. Abbas AK, Salih AK, Hussein HA, Hussein QM, Abdulwahhab SA (2020) Twitter sentiment analysis using an ensemble majority vote classifier. J Southwest Jiaotong Univ 55(1):1–7. https://doi.org/10.35741/issn.0258-2724.55.1.9

    Article  Google Scholar 

  151. Chaudhry HN et al (2021) Sentiment analysis of before and after elections: Twitter data of U.S. election 2020. Electron 10(17):1–26. https://doi.org/10.3390/electronics10172082

    Article  Google Scholar 

  152. Ali RH, Pinto G, Lawrie E, Linstead EJ (2022) A large-scale sentiment analysis of tweets pertaining to the 2020 US presidential election. J Big Data. https://doi.org/10.1186/s40537-022-00633-z

    Article  Google Scholar 

  153. Onyenwe I, Nwagbo S, Mbeledogu N, Onyedinma E (2020) The impact of political party/candidate on the election results from a sentiment analysis perspective using #AnambraDecides2017 tweets. Soc Netw Anal Min 10(1):1–17. https://doi.org/10.1007/s13278-020-00667-2

    Article  Google Scholar 

  154. Kinyua JD, Mutigwe C, Cushing DJ, Poggi M (2021) An analysis of the impact of President Trump’s tweets on the DJIA and S&P 500 using machine learning and sentiment analysis. J Behav Exp Financ 29:100447. https://doi.org/10.1016/j.jbef.2020.100447

    Article  Google Scholar 

  155. Watimin NH, Zanuddin H, Rahamad MS (2023) Religious and racial tension breakout: an online pre-crisis detection strategy via sentiment analysis for riot crime prevention. Soc Netw Anal Min. https://doi.org/10.1007/s13278-023-01086-9

    Article  Google Scholar 

  156. Kumar A, Shekhar S (2024) Hybrid model of unsupervised and supervised learning for multiclass sentiment analysis based on users’ reviews on healthcare web forums. J Auton Intell 7(4):1–16. https://doi.org/10.32629/jai.v7i4.971

    Article  Google Scholar 

  157. Shanmuganathan V, de Albuquerque VHC, Barbosa PCS, dos Reis MC, Dhiman G, Shah MA (2023) Retracted: software based sentiment analysis of clinical data for healthcare sector. IET Softw 17(4):787–796. https://doi.org/10.1049/sfw2.12115

    Article  Google Scholar 

  158. Panchal DS, Shelke MB, Kawathekar SS, Deshmukh SN (2023) Prediction of healthcare quality using sentiment analysis. Indian J Sci Technol 16(21):1603–1613. https://doi.org/10.17485/ijst/v16i21.2506

    Article  Google Scholar 

  159. Edirisinghe R, Asanka D (2023) Sentiment reason mining framework for analyzing twitter discourse on critical issues in US healthcare industry. In: Proc. - Int. Res. Conf. Smart Comput. Syst. Eng. SCSE 2023, vol 6. pp 1–8. https://doi.org/10.1109/SCSE59836.2023.10215010

  160. Shen A, Chow KP (2022) Entity-based integration framework on social unrest event detection in social media. Electron. https://doi.org/10.3390/electronics11203416

    Article  Google Scholar 

  161. Al-Mashhadany AK, Sadiq AT, Ali SM, Ahmed AA (2022) Healthcare assessment for beauty centers using hybrid sentiment analysis. Indones J Electr Eng Comput Sci 28(2):890–897. https://doi.org/10.11591/ijeecs.v28.i2.pp890-897

    Article  Google Scholar 

  162. Leong KH, Dahnil DP (2022) Classification of healthcare service reviews with sentiment analysis to refine user satisfaction. Int J Electr Comput Eng Syst 13(4):323–330. https://doi.org/10.32985/IJECES.13.4.8

    Article  Google Scholar 

  163. Paul R, Pandit A, Bhardwaj R (2022) Transforming healthcare through sentiment analysis: tool for patient satisfaction. J Algebr Stat 13(3):3962–3980

    Google Scholar 

  164. Shah AM, Yan X, Tariq S, Shah SAA (2021) Tracking patients healthcare experiences during the COVID-19 outbreak: topic modeling and sentiment analysis of doctor reviews. J Eng Res 9(3):219–239. https://doi.org/10.36909/jer.v9i3A.8703

    Article  Google Scholar 

  165. Zhou P et al (2022) METS CoV: a dataset of medical entity and targeted sentiment on COVID-19 related tweets. Adv Neural Inf Process Syst 35(NeurIPS 2022):1–17

    Google Scholar 

  166. Dai J, Lyu F, Yu L, Zhou Z, He Y (2024) Medical service quality evaluation based on LDA and sentiment analysis: Examples of seven chronic diseases. Digit Heal. https://doi.org/10.1177/20552076241233864

    Article  Google Scholar 

  167. Suganya P, Vijaiprabhu G, Sivakumar G, Sathishkumar K (2024) Navigating sentiment analysis horizons : comprehensive survey on machine learning approaches for unstructured data in medical sciences and science and technology. Int J Pharm Res Technol 14(1):72–78. https://doi.org/10.31838/ijprt/14.01.08

    Article  Google Scholar 

  168. Khine AH, Wettayaprasit W, Duangsuwan J (2024) A new word embedding model integrated with medical knowledge for deep learning-based sentiment classification. Artif Intell Med. https://doi.org/10.1016/j.artmed.2023.102758

    Article  Google Scholar 

  169. Kaur P, Malhi AK, Pannu HS (2024) Sentiment analysis of linguistic cues to assist medical image classification. Multimed Tools Appl 83(10):30847–30866. https://doi.org/10.1007/s11042-023-16538-9

    Article  Google Scholar 

  170. Elbers DC et al (2023) Sentiment analysis of medical record notes for lung cancer patients at the Department of Veterans Affairs. PLoS ONE 18:1–12. https://doi.org/10.1371/journal.pone.0280931

    Article  Google Scholar 

  171. Edara DC, Vanukuri LP, Sistla V, Kolli VKK (2023) Sentiment analysis and text categorization of cancer medical records with LSTM. J Ambient Intell Humaniz Comput 14(5):5309–5325. https://doi.org/10.1007/s12652-019-01399-8

    Article  Google Scholar 

  172. Zhao Y, Zhang L, Zeng C, Lu W, Chen Y, Fan T (2023) Construction of an aspect-level sentiment analysis model for online medical reviews. Inf Process Manag 60(6):103513. https://doi.org/10.1016/j.ipm.2023.103513

    Article  Google Scholar 

  173. Ye Z, Li R, Wu J (2022) Dynamic demand evaluation of COVID-19 medical facilities in Wuhan based on public sentiment. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph19127045

    Article  Google Scholar 

  174. Ouerhani N, Maalel A, Ben Ghézala H (2022) SMAD: SMart assistant during and after a medical emergency case based on deep learning sentiment analysis: the pandemic COVID 19 case. Cluster Comput 25(5):3671–3681

    Article  Google Scholar 

  175. Tomas JP, Ancheta C, Deocadiz N, Marzona R (2022) Sentiment analysis on medical personal protective equipment (PPE) shops customer reviews. In: Proc. - 2022 12th Int. Conf. Softw. Technol. Eng. ICSTE 2022, pp 138–146. https://doi.org/10.1109/ICSTE57415.2022.00028.

