
MIT Open Access Articles

If It Looks Like a Spammer and Behaves 
Like a Spammer, It Must Be a Spammer

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Almaatouq, Abdullah et al. “If It Looks like a Spammer and Behaves like a Spammer, 
It Must Be a Spammer: Analysis and Detection of Microblogging Spam Accounts.” International 
Journal of Information Security 15.5 (2016): 475–491.

As Published: http://dx.doi.org/10.1007/s10207-016-0321-5

Publisher: Springer Berlin Heidelberg

Persistent URL: http://hdl.handle.net/1721.1/104345

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/104345
http://creativecommons.org/licenses/by-nc-sa/4.0/


Noname manuscript No.
(will be inserted by the editor)

If It Looks Like a Spammer and Behaves Like a Spammer, It Must Be a
Spammer
Analysis and Detection of Microblogging Spam Accounts

Abdullah Almaatouq ∗ · Erez Shmueli ∗ · Mariam Nouh · Ahmad Alabdulkareem ·
Vivek K. Singh · Mansour Alsaleh · Abdulrahman Alarifi · Anas Alfaris · Alex
‘Sandy’ Pentland

Received: date / Accepted: date

Abstract Spam in Online Social Networks (OSNs) is a sys-
temic problem that imposes a threat to these services in terms
of undermining their value to advertisers and potential in-
vestors, as well as negatively affecting users’ engagement.
As spammers continuously keep creating newer accounts
and evasive techniques upon being caught, a deeper under-
standing of their spamming strategies is vital to the design
of future social media defense mechanisms. In this work,
we present a unique analysis of spam accounts in OSNs
viewed through the lens of their behavioral characteristics.
Our analysis includes over 100 million messages collected
from Twitter over the course of one month. We show that
there exist two behaviorally distinct categories of spammers
and that they employ different spamming strategies. Then,
we illustrate how users in these two categories demonstrate
different individual properties as well as social interaction
patterns. Finally, we analyze the detectability of spam ac-
counts with respect to three categories of features, namely,
content attributes, social interactions, and profile properties.
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1 Introduction

Spam exists across many types of electronic communica-
tion platforms, including email, web discussion forums, text
messages (SMS), and social media. Today, as social media
continues to grow in popularity, spammers are increasingly
abusing such media for spamming purposes. According to a
recent study [33], there was a 355% growth in social spam
during the first half of 2013. Twitter company’s initial pub-
lic offering (IPO) filing indicates spam as a major threat in
terms of undermining their value to advertisers and poten-
tial investors, as well as negatively affecting users’ engage-
ment [50].

While there is a growing literature on social media in
terms of developing tools for spam detection [42,53,30] and
analyzing spam trends [58,59,45], spammers continue to
evolve and change their penetration techniques. Therefore,
there is a continuous need for understanding the evolving
and diverse properties of malicious accounts in order to com-
bat them properly [33,50].

In this paper, we present an empirical analysis of sus-
pended spam accounts on Twitter, in terms of profile prop-
erties and social interactions. To perform the study, we col-
lected over 100 million tweets over the course of one month
(from March 5, 2013 to April 2, 2013) generated by approx-
imately 30 million distinct user accounts (see Section 3). In
total, over 7% of our dataset accounts are suspended or re-
moved accounts due in part to abusive behaviors and other
violations.

Our preliminary analysis for comparing the behavioral
properties of normal and malicious users shows a tendency
for a bi-modal distribution in the case of spam accounts (see
Section 4). Bi-modal distributions commonly arise as a mix-
ture of uni-modal distributions corresponding to a mixture of
populations. Accordingly, we separate the sub-populations
within spammers, using Gaussian Mixture Models (GMM),
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resulting in two distinct sub-populations (categories) of spam-
mers.

We then investigate the individual properties as well as
the social interaction patterns of the two categories of spam-
mers (see Section 5). We observe that the two categories ex-
hibit different spamming patterns and employ distinct strate-
gies for reaching their victims. More specifically, by analyz-
ing the spam accounts profile attributes, we identify a clus-
ter of malicious accounts that seems to be originally created
and customized by legitimate users, whereas the other clus-
ter deviates from the baseline significantly. Also, through
network analysis of multiple social interactions, we reveal a
set of diverse strategies employed by spammers for reach-
ing audiences. We focus on the mention function as it is one
of the most common ways in which spammers engage with
users, bypassing any requirement of sharing a social connec-
tion (i.e., follow/following relationship) with a victim.

We analyze the detectability of spam accounts with re-
spect to three categories of features, namely, content attributes,
social interactions, and profile properties (see Section 6).
The goal is to highlight the importance of behavioral charac-
teristics (i.e., profile and social interactions) as an enabling
methodology for the detection of malicious users in OSNs.
The conclusion and future work of our study are discussed
in Section 8. In summary we frame our contributions as fol-
lows:

– We categorize spam accounts based on their behavioral
properties and find that Twitter spammers belong to two
broad categories.

– We analyze the different properties of spam accounts in
terms of their profile attributes and use the attributes of
legitimate accounts as a baseline.

– Through network analysis of multiple social interactions,
we reveal a set of diverse strategies employed by spam-
mers for reaching audiences.

– By examining the detectability of spam accounts with re-
spect to multiple categories of features, we highlight the
importance of behavioral characteristic as an enabling
methodology for OSNs spam detection.

Finally, we note that a portion of this paper has appeared
previously as a conference publication [2]. Our main contri-
butions for the journal version include highlighting the im-
portance of behavioral characteristic as an enabling method-
ology for OSNs spam detection, adding more discussion,
references, as well as in-depth of analysis.

2 Background

Twitter is a micro-blogging platform and an Online Social
Network (OSN), where users are able to send tweets (i.e.,
short text messages limited to 140 characters). According to

a recent study, Twitter is the fastest growing social platform
in the world [23]. In 2013, Twitter estimated the number
of active users at over 200 million, generating 500 million
tweets per day [50].

Twitter spam is a systemic problem [45]. While tradi-
tional email spam usually consists of spreading bulks of un-
solicited messages to numerous recipients, spam on Twitter
does not necessarily comply to the volume constraint, as a
single spam message on Twitter is capable of propagating
through social interaction functions and reach a wide au-
dience. In addition, previous studies showed that the largest
suspended Twitter accounts campaigns directed users via af-
filiate links to some reputable websites that generate income
on a purchase, such as Amazon [45]. Such findings blur the
line about what constitutes as OSN spam. According to the
“Twitter Rules”, what constitutes spamming will evolve as a
response to new tactics employed by spammers [49]. Some
of the suspicious activities that Twitter considers as indica-
tions for spam [49] include: (1) aggressive friending; (2) cre-
ating false or misleading content; (3) spreading malicious
links; and (4) trading followers.

Spam content can reach legitimate users through the fol-
lowing functions: i) home timeline: a stream showing all
tweets from those being followed by the user or posts that
contain @mention requiring no prior follow relationship; ii)
search timeline: a stream of messages that matches a search
query; iii) hashtags: tags used to mark tweets with keywords
or topics by incorporating the symbol # prior to the relevant
phrase (very popular hashtags are called trending topics; iv)
profile bio: spam accounts generate large amounts of rela-
tionships and favorite random tweets from legitimate users
with the hope that victims would view the spammer account
profile which often contains a URL embedded in its bio or
description; and v) direct messages: private tweets that are
sent between two users.

Accounts distributing spam are usually in the form of: i)
fraudulent accounts that are created solely for the purpose of
sending spam; ii) compromised accounts created by legiti-
mate users whose credentials have been stolen by spammers;
and iii) legitimate users posting spam content. While, multi-
ple previous studies focused on fraudulent accounts [45,46],
the compromised accounts are more valuable to spammers
as they are relatively harder to detect due to their associated
history and network relationships. On the other hand, fraud-
ulent accounts exhibit a higher anomalous behavior at the
account level, and hence are easier for detection [18].

3 Datasets

Our Twitter dataset consists of 113,609,247 tweets, gener-
ated by 30,391,083 distinct users, collected during a one
month period from March 5th, 2013 to April 2nd, 2013 us-
ing the Twitter public stream APIs [48]. For each tweet,
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Fig. 1 Tweets received per day. On average, we receive 4 million tweets per day. We lack complete data for some days due to network outages,
updates to Twitter’s API, and instability of the collection infrastructure

we retrieve its associated attributes (e.g., tweet text, cre-
ation date, client used, etc.) as well as information tied to
the account who posted the tweet (e.g., the account’s num-
ber of following, followers, date created, etc.). On average,
we receive over 4 million tweets per day. We lack data for
some days due to network outages, updates to Twitter’s API,
and instability of the collection infrastructure (using Ama-
zon EC2 instances). A summary of tweets collected each
day and outage periods is shown in Figure 1.