  176. Obiedat R, Al-Qaisi L, Qaddoura R, Harfoushi O, Al-Zoubi AM (2021) An intelligent hybrid sentiment analyzer for personal protective medical equipments based on word embedding technique: the covid-19 era. Symmetry (Basel) 13(12):2021. https://doi.org/10.3390/sym13122287

    Article  Google Scholar 

  177. Zhou Q, Su L, Wu L, Jiang D (2021) Deep personalized medical recommendations based on the integration of rating features and review sentiment analysis. Wirel Commun Mob Comput. https://doi.org/10.1155/2021/5551318

    Article  Google Scholar 

  178. Yousef RNM, Tiun S, Omar N, Alshari EM (2020) Enhance medical sentiment vectors through document embedding using recurrent neural network. Int J Adv Comput Sci Appl 11(4):372–378. https://doi.org/10.14569/IJACSA.2020.0110452

    Article  Google Scholar 

  179. Chintalapudi N, Battineni G, Di Canio M, Sagaro GG, Amenta F (2021) Text mining with sentiment analysis on seafarers’ medical documents. Int J Inf Manag Data Insights 1(1):100005. https://doi.org/10.1016/j.jjimei.2020.100005

    Article  Google Scholar 

  180. Ruiz-Núñez C et al (2023) Sentiment analysis on twitter: role of healthcare professionals in the global conversation during the AstraZeneca vaccine suspension. Int J Environ Res Public Health. https://doi.org/10.3390/ijerph20032225

    Article  Google Scholar 

  181. Dumbach P, Schwinn L, Löhr T, Do PL, Eskofier BM (2023) Artificial intelligence trend analysis on healthcare podcasts using topic modeling and sentiment analysis: a data-driven approach. Evol Intell. https://doi.org/10.1007/s12065-023-00878-4

    Article  Google Scholar 

  182. Fischer I, Steiger HJ (2020) Toward automatic evaluation of medical abstracts: The current value of sentiment analysis and machine learning for classification of the importance of PubMed abstracts of randomized trials for stroke. J Stroke Cerebrovasc Dis 29(9):105042. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105042

    Article  Google Scholar 

  183. Ghosh A, Umer S, Khan MK, Rout RK, Dhara BC (2023) Smart sentiment analysis system for pain detection using cutting edge techniques in a smart healthcare framework. Cluster Comput 26(1):119–135. https://doi.org/10.1007/s10586-022-03552-z

    Article  Google Scholar 

  184. Lal M, Neduncheliyan S (2024) Enhanced V-Net approach for the emotion recognition and sentiment analysis in the healthcare data. Multimed Tools Appl. https://doi.org/10.1007/s11042-024-18364-z

    Article  Google Scholar 

  185. Xiong G, Yan K, Zhou X (2022) A distributed learning based sentiment analysis methods with Web applications. World Wide Web 25(5):1905–1922. https://doi.org/10.1007/s11280-021-00994-0

    Article  Google Scholar 

  186. Zhang H et al (2022) Leveraging statistical information in fine-grained financial sentiment analysis. World Wide Web 25(2):513–531. https://doi.org/10.1007/s11280-021-00993-1

    Article  Google Scholar 

  187. Yin H, Song X, Yang S, Li J (2022) Sentiment analysis and topic modeling for COVID-19 vaccine discussions. World Wide Web 25(3):1067–1083. https://doi.org/10.1007/s11280-022-01029-y

    Article  Google Scholar 

  188. Hammad Dhahi SHD, Waleed J (2022) Tweet sentiment polarity detection based on semantic similarity. Diyala J Pure Sci 18(2):46–64. https://doi.org/10.24237/djps.1802.576B

    Article  Google Scholar 

  189. Sygkounas E, Rizzo G, Troncy R (2016) Sentiment polarity detection from Amazon reviews: an experimental study. Commun Comput Inf Sci 641:108–120. https://doi.org/10.1007/978-3-319-46565-4_8

    Article  Google Scholar 

  190. Arunachalam N, Josephine Sneka S, Madhumathi G (2017) A survey on text classification techniques for sentiment polarity detection. In: 2017 Innov. Power Adv. Comput. Technol. i-PACT 2017, vol 2017. pp 1–5. https://doi.org/10.1109/IPACT.2017.8245127.

  191. Ahmed N, Al Aghbari Z, Girija S (2023) A systematic survey on multimodal emotion recognition using learning algorithms. Intell Syst Appl 17(2022):200171. https://doi.org/10.1016/j.iswa.2022.200171

    Article  Google Scholar 

  192. Das R, Singh TD (2023) Multimodal sentiment analysis: a survey of methods, trends, and challenges. ACM Comput Surv. https://doi.org/10.1145/3586075

    Article  Google Scholar 

  193. Singh U, Abhishek K, Azad HK (2024) A survey of cutting-edge multimodal sentiment analysis. ACM Comput Surv 56(9):1–38. https://doi.org/10.1145/3652149

    Article  Google Scholar 

  194. Nkongolo M (2023) Enhancing search engine precision and user experience through sentiment-based polysemy resolution. Int J Intell Syst 2023:1–24. https://doi.org/10.1155/2023/1784394

    Article  Google Scholar 

  195. Yekrangi M, Nikolov NS (2023) Domain-specific sentiment analysis: an optimized deep learning approach for the financial markets. IEEE Access 11(July):70248–70262. https://doi.org/10.1109/ACCESS.2023.3293733

    Article  Google Scholar 

  196. Ahmad SR, Bakar AA, Yaakub MR (2019) A review of feature selection techniques in sentiment analysis. Intell Data Anal 23(1):159–189. https://doi.org/10.3233/IDA-173763

    Article  Google Scholar 

  197. Cui J, Wang Z, Ho SB, Cambria E (2023) Survey on sentiment analysis: evolution of research methods and topics. Springer. https://doi.org/10.1007/s10462-022-10386-z

    Article  Google Scholar 

  198. K. Ravi and V. Ravi, A survey on opinion mining and sentiment analysis: Tasks, approaches and applications, vol. 89, no. November. 2015. https://doi.org/10.1016/j.knosys.2015.06.015.