In order to label spammer accounts in our dataset, we
rely on Twitter’s account suspension algorithm described
in [45]. Given that the implementation of the suspension al-
gorithm is not publicly available, we verify whether an ac-
count has been flagged as spam by checking the user’s pro-
file page. In case an account has been suspended or removed,
the crawler request will be redirected to a page describing
the user statues (i.e., suspended or does not exist). While all
of the removed/suspended user’s information is no longer
available through the Twitter’s API, we were able to recon-
struct their information based on the collected sample. In to-
tal, over 7% of our dataset are suspended/removed accounts.
As we rely on Twitter suspension mechanism, this datasets
contains caught spam accounts on Twitter by the suspension
mechanism, where uncaught accounts are treated as legiti-
mate users. Also, Twitter’s policy page states that other ac-
tivities such as publishing malicious links, selling usernames
and using obscene or pornographic images may also result
in suspension or deletion [49]. Also, removed accounts may
include users that deactivated their accounts during the data
collection period, which will cause them to be treated as
spam accounts in our analyses. Previous study [45] validated
that the vast majority (i.e., 93% true-positive rate) of suspen-
sions are rooted in spamming behaviors and that Twitter’s
suspension algorithm has false negative-rate bound of +/-
3.3% at 95% confidence intervals.

4 Identifying Sub-populations

The results of the initial analysis to compare the collective
tweeting patterns and social behavior of normal and mali-
cious users showed tendency for bi-modality in the case of
spam accounts. This was less evident in the case of legiti-
mate users (see Figure 2). This pattern occurs across mul-
tiple attributes (i.e., tweets count, favorites count, followers
count, etc.). The bi-modal distributions commonly arises as
a mixture of uni-modal distributions corresponding to mix-
ture of populations. Accordingly, we separated the sub pop-
ulations within spammers, using Gaussian Mixture Models
(GMM), in order to reveal distinct spamming strategies and
behaviors.

In order to identify subsets of malicious accounts, we
use Gaussian Mixture Models (GMM). GMM is a proba-
bilistic model that assumes that data points are generated
from a mixture of a finite number of Gaussian distributions
with unknown parameters. To determine the number of com-
ponents (i.e., sub-populations or clusters) we fit multiple
GMMs with different numbers of Gaussians and then calcu-
late the Bayesian Information Criteria (BIC) score for each
fit. The use of BIC penalizes models in terms of the number
of parameters or complexity. Hence, complex models (i.e.,
high number of free parameters) will have to compensate
with how well they describe the data. This can be denoted
as follows:

BIC(Mc) =−2 · lnP(x|Mc)+ lnN · k (1)

where x is the observed data, N is the number of observa-
tions, k is the number of free parameters to be estimated
and P(x|Mc) is the marginal likelihood of the observed data
given the model M with c number of components.

A GMM with two components and spherical covariance
gives the lowest BIC score (see Figure 3). The results of
the clustering exhibit two classes of spam accounts C1 ⊂C
and C2 ⊂ C, where C is the set of all accounts. We refer
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Fig. 2 An illustration of different tweeting patterns and following be-
haviors for normal and spam accounts. The first row (top figures) rep-
resents the tweets and following count frequencies for normal users.
The second row (bottom figures) represents the tweets and following
count frequencies for spam accounts.

to the normal class (i.e., legitimate accounts) as Cnormal . The
results of the separation in one dimension (i.e., tweets count)
is shown in Figure 3.

Based on the separation, we can further investigate the
properties and activity patterns of the different identified
classes. This separation aids in developing taxonomies and
exploit meaningful structures within the spam accounts com-
munities.

5 Behavioral Analysis

5.1 Profile Properties

In order to further investigate the different identified classes,
we examine the Empirical Cumulative Distribution Func-
tions (ECDF) of different attributes for each class (see Fig-
ure 4). We find that 50% of the accounts in C1 have less than
29 tweets, however, for Cnormal and C2, 50% of the accounts
have tweeted around 2000 times. Furthermore, we find that
almost 90% of the accounts in C1 have no favorites (i.e.,
tweets added to their favorites list), whereas C2 and Cnormal
show closely matching patterns, with 50% of the accounts
having less than 50 favorite tweets.

We continue to observe similar patterns across multiple
attributes, where C2 and Cnormal have similar distributions
and C1 deviates from the baseline. We explain this observa-
tion through the hypothesis that C2 mainly consists of com-
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Fig. 3 A GMM with two components and spherical covariance gives
the lowest BIC score. The results of the separation in one dimension
(i.e., tweets count) is shown in figure (b).

promised accounts, while C1 consists of fraudulent accounts
as defined in Section 2.

Table 1 Summary of basic profile attributes. We notice that Cnormal
and C2 have relatively similar patterns.

Default profile Default image URL Biography
Cnormal 22% 1.3% 29% 83.6%

C1 76% 14% 4% 60%
C2 36% 1.5% 20% 84.7%

The similarity between Cnormal and C2 in the basic pro-
file attributes, such as the percentage of accounts with de-
fault profile settings, default profile images, profile descrip-
tions and profile URLs (see Table 1) might indicate that C2
accounts were originally created and customized by legiti-
mate users. For example, we notice that only 22% of Cnormal
and 36% of C2 accounts kept their default profile settings
unchanged, in comparison to 76% in the case of C1.
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Fig. 4 Comparison between the three classes C1,C2 and Cnormal in terms of tweeting and following behaviors after the GMM clustering.

5.2 Social Interactions

In this section we analyze users behavior in terms of the fol-
low relationship and mention functions, from the topological
point of view. We approach this by incorporating multiple
measures that are known to signify network characteristics
(differences and similarity). Through this analysis, we re-
veal sets of behavioral properties and diverse strategies em-
ployed by spammers for engaging with victims and reaching
audiences.

5.2.1 Preliminaries

Let G = (V,E) be the graph that represents the topological
structure of a given function (i.e., follow or mention), where
V is the set of nodes and E is the set of edges. An edge in the
graph is denoted by e = (v,u) ∈ E where v,u ∈V . Note that
in the follow and mention networks, a node v corresponds
to a Twitter user and an edge corresponds to an interaction
between a pair of users. If two nodes have an edge between
them, they are adjacent and we refer to them as neighbors.

We define the neighborhood of node v as the sub-graph
H = (V ′,E ′) | V ′ ⊂ V and E ′ ⊂ E that consists of all the
nodes adjacent to v (alters) excluding v (we refer to v as ego)
and all the edges connecting two such nodes. The 1.5 ego-
centric network E1.5(v) of node v is defined as the neighbor-
hood sub-graph including v itself. Therefore, the neighbor-
hood can be denoted as N(v) := {u | (u,v)∈ E or (v,u)∈ E}
and the 1.5 ego network as E1.5(v) := {N(v)∪{v}}.

Focusing on the egocentric networks around the nodes
allows for studying the local graphical structure of a given
user and signifies the types of interactions that develop within
their social partners [4]. Figure 5 shows an illustration of
different levels of egocentric networks. From this we can
define node properties and measure the relative importance

of a node within its egocentric network such as node degree
d(v), node out-degree dout(v), in-degree din(v), and recipro-
cal relationship dbi(v).

dout(v) = |{u | (v,u) ∈ E1.5(v)}|
din(v) = |{u | (u,v) ∈ E1.5(v)}|

d(v) = din +dout

dbi(v) = |{u | (u,v) ∈ E1.5(v)∧ (v,u) ∈ E1.5(v)}|

(2)

From the properties defined in equation 2 we can derive the
in-degree density densityin(v), out-degree density densityout(v),
and the density of reciprocal relationships densitybi(v).

densityin(v) =
din(v)
d(v)

densityout(v) =
dout(v)
d(v)

densitybi(v) =
dbi(v)
d(v)

(3)

In addition, we calculate the betweenness centrality for
each ego node in order to quantify the control of such node
on the communication between other nodes in the social net-
work [21]. The measure computes the fraction of the short-
est paths that pass through the node in a question v within
its egocentric network E1.5(v). Therefore, the betweenness
centrality CB(v) can be computed as [11]:

CB(v) = ∑
u 6=w∈N(v)

σuw(v)
σuw

(4)

where σuw is the total number of shortest paths from
node u to node w and σuw(v) is the number of those paths
that pass through the node v. Therefore, CB(v) = 0 in the
case where all the alters are directly connected to each other
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a) 1.0 Ego Network b) 1.5 Ego Network c) 2.0 Ego Network

Fig. 5 An illustration of the a) 1.0 egocentric network; b) the 1.5 egocentric network; and c) the 2.0 egocentric network. The Ego node is marked
in red (diamond) and its connections (alters) are marked in yellow (circles) and the alters’ connections are marked in blue (triangles).

and CB(v) = 1 when the alters are only connected to each
other through the ego node.