  199. Yin F, Wang Y, Liu J, Lin L (2020) The Construction of sentiment lexicon based on context-dependent part-of-speech chunks for semantic disambiguation. IEEE Access 8:63359–63367. https://doi.org/10.1109/ACCESS.2020.2984284

    Article  Google Scholar 

  200. Krishna MM, Vankara J (2023) Detection of sarcasm using bi-directional RNN based deep learning model in sentiment analysis. J Adv Res Appl Sci Eng Technol 31(2):352–362. https://doi.org/10.37934/araset.31.2.352362

    Article  Google Scholar 

  201. Bhakuni M, Kumar K, Sonia C, Iwendi AS (2022) “Evolution and evaluation: sarcasm analysis for twitter data using sentiment analysis. J Sensors. https://doi.org/10.1155/2022/6287559

    Article  Google Scholar 

  202. Katyayan P, Joshi N (2022) Sarcasm detection algorithms based on sentiment strength. Intell Data Anal. https://doi.org/10.1002/9781119544487.ch14

    Article  Google Scholar 

  203. Alaramma SK, Habu AA, Yau BI, Madaki AG (2023) Sentiment analysis of sarcasm detection in social media. Gadau J Pure Allied Sci. 2(1):76–82. https://doi.org/10.54117/gjpas.v2i1.72

    Article  Google Scholar 

  204. Tahayna BMA, Ayyasamy RK, Akbar R (2022) Automatic sentiment annotation of idiomatic expressions for sentiment analysis task. IEEE Access 10(October):122234–122242. https://doi.org/10.1109/ACCESS.2022.3222233

    Article  Google Scholar 

  205. Gupta S, Singh R, Singh J (2020) A hybrid approach for enhancing accuracy and detecting sarcasm in sentiment analysis. In: 2020 IEEE Int. Conf. Comput. Power Commun. Technol. GUCON 2020, pp 130–134, https://doi.org/10.1109/GUCON48875.2020.9231140

  206. Lubis AR, Fatmi Y, Witarsyah D (2023) Sentiment analysis in social media: handling noisy data and detecting sarcasm using a deep learning approach. In: Int. Conf. Electr. Eng. Comput. Sci. Informatics, no. September, pp 595–599. https://doi.org/10.1109/EECSI59885.2023.10295681

  207. Prasanna MSM, Shaila SG, Vadivel A (2023) Polarity classification on twitter data for classifying sarcasm using clause pattern for sentiment analysis. Multimedia Tools Appl. https://doi.org/10.1007/s11042-023-14909-w

    Article  Google Scholar 

  208. Vitman O, Kostiuk Y, Sidorov G, Gelbukh A (2023) Sarcasm detection framework using context, emotion and sentiment features. Expert Syst Appl 234:121068. https://doi.org/10.1016/j.eswa.2023.121068

    Article  Google Scholar 

  209. Zhang Y et al (2023) A Multitask learning model for multimodal sarcasm, sentiment and emotion recognition in conversations. Inf Fusion 93:282–301. https://doi.org/10.1016/j.inffus.2023.01.005

    Article  Google Scholar 

  210. Phukan A, Pal S, Ekbal A (2024) Hybrid quantum-classical neural network for multimodal multitask sarcasm, emotion, and sentiment analysis. IEEE Trans Comput Soc Syst. https://doi.org/10.1109/TCSS.2024.3388016

    Article  Google Scholar 

  211. Liu H, Wei R, Tu G, Lin J, Liu C, Jiang D (2024) Sarcasm driven by sentiment: A sentiment-aware hierarchical fusion network for multimodal sarcasm detection. Inf. Fusion 108:102353. https://doi.org/10.1016/j.inffus.2024.102353

    Article  Google Scholar 

  212. Huang M, Xie H, Rao Y, Feng J, Wang FL (2020) Sentiment strength detection with a context-dependent lexicon-based convolutional neural network. Inf Sci (Ny) 520:389–399. https://doi.org/10.1016/j.ins.2020.02.026

    Article  Google Scholar 

  213. Deng L, Liu B, Li Z, Ma J, Li H (2023) Context-dependent multimodal sentiment analysis based on a complex attention mechanism. Electron 12(16):1–13. https://doi.org/10.3390/electronics12163516

    Article  Google Scholar 

  214. Königstein N (2023) Dynamic and context-dependent stock price prediction using attention modules and news sentiment. vol 5. no. 3–4. Springer International Publishing, https://doi.org/10.1007/s42521-023-00089-7.

  215. Sefara TJ, Rangata MR (2024) Domain-specific sentiment analysis of tweets using machine learning methods. Commun Comput Inf Sci 1985:468–482. https://doi.org/10.1007/978-3-031-48858-0_37

    Article  Google Scholar 

  216. Shaukat K et al (2020) Domain specific lexicon generation through sentiment analysis. Int J Emerg Technol Learn 15(9):190–204. https://doi.org/10.3991/ijet.v15i09.13109

    Article  Google Scholar 

  217. Kotelnikova AV, Vychegzhanin SV, Kotelnikov EV (2023) Cross-domain sentiment analysis based on small in-domain fine-tuning. IEEE Access 11(May):41061–41074. https://doi.org/10.1109/ACCESS.2023.3269720

    Article  Google Scholar 

  218. Complexity, “Retraction: Cross-Domain End-To-End Aspect-Based Sentiment Analysis with Domain-Dependent Embeddings (Complexity (2021) 2021 (5529312) https://doi.org/10.1155/2021/5529312),” Complexity, vol. 2024. pp. 1–1, Jan. 24, 2024. https://doi.org/10.1155/2024/9798167.

  219. Na M, Tingxin W, Xu J, Xiaohui L (2023) “Cross-domain text sentiment classification based on auxiliary classification networks. Xitong Fangzhen Xuebao/J Syst Simul 35(4):721–733. https://doi.org/10.16182/j.issn1004731x.joss.21-1283

    Article  Google Scholar 

  220. Brazdil P et al (2022) Semi-automatic approaches for exploiting shifter patterns in domain-specific sentiment analysis. Mathematics 10(18):1–24. https://doi.org/10.3390/math10183232

    Article  Google Scholar 

  221. Lee J, Frasincar F, Truşcǎ MM (2023) A cross-domain aspect-based sentiment classification by masking the domain-specific words. Proc ACM Symp Appl Comput. https://doi.org/10.1145/3555776.3577633

    Article  Google Scholar 

  222. Agarwal B (2023) Financial sentiment analysis model utilizing knowledge-base and domain-specific representation. Multimed Tools Appl 82(6):8899–8920. https://doi.org/10.1007/s11042-022-12181-y

    Article  Google Scholar 

  223. Zhao C, Wang S, Li D, Liu X, Yang X, Liu J (2021) Cross-domain sentiment classification via parameter transferring and attention sharing mechanism. Inf Sci (Ny) 578:281–296. https://doi.org/10.1016/j.ins.2021.07.001

    Article  MathSciNet  Google Scholar 

  224. Kong Y, Xu Z, Mei M (2023) Cross-domain sentiment analysis based on feature projection and multi-source attention in IoT. Sensors. https://doi.org/10.3390/s23167282

    Article  Google Scholar 

  225. Fu Y, Liu Y (2022) Contrastive transformer based domain adaptation for multi-source cross-domain sentiment classification. Knowl-Based Syst 245:108649. https://doi.org/10.1016/j.knosys.2022.108649