We also compute the closeness centrality CC(v) which
measures the inverse of the sum of the shortest path dis-
tances between a node v and all other nodes u0,u1, ..,un ∈
N(v) normalized by the sum of minimum possible distances.
This can be formulated as follows:

CC(v) =
n−1

∑
u∈N(v)

σ(v,u)
(5)

where σ(u,v) is the shortest path distance between v and u,
and n is the number of nodes in the egocentric graph.

A network is strongly connected if there is a path be-
tween every node to every other node in a directed graph.
We define the number of strongly connected components
in the egocentric networks E1.5(v) and open neighborhood
N(v) to be SCCE1.5(v) and SCCN(v) respectively. By replac-
ing all of the directed edges with undirected edges, we com-
pute the number of weakly connected components for the
egocentric network and open neighborhood as WCCE1.5(v)
and WCCN(v) respectively. The SCC and WCC are used to
measure the connectivity of a graph.

5.2.2 Relationship Graph

Twitter follow relationship is modeled as a directed graph,
where an edge between two nodes e = (v,u) ∈ E means that
v is following u. For the follow relationship, we only have
the number of followers and following for each account, and
not the actual relationship list. Therefore, in order to com-
pare relationships formed by both C1 and C2, we aggregate
following and follower data from both classes.

Figure 6 shows the number of followers and following
represented by the in-degree din (follower) and out-degree
dout (following) for each class. We find that spam accounts
that belong to C1 are heavily skewed towards following rather

(a) (b)
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Fig. 6 Illustration of the different relationship behaviors for C1 in fig-
ure (a) and C2 in figure (b). We find that spam accounts that belong to
C1 are heavily skewed towards following rather than followers or the
identity line. The effect of the number of following limit (i.e., 2000
dout ) is apparent/observed in both classes.

than followers, which could indicate a difficulty in form-
ing reciprocal relationships. Furthermore, we observe a low
densityin for C1 with an average of 0.16 and high densityout
with an average of 0.4. On the other hand, C2 has more bal-
anced densities with approximately 0.5 for both.

While Twitter does not constrain the number of follow-
ers a user could have, the number of following (i.e., dout ) is
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limited [47]. Every user is allowed to follow 2000 accounts
in total; once an account reaches this limit, they require more
followers in order to follow more users [47]. This limit is
based on the followers to following ratio.

Furthermore, as shown in Figure 6(c), almost 50% of C1
accounts have no followers (i.e., they did not embed them-
selves within the social graph) and almost 75% of these ac-
counts have less than ten followers. We find that C2 accounts
are more connected in terms of social relationships, which
makes them harder to detect and hence contribute more con-
tent. These findings adhere to a known phenomenon ob-
served in multiple security contexts. For example, [3] showed
that in many cases (especially in social networks), optimal
attack strategies (i.e., causing greater damage or spreading
more spam content) exhibit slow spreading patterns rather
than spreading aggressively.

The compromised account population that exists within
C2 can utilize the associated history and network relation-
ships of the original account owner to aid them in increasing
the visibility of their spam content.

5.2.3 Mention Graph

The mention function is one of the most common ways in
which spammers engage with users, unlike the Direct Mes-
sages (DM), it bypasses any requirement of prior social con-
nection with a victim.

The mention network is constructed as a simple, weighted,
and directed graph, such that an edge between two nodes
e = (v,u) ∈ E means that user v mentioned user u during
our collection period. We extract the 1.5 egocentric network
E1.5(v), where v are the accounts in C1 and C2.

Figure 7 shows the degree distribution of the mention
network. Although multiple studies observed that the degree
for the mention network follows heavy-tailed distributions
(e.g.,[27], in order to understand the topological structure,
we further investigate the concrete goodness of fit [2]. The
scale-free nature of the mention network (i.e., degree distri-
bution that follows a power law) implies a very high hetero-
geneity level in user behavior, which is expected for human
activity phenomena [9,32]. In addition, the figure shows a
clear difference between the length of the tail of the distri-
butions between the two classes C1 and C2.