    Article  Google Scholar 

  226. Panahandeh Nigjeh M, Ghanbari S (2024) Leveraging ParsBERT for cross-domain polarity sentiment classification of Persian social media comments. Multimed. Tools Appl 83(4):10677–10694. https://doi.org/10.1007/s11042-023-16067-5

    Article  Google Scholar 

  227. Fan Y, Mi X, Nie Y (2024) Cross-domain discriminative subspace classification algorithm for review text sentiment recognition oriented e-commerce platforms. IEEE Trans Consum Electron 70(1):3455–3463. https://doi.org/10.1109/TCE.2024.3372503

    Article  Google Scholar 

  228. Jnoub N, Al Machot F, Klas W (2020) A domain independent classification model for sentiment analysis using neural models. Appl Sci. https://doi.org/10.3390/APP10186221

    Article  Google Scholar 

  229. Ahmed M, Chen Q, Li Z (2020) Constructing domain-dependent sentiment dictionary for sentiment analysis. Neural Comput Appl 32(18):14719–14732. https://doi.org/10.1007/s00521-020-04824-8

    Article  Google Scholar 

  230. Michelle P, Ruskanda PZ, Purwarianti A (2020) Development of domain-specific lexicon for aspect-based sentiment analysis. In: 2020 7th Int. Conf. Adv. Informatics Concepts, Theory Appl. ICAICTA 2020, pp 1–6. https://doi.org/10.1109/ICAICTA49861.2020.9429059

  231. Geethapriya A, Valli S (2021) An enhanced approach to map domain-specific words in cross-domain sentiment analysis. Inf Syst Front 23(3):791–805. https://doi.org/10.1007/s10796-020-10094-5

    Article  Google Scholar 

  232. Fiok K, Karwowski W, Gutierrez E, Wilamowski M (2021) Analysis of sentiment in tweets addressed to a single domain-specific Twitter account: Comparison of model performance and explainability of predictions. Expert Syst Appl 186:115771. https://doi.org/10.1016/j.eswa.2021.115771

    Article  Google Scholar 

  233. Mohamad Beigi O, Moattar MH (2021) Automatic construction of domain-specific sentiment lexicon for unsupervised domain adaptation and sentiment classification. Knowledge-Based Syst 213:106423. https://doi.org/10.1016/j.knosys.2020.106423

    Article  Google Scholar 

  234. Naznin F, Mahanta AK (2023) Techniques for improving the performance of unsupervised approach to sentiment analysis. Indones J Electr Eng Informatics 11(2):402–415. https://doi.org/10.52549/ijeei.v11i2.4187

    Article  Google Scholar 

  235. Singh S, Kaur H, Kanozia R, Kaur G (2023) Empirical analysis of supervised and unsupervised machine learning algorithms with aspect-based sentiment analysis. Appl Comput Syst 28(1):125–136. https://doi.org/10.2478/acss-2023-0012

    Article  Google Scholar 

  236. Tripathy A, De UC, Dash BB, Patra SS, Pattanayak BK, Pandey TN (2023) Sentiment clustering using the unsupervised machine learning approach. In: Proc. 2023 6th Int. Conf. Recent Trends Adv. Comput. ICRTAC 2023, pp 397–402. https://doi.org/10.1109/ICRTAC59277.2023.10480817

  237. Limboi S, Diosan L (2022) An unsupervised approach for Twitter Sentiment Analysis of USA 2020 Presidential Election. In: 16th Int. Conf. Innov. Intell. Syst. Appl. INISTA 2022, pp 1–6. https://doi.org/10.1109/INISTA55318.2022.9894264

  238. Prayoga NR et al (2020) Unsupervised twitter sentiment analysis on the revision of indonesian code law and the anti-corruption law using combination method of opinion word and agglomerative hierarchical clustering. Emit Int J Eng Technol 8(1):200–220. https://doi.org/10.24003/emitter.v8i1.477

    Article  Google Scholar 

  239. Wang W, Li B, Feng D, Zhang A, Wan S (2020) The OL-DAWE model: tweet polarity sentiment analysis with data augmentation. IEEE Access 8:40118–40128. https://doi.org/10.1109/ACCESS.2020.2976196

    Article  Google Scholar 

  240. Xiang R, Chersoni E, Lu Q, Huang CR, Li W, Long Y (2021) Lexical data augmentation for sentiment analysis. J Assoc Inf Sci Technol 72(11):1432–1447. https://doi.org/10.1002/asi.24493

    Article  Google Scholar 

  241. Wang L, Xu X, Liu C, Chen Z (2022) M-DA: a multifeature text data-augmentation model for improving accuracy of Chinese sentiment analysis. Sci Program 2022:1–13. https://doi.org/10.1155/2022/3264378

    Article  Google Scholar 

  242. Küçük D, Arıcı N (2024) Stance and sentiment analysis of health-related tweets with data augmentation. J Sci Ind Res (India) 83(4):381–391. https://doi.org/10.56042/jsir.v83i4.1012

    Article  Google Scholar 

  243. Taneja K, Vashishtha J, Ratnoo S (2023) Transformer based unsupervised learning approach for imbalanced text sentiment analysis of e-commerce reviews. Procedia Comput Sci 00(2023):2318–2331. https://doi.org/10.1016/j.procs.2024.04.220

    Article  Google Scholar 

  244. Badr H, Wanas N, Fayek M (2024) unsupervised domain adaptation via weighted sequential discriminative feature learning for sentiment analysis. Appl Sci. https://doi.org/10.3390/app14010406

    Article  Google Scholar 

  245. Liu S, Lee K, Lee I (2020) Document-level multi-topic sentiment classification of Email data with BiLSTM and data augmentation. Knowl-Based Syst 197:105918. https://doi.org/10.1016/j.knosys.2020.105918

    Article  Google Scholar 

  246. Xue J, Li Y, Li Z, Cui Y, Zhang S, Wang S (2023) A cross-domain generative data augmentation framework for aspect-based sentiment analysis. Electron. https://doi.org/10.3390/electronics12132949

    Article  Google Scholar 

  247. Sanagar S, Gupta D (2020) Unsupervised genre-based multidomain sentiment lexicon learning using corpus-generated polarity seed words. IEEE Access 8:118050–118071. https://doi.org/10.1109/ACCESS.2020.3005242

    Article  Google Scholar 

  248. Yadav A, Jha CK, Sharan A, Vaish V (2020) Sentiment analysis of financial news using unsupervised approach. Procedia Comput Sci 167(2019):589–598. https://doi.org/10.1016/j.procs.2020.03.325

    Article  Google Scholar 

  249. Viegas F, Alvim MS, Canuto S, Rosa T, Gonçalves MA, Rocha L (2020) Exploiting semantic relationships for unsupervised expansion of sentiment lexicons. Inf Syst 94:101606. https://doi.org/10.1016/j.is.2020.101606

    Article  Google Scholar 

  250. Wang B, He W, Yang Z, Xiong S (2020) An unsupervised sentiment classification method based on multi-level fuzzy computing and multi-criteria fusion. IEEE Access 8:145422–145434. https://doi.org/10.1109/ACCESS.2020.3014849

    Article  Google Scholar 

  251. Al-Ghuribi SM, Mohd Noah SA, Tiun S (2020) Unsupervised semantic approach of aspect-based sentiment analysis for large-scale user reviews. IEEE Access 8:218592–218613. https://doi.org/10.1109/ACCESS.2020.3042312

    Article  Google Scholar 

  252. Dai Y, Liu J, Zhang J, Fu H, Xu Z (2021) Unsupervised sentiment analysis by transferring multi-source knowledge. Cognit Comput 13(5):1185–1197. https://doi.org/10.1007/s12559-020-09792-8

    Article  Google Scholar 

  253. Vashishtha S, Susan S (2021) Highlighting keyphrases using senti-scoring and fuzzy entropy for unsupervised sentiment analysis. Expert Syst Appl 169:114323. https://doi.org/10.1016/j.eswa.2020.114323

    Article  Google Scholar 

  254. Mukhtar N, Abid Khan M, Chiragh N, Nazir S, Ullah Jan A (2022) An Intelligent unsupervised approach for handling context-dependent words in Urdu sentiment analysis. ACM Trans Asian Low-Resource Lang Inf Process. https://doi.org/10.1145/3510830

    Article  Google Scholar 

  255. Jia X, Li C, Zeng M, Wang L, Mi Q (2023) An improved unified domain adversarial category-wise alignment network for unsupervised cross-domain sentiment classification. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2023.107108

    Article  Google Scholar 

  256. Ding F, Kang X, Nakagawa S, Ren F (2023) Neuro or symbolic? Fine-tuned transformer with unsupervised LDA topic clustering for text sentiment analysis. IEEE Trans Affect Comput 15(2):1–15. https://doi.org/10.1109/taffc.2023.3279318

    Article  Google Scholar 

  257. Wang Y, Han H, He X, Zhai R (2023) A two-stage unsupervised sentiment analysis method. Multimed Tools Appl 82(17):26527–26544. https://doi.org/10.1007/s11042-023-14864-6

    Article  Google Scholar 

  258. Wang Z, He S, Xu G, Ren M (2024) Will sentiment analysis need subculture? A new data augmentation approach. J Assoc Inf Sci Technol 75(6):655–670. https://doi.org/10.1002/asi.24872

    Article  Google Scholar 

  259. Li G, Wang H, Ding Y, Zhou K, Yan X (2023) Data augmentation for aspect-based sentiment analysis. Int J Mach Learn Cybern 14(1):125–133. https://doi.org/10.1007/s13042-022-01535-5

    Article  Google Scholar 

  260. Chao G, Liu J, Wang M, Chu D (2023) Data augmentation for sentiment classification with semantic preservation and diversity. Knowl-Based Syst. https://doi.org/10.1016/j.knosys.2023.111038

    Article  Google Scholar 

  261. Luo J, Bouazizi M, Ohtsuki T (2021) Data augmentation for sentiment analysis using sentence compression-based SeqGAN with data screening. IEEE Access 9:99922–99931. https://doi.org/10.1109/ACCESS.2021.3094023

    Article  Google Scholar 

  262. Abonizio HQ, Paraiso EC, Barbon S (2022) Toward text data augmentation for sentiment analysis. IEEE Trans Artif Intell 3(5):657–668. https://doi.org/10.1109/TAI.2021.3114390

    Article  Google Scholar 

  263. Koch A, Huynh TLD, Wang M (2024) News sentiment and international equity markets during BREXIT period: a textual and connectedness analysis. Int J Financ Econ 29(1):5–34. https://doi.org/10.1002/ijfe.2635

    Article  Google Scholar 

  264. Dey P, Dey S (2023) Sentiment analysis of text and emoji data for twitter network. Al Bahir J Eng Pure Sci. https://doi.org/10.55810/2313-0083.1034

    Article  Google Scholar 

  265. Kumar TP, Vardhan BV (2022) A pragmatic approach to emoji based multimodal sentiment analysis using deep neural networks. J Algebr Stat 13(1):473–482

    Google Scholar 

  266. Velampalli S, Muniyappa C, Saxena A (2022) Performance evaluation of sentiment analysis on text and emoji data using end-to-end, transfer learning, distributed and explainable AI models. J Adv Inf Technol 13(2):167–172. https://doi.org/10.12720/jait.13.2.167-172

    Article  Google Scholar 

  267. Usiju Ijairi M, Abdullahi M, Hayatu Hassan I (2023) Sentiment classification of tweets with explicit word negations and emoji using deep learning. Int J Softw Eng Comput Syst 9(2):93–104. https://doi.org/10.15282/ijsecs.9.2.2023.3.0114

    Article  Google Scholar 

  268. Jagadishwari V, Indulekha A, Raghu K, Harshini P (2021) Sentiment analysis of social media text-emoticon post with machine learning models contribution title. J Phys Conf Ser. https://doi.org/10.1088/1742-6596/2070/1/012079

    Article  Google Scholar 

  269. Fernández-Gavilanes M, Costa-Montenegro E, García-Méndez S, González-Castaño FJ, Juncal-Martínez J (2021) Evaluation of online emoji description resources for sentiment analysis purposes. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2021.115279

    Article  Google Scholar 

  270. Alfreihat M, Almousa O, Tashtoush Y, AlSobeh A, Mansour K, Migdady H (2024) Emo-SL framework: emoji sentiment lexicon using text-based features and machine learning for sentiment analysis. IEEE Access 12:81793–81812. https://doi.org/10.1109/ACCESS.2024.3382836

    Article  Google Scholar 

  271. Yinxia LOU, Zhang Y, Fei LI, Qian T, Donghong JI (2020) Emoji-based sentiment analysis using attention networks. ACM Trans Asian Low-Resource Lang Inf Process. https://doi.org/10.1145/3389035

    Article  Google Scholar 

  272. Chen Z et al (2021) Emoji-powered sentiment and emotion detection from software developers’ communication data. ACM Trans Softw Eng Methodol. https://doi.org/10.1145/3424308

    Article  Google Scholar 

  273. Kastrati M, Kastrati Z, Shariq Imran A, Biba M (2024) Leveraging distant supervision and deep learning for twitter sentiment and emotion classification. J Intell Inf Syst. https://doi.org/10.1007/s10844-024-00845-0

    Article  Google Scholar 

  274. Mahimaidoss NK, Sathianesan GW (2024) Emotion identification in twitter using deep learning based methodology. J Electr Eng Technol 19(3):1891–1908. https://doi.org/10.1007/s42835-023-01683-w

    Article  Google Scholar 

  275. Che SP, Wang X, Zhang S, Kim JH (2024) Effect of daily new cases of COVID-19 on public sentiment and concern: deep learning-based sentiment classification and semantic network analysis. J Public Heal 32(3):509–528. https://doi.org/10.1007/s10389-023-01833-4

    Article  Google Scholar 

  276. Srinivasarao U, Sharaff A (2024) Sentiment analysis from email pattern using feature selection algorithm. Expert Syst 41(2):1–22. https://doi.org/10.1111/exsy.12867

    Article  Google Scholar 

  277. Kejriwal R, Garg M, Sarin G (2024) Predict financial text sentiment: an empirical examination. Vilakshan - XIMB J Manag 21(1):44–54. https://doi.org/10.1108/xjm-06-2022-0148

    Article  Google Scholar 

  278. Li Z, Zou Z (2024) Punctuation and lexicon aid representation: a hybrid model for short text sentiment analysis on social media platform. J King Saud Univ Comput Inf Sci 36(3):102010. https://doi.org/10.1016/j.jksuci.2024.102010

    Article  Google Scholar 

  279. Harris M, Jacobson J, Provetti A (2024) Sentiment and time-series analysis of direct-message conversations. Forensic Sci Int Digit Investig 49:301753. https://doi.org/10.1016/j.fsidi.2024.301753

    Article  Google Scholar 

  280. Almohanadi A, Yokoyama S (2023) Emotion mapping: sentiment analysis using emoji in twitter data from Japan in the COVID-19 Era. In: Proc. 2023 IEEE/ACM Int. Conf. Adv. Soc. Networks Anal. Mining, ASONAM 2023, pp 666–669. https://doi.org/10.1145/3625007.3627511

  281. Chen J, Yao Z, Zhao S, Zhang Y (2023) Fusion pre-trained emoji feature enhancement for sentiment analysis. ACM Trans Asian Low-Resource Lang Inf Process. https://doi.org/10.1145/3578582

    Article  Google Scholar 

  282. Maity K, Saha S, Bhattacharyya P (2023) Emoji, sentiment and emotion aided cyberbullying detection in Hinglish. IEEE Trans Comput Soc Syst 10(5):2411–2420. https://doi.org/10.1109/TCSS.2022.3183046

    Article  Google Scholar 

  283. Liu C et al (2021) Improving sentiment analysis accuracy with emoji embedding. J Saf Sci Resil 2(4):246–252. https://doi.org/10.1016/j.jnlssr.2021.10.003

    Article  Google Scholar 

  284. Wankhade M, Rao ACS, Kulkarni C (2022) A survey on sentiment analysis methods, applications, and challenges. Artif Intell Rev. https://doi.org/10.1007/s10462-022-10144-1

    Article  Google Scholar 

  285. Kumar A, Singh JP (2019) Demonetization in India: good or bad in context of social media. SSRN Electron J. https://doi.org/10.2139/ssrn.3349021

    Article  Google Scholar 

  286. Park S, Kim Y (2016) Building thesaurus lexicon using dictionary-based approach for sentiment classification. In: 2016 IEEE/ACIS 14th Int. Conf. Softw. Eng. Res. Manag. Appl. SERA 2016, pp 39–44. https://doi.org/10.1109/SERA.2016.7516126.

  287. Littman ML, Turney PD (2003) Measuring praise and criticism: inference of semantic orientation from association. ACM Trans Inf Syst 21(4):315–346

    Article  Google Scholar 

  288. Hu N, Bose I, Koh NS, Liu L (2012) Manipulation of online reviews: An analysis of ratings, readability, and sentiments. Decis Support Syst 52(3):674–684. https://doi.org/10.1016/j.dss.2011.11.002

    Article  Google Scholar 

  289. Cao Q, Duan W, Gan Q (2011) Exploring determinants of voting for the ‘helpfulness’ of online user reviews: a text mining approach. Decis Support Syst 50(2):511–521. https://doi.org/10.1016/j.dss.2010.11.009

    Article  Google Scholar 

  290. Maks I, Vossen P (2011) A verb lexicon model for deep sentiment analysis and opinion mining Applications. In: Proc. Annu. Meet. Assoc. Comput. Linguist., pp 10–18.

  291. Bordes A, Glorot X, Weston J, Bengio Y (2014) A semantic matching energy function for learning with multi-relational data: Application to word-sense disambiguation. Mach Learn 94(2):233–259. https://doi.org/10.1007/s10994-013-5363-6

    Article  MathSciNet  Google Scholar 

  292. Bhaskar J, Sruthi K, Nedungadi P (2015) Hybrid approach for emotion classification of audio conversation based on text and speech mining. In: Procedia Computer Science, Elsevier Masson SAS, 2015, pp 635–643. https://doi.org/10.1016/j.procs.2015.02.112.

  293. Baccianella S, Esuli A, Sebastiani F (2010) SENTIWORDNET 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In: Proc. 7th Int. Conf. Lang. Resour. Eval. Lr. 2010, vol 0. pp 2200–2204.

  294. Pang B, Lee L (2004) A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In: Proc. Annu. Meet. Assoc. Comput. Linguist., pp 271–278.

  295. Titov I, McDonald R (2008) Modeling online reviews with multi-grain topic models. In: Proceeding 17th Int. Conf. World Wide Web 2008, WWW’08, pp 111–120. https://doi.org/10.1145/1367497.1367513

  296. Dang Y, Zhang Y, Chen H (2010) A lexicon-enhanced method for sentiment classification: an experiment on online product reviews. IEEE Intell Syst 25(4):46–53. https://doi.org/10.1109/MIS.2009.105

    Article  Google Scholar 

  297. Rushdi Saleh M, Martín-Valdivia MT, Montejo-Ráez A, Ureña-López LA (2011) Experiments with SVM to classify opinions in different domains. Expert Syst Appl 38(12):14799–14804. https://doi.org/10.1016/j.eswa.2011.05.070

    Article  Google Scholar 

  298. Bai X (2011) Predicting consumer sentiments from online text. Decis Support Syst 50(4):732–742. https://doi.org/10.1016/j.dss.2010.08.024

    Article  Google Scholar 

  299. Zhang Z, Ye Q, Zhang Z, Li Y (2011) Sentiment classification of internet restaurant reviews written in Cantonese. Expert Syst Appl 38(6):7674–7682. https://doi.org/10.1016/j.eswa.2010.12.147

    Article  Google Scholar 

  300. Tan LKW, Na JC, Theng YL, Chang K (2012) Phrase-level sentiment polarity classification using rule-based typed dependencies and additional complex phrases consideration. J Comput Sci Technol 27(3):650–666. https://doi.org/10.1007/s11390-012-1251-y

    Article  Google Scholar 

  301. Wang G, Sun J, Ma J, Xu K, Gu J (2014) Sentiment classification: The contribution of ensemble learning. Decis Support Syst 57(1):77–93. https://doi.org/10.1016/j.dss.2013.08.002

    Article  Google Scholar 

  302. Moraes R, Valiati JF, Gavião Neto WP (2013) Document-level sentiment classification: an empirical comparison between SVM and ANN. Expert Syst Appl 40(2):621–633. https://doi.org/10.1016/j.eswa.2012.07.059

    Article  Google Scholar 

  303. Ghiassi M, Skinner J, Zimbra D (2013) Twitter brand sentiment analysis: a hybrid system using n-gram analysis and dynamic artificial neural network. Expert Syst Appl 40(16):6266–6282. https://doi.org/10.1016/j.eswa.2013.05.057

    Article  Google Scholar 

  304. Thelwall M, Buckley K, Paltoglou G (2012) Sentiment strength detection for the social web. J Am Soc Inf Sci Technol 63(1):163–173. https://doi.org/10.1002/asi.21662

    Article  Google Scholar 

  305. Akhtar MS, Gupta D, Ekbal A, Bhattacharyya P (2017) Feature selection and ensemble construction: a two-step method for aspect based sentiment analysis. Knowledge-Based Syst 125:116–135. https://doi.org/10.1016/j.knosys.2017.03.020

    Article  Google Scholar 

  306. Onal AMEBI, Acarturk C (2017) Does the Strength of Sentiment Matter? A Regression Based Approach on Turkish Social Media. In: Lecture Notes in Computer Science, vol 10260. Cham: Springer International Publishing, https://doi.org/10.1007/978-3-319-59569-6

  307. Prabowo R, Thelwall M (2009) Sentiment analysis: A combined approach. J Informetr 3(2):143–157. https://doi.org/10.1016/j.joi.2009.01.003

    Article  Google Scholar 

  308. Abbasi A, France S, Zhang Z, Chen H (2011) Selecting attributes for sentiment classification using feature relation networks. IEEE Trans Knowl Data Eng 23(3):447–462. https://doi.org/10.1109/TKDE.2010.110

    Article  Google Scholar 

  309. Xia R, Zong C, Li S (2011) Ensemble of feature sets and classification algorithms for sentiment classification. Inf Sci (Ny) 181(6):1138–1152. https://doi.org/10.1016/j.ins.2010.11.023

    Article  Google Scholar 

  310. Chen LS, Liu CH, Chiu HJ (2011) A neural network based approach for sentiment classification in the blogosphere. J Informetr 5(2):313–322. https://doi.org/10.1016/j.joi.2011.01.003

    Article  Google Scholar 

  311. Balahur A, Hermida JM, Montoyo A (2012) Detecting implicit expressions of emotion in text: a comparative analysis. Decis Support Syst 53(4):742–753. https://doi.org/10.1016/j.dss.2012.05.024

    Article  Google Scholar 

  312. Abdul-Mageed M, Diab M, Kübler S (2014) SAMAR: Subjectivity and sentiment analysis for Arabic social media. Comput Speech Lang 28(1):20–37. https://doi.org/10.1016/j.csl.2013.03.001

    Article  Google Scholar 

  313. Ortigosa A, Martín JM, Carro RM (2014) Sentiment analysis in Facebook and its application to e-learning. Comput Human Behav 31(1):527–541. https://doi.org/10.1016/j.chb.2013.05.024

    Article  Google Scholar 

  314. Vo DT, Zhang Y (2015) Target-dependent twitter sentiment classification with rich automatic features. IJCAI Int Jt Conf Artif Intell 2015:1347–1353

    Google Scholar 

  315. Rill S, Reinel D, Scheidt J, Zicari RV (2014) PoliTwi: Early detection of emerging political topics on twitter and the impact on concept-level sentiment analysis. Knowledge-Based Syst 69(1):24–33. https://doi.org/10.1016/j.knosys.2014.05.008

    Article  Google Scholar 

  316. Ahmad M, Aftab S, Bashir MS, Hameed N (2018) Sentiment analysis using SVM: a systematic literature review. Int J Adv Comput Sci Appl 9(2):182–188. https://doi.org/10.14569/IJACSA.2018.090226

    Article  Google Scholar 

  317. Yenduri G et al (2024) GPT (Generative Pre-Trained Transformer) - a comprehensive review on enabling technologies, potential applications, emerging challenges, and future directions. IEEE Access 12:54608–54649. https://doi.org/10.1109/ACCESS.2024.3389497

    Article  Google Scholar 

  318. Yitong JI (2024) Impact of temporal context on recommender systems along global timeline. Nanyang Technological University, https://doi.org/10.32657/10356/173690

  319. Yuan H, Bi J, Li S, Zhang J, Zhou MC (2024) An improved LSTM-based prediction approach for resources and workload in large-scale data centers. IEEE Internet Things J. https://doi.org/10.1109/JIOT.2024.3383512

    Article  Google Scholar 

  320. Alshawi AAA, Tanha J, Balafar MA (2024) An attention-based convolutional recurrent neural networks for scene text recognition. IEEE Access 12:8123–8134. https://doi.org/10.1109/ACCESS.2024.3352748

    Article  Google Scholar 

  321. Kowlagi N et al (2023) A stronger baseline for automatic pfirrmann grading of lumbar spine Mri using deep learning. In: Proc. - Int. Symp. Biomed. Imaging, vol 2023. https://doi.org/10.1109/ISBI53787.2023.10230814

  322. Vaswani A et al (2017) Attention is all you need. Adv Neural Inf Process Syst 2017:5999–6009

    Google Scholar 

  323. Reza S, Ferreira MC, Machado JJM, Tavares JMRS (2022) A multi-head attention-based transformer model for traffic flow forecasting with a comparative analysis to recurrent neural networks. Expert Syst Appl 202:117275. https://doi.org/10.1016/j.eswa.2022.117275

    Article  Google Scholar 

  324. Jim JR, Talukder MAR, Malakar P, Kabir MM, Nur K, Mridha MF (2024) Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Nat Lang Process J 6:100059. https://doi.org/10.1016/j.nlp.2024.100059

    Article  Google Scholar 

  325. Cheruku R, Hussain K, Kavati I, Reddy AM, Reddy KS (2024) Sentiment classification with modified RoBERTa and recurrent neural networks. Multimed Tools Appl 83(10):29399–29417. https://doi.org/10.1007/s11042-023-16833-5

    Article  Google Scholar 

  326. Jain M, Jain N, Lee YH, Winkler S, Dev S (2023) A survey on transfer learning. IEEE Trans Knowl Data Eng 2023:6005–6008. https://doi.org/10.1109/IGARSS52108.2023.10281791

    Article  Google Scholar 

  327. Raptis S, Ilioudis C, Theodorou K (2024) From pixels to prognosis: unveiling radiomics models with SHAP and LIME for enhanced interpretability. Biomed Phys Eng Express. https://doi.org/10.1088/2057-1976/ad34db

    Article  Google Scholar 

  328. Ghafouri A, Abbasi M, Naderi H (2023) AriaBERT: a pre-trained Persian BERT model for natural language understanding. doi.org/https://doi.org/10.21203/rs.3.rs-3558473/v1

  329. Shreyashree S, Sunagar P, Rajarajeswari S, Kanavalli A (2022) A literature review on bidirectional encoder representations from transformers. vol 336. Springer Singapore, https://doi.org/10.1007/978-981-16-6723-7_23

  330. Broscheit S (2019) Investigating entity knowledge in BERT with simple neural end-to-end entity linking. In: CoNLL 2019 - 23rd Conf. Comput. Nat. Lang. Learn. Proc. Conf., pp 677–685. https://doi.org/10.18653/v1/k19-1063

  331. Liu Y et al (2019) RoBERTa: a robustly optimized BERT pretraining approach. [Online]. Available: http://arxiv.org/abs/1907.11692

  332. Yang Z, Dai Z, Yang Y, Carbonell J, Salakhutdinov R, Le QV (2019) XLNet: Generalized autoregressive pretraining for language understanding. Adv Neural Inf Process Syst 32:1–11

    Google Scholar 

  333. Clark K, Luong MT, Le QV, Manning CD (2020) Electra: Pre-training text encoders as discriminators rather than generators. In: 8th Int. Conf. Learn. Represent. ICLR 2020, pp 1–18.

  334. Sanh V, Debut L, Chaumond J, Wolf T (2019) DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. pp 2–6. [Online]. Available: http://arxiv.org/abs/1910.01108

  335. Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R (2020) Albert: a Lite Bert for Self-Supervised Learning of Language Representations. In: 8th Int. Conf. Learn. Represent. ICLR 2020, pp 1–17.

  336. Raffel C et al (2020) Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21:1–67

    MathSciNet  Google Scholar 

  337. Budzianowski P, Vulić I (2019) Hello, It’s GPT-2 - How can I help you? Towards the use of pretrained language models for task-oriented dialogue systems. In: EMNLP-IJCNLP 2019 - Proc. 3rd Work. Neural Gener. Transl., pp 15–22. https://doi.org/10.18653/v1/d19-5602

  338. Carvalho J, Plastino A (2021) On the evaluation and combination of state-of-the-art features in Twitter sentiment analysis, vol 54. no. 3. Springer Netherlands, https://doi.org/10.1007/s10462-020-09895-6

  339. Lochter JV, Zanetti RF, Reller D, Almeida TA (2016) Short text opinion detection using ensemble of classifiers and semantic indexing. Expert Syst Appl 62(November):243–249. https://doi.org/10.1016/j.eswa.2016.06.025

    Article  Google Scholar 

  340. Zarisfi Kermani F, Sadeghi F, Eslami E (2020) Solving the twitter sentiment analysis problem based on a machine learning-based approach. Evol Intell 13(3):381–398. https://doi.org/10.1007/s12065-019-00301-x

    Article  Google Scholar 

  341. Speriosu M, Sudan N, Upadhyay S, Baldridge J (2011) Twitter polarity classification with label propagation over lexical links and the follower graph. In: Work. Unsupervised Learn. NLP 2011 Conf. Empir. Methods Nat. Lang. Process. EMNLP 2011 - Proc., pp 53–63.

  342. Gonçalves P et al (2020) Bazinga! Caracterizando e Detectando Sarcasmo e Ironia no Twitter. https://doi.org/10.5753/brasnam.2015.6778

  343. Chen L, Wang W, Nagarajan M, Wang S, Sheth AP (2012) Extracting diverse sentiment expressions with target-dependent polarity from Twitter. In: ICWSM 2012 - Proc. 6th Int. AAAI Conf. Weblogs Soc. Media, pp 50–57. https://doi.org/10.1609/icwsm.v6i1.14252

  344. Argueta C, Chen YS (2014) Multi-lingual sentiment analysis of social data based on emotion-bearing patterns. In: Soc. 2014 - 2nd Work. Nat. Lang. Process. Soc. Media, conjunction with COLING 2014, no. 101, pp 38–43. https://doi.org/10.3115/v1/w14-5906

  345. Basnin N, Nahar N, Anika FA, Hossain MS, Andersson K (2021) Deep learning approach to classify Parkinson’s disease from MRI samples, vol 12960. LNAI. Springer International Publishing. https://doi.org/10.1007/978-3-030-86993-9_48

  346. Pawar KK, Deshmukh RR (2015) Twitter sentiment classification on sanders data using hybrid approach. IOSR J Comput Eng Ver I 17(4):2278–2661. https://doi.org/10.9790/0661-1741118123

    Article  Google Scholar 

  347. Nakov P, Kozareva Z, Ritter A, Rosenthal S, Stoyanov V, Wilson T (2013) SemEval-2013 task 2: Sentiment analysis in Twitter. In: *SEM 2013 - 2nd Jt. Conf. Lex. Comput. Semant., vol 2. no. SemEval pp 312–320.

  348. Ghosh A et al (2015) SemEval-2015 Task 11: sentiment analysis of figurative language in twitter. In: SemEval 2015 - 9th Int. Work. Semant. Eval. co-located with 2015 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. NAACL-HLT 2015 - Proc., no. SemEval pp 470–478. https://doi.org/10.18653/v1/s15-2080

  349. Rosenthal S, Farra N, Nakov P (2017) SemEval-2017 Task 4: sentiment analysis in twitter. In: Proc. Annu. Meet. Assoc. Comput. Linguist., pp 502–518. https://doi.org/10.18653/v1/s17-2088.

  350. Mohammad SM, Bravo-Marquez F, Salameh M, Kiritchenko S (2018) SemEval-2018 Task 1: Affect in tweets. In: NAACL HLT 2018 - Int. Work. Semant. Eval. SemEval 2018 - Proc. 12th Work., pp 1–17. https://doi.org/10.18653/v1/s18-1001

  351. Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision. Processing, vol., pp 1–6.

  352. Saif H, Fernandez M, He Y, Alani H (2013) Evaluation datasets for Twitter sentiment analysis a survey and a new dataset, the STS-Gold. In: CEUR Workshop Proc., vol 1096. pp 9–21

  353. Dong L, Wei F, Tan C, Tang D, Zhou M, Xu K (2014) Adaptive recursive neural network for target-dependent twitter sentiment classification. In: 52nd Annu. Meet. Assoc. Comput. Linguist. ACL 2014 - Proc. Conf., vol 2. pp 49–54. https://doi.org/10.3115/v1/p14-2009

  354. Hutto CJ, Gilbert E (2014) VADER: a parsimonious rule-based model for sentiment analysis of social media text. In: Proc. 8th Int. Conf. Weblogs Soc. Media, ICWSM 2014, no. May, pp 216–225. https://doi.org/10.1609/icwsm.v8i1.14550

  355. Li Q et al (2022) A survey on text classification: from traditional to deep learning. ACM Trans Intell Syst Technol. https://doi.org/10.1145/3495162

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design and implementation of the research, analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Hassan Naderi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashiri, H., Naderi, H. Comprehensive review and comparative analysis of transformer models in sentiment analysis. Knowl Inf Syst 66, 7305–7361 (2024). https://doi.org/10.1007/s10115-024-02214-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10115-024-02214-3

Keywords