Table 2 Comparing different centrality measures for the mention net-
work for C1 and C2 accounts

Betweenness (CB) Closeness (CC)
Class µ σ µ σ

C1 0.014 0.08 0.97 0.12
C2 0.096 0.14 0.77 0.25

Table 2 compares two centrality measures for the men-
tion network, namely the betweenness CB and closeness CC

(a)

(b) (c)

Fig. 7 The top figure shows the distribution of the frequency of men-
tions d(v) for C1 (black circles) and C2 (red triangles). The bottom fig-
ures compare the empirical distribution obtained with best fits of other
heavy-tailed distributions.

centralities. We observe that the average betweenness cen-
trality for C2 is significantly higher than C1, which indicates
that C1 accounts target users that mention each other (i.e.,
communities and clusters of users). This is somewhat a sur-
prising outcome, as we expect C2 accounts to utilize the as-
sociated relationships of the original account owner, where
the nodes in the neighborhood are real friends and are more
likely to mention one another. The relatively low between-
ness in C1 can be explained by at least three possibilities:

– Conversations hijacking. We observe that 51.5% of the
tweets captured by C1 contain mentions, and 43.3% of
these mentions are replies. In addition, only 1.2% of
their mentions were reciprocated (densitybi = 0.0127),
which arouses suspicion that C1 accounts intrude on on-
going conversations between legitimate users, and thus
have resulted in a low betweenness centrality.

– Targeting hubs. Due to the scale-free nature (i.e., degree
distribution that follows a power law) of the mention
network, mentioning or replying to hubs (nodes that are
highly connected to other nodes in the network) increase
the chance that the alters will be connected, and hence
the low betweenness score.
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– Crawling profiles. It is also possible that C1 accounts
target communities and connected users in the mention
graph by crawling profiles (i.e., visiting the followers
nad following lists or users’ timeline of the seed targeted
profile).

SCCE1.5

|E1.5|
WCCE1.5

|E1.5|
SCCN
|N|

WCCN
|N|

0.0

0.2

0.4

0.6

0.8

1.0

1.2

µ
(x
|C

i)

C1  C2

Fig. 8 The density of connected components in the mention network
for C1 and C2

Figure 8 shows high average densities of strongly con-
nected components for both the egocentric network and the
neighborhood network in classes C1 and C2 (i.e., SCCN

|N| and
SCCE1.5
|E1.5|

). This observation indicates a difficulty in forming
reciprocal mention relationships as discussed earlier. Also,
a higher score in the densities of weakly connected com-
ponents (WCCN

|N| and
WCCE1.5
|E1.5|

) for C1 explains the lower be-
tweenness centrality score observed in Table 2.

The discrepancy in network measures (i.e., degree dis-
tribution, centralities, and connectivity) between C1 and C2
indicates the existence of different strategies for reaching
audiences employed by each class accounts.

6 Detection Analysis

In this section, we analyze the detectability of spam accounts
with respect to three categories of features, namely, con-
tent attributes, social interactions, and profile properties (see
Section 6.1). Our goal here is to highlight the importance
of behavioral characteristics (i.e., profile and social interac-
tions) as an enabling methodology for the detection of ma-
licious users in OSNs. As Twitter spammers are constantly
evolving to evade existing detection features, content-based
features (e.g., tweet similarity and duplicate tweet count)
will easily be evaded. In our work, we investigate new and
robust features to detect Twitter spammers. Therefore, un-
like previous studies (e.g.,[42], we focus on comparing the
different categories of features in terms of their relative clas-
sification performance (see Section 6.2 and information gain

(see Section 6.3), rather than on achieving a high absolute
classification performance. Moreover, although our algorithm
relies on a “labelled dataset” that was extracted from Twitter,
it does not mean that these labels were generated by an auto-
matic spam detection algorithm. It could have been the case
that a large amount of the suspended accounts (that we con-
sider as spam accounts) were suspended manually (e.g. if
legitimate users reported these accounts as spam accounts).

Our analyses included four different classification tasks:
(1) distinguishing spam accounts (C1∪C2) from normal ac-
counts (Cnormal), (2) distinguishing C1 spam accounts from
normal accounts (Cnormal), (3) distinguishing C2 spam ac-
counts from normal accounts (Cnormal) and (4) distinguish-
ing C1 spam accounts from C2 spam accounts.

In order to reduce computation time, all of the experi-
ments reported in this section were conducted on a stratified
sample of Twitter accounts, which was obtained by sam-
pling 2.5% of the accounts in each of the three subpopu-
lations in our dataset.

6.1 Features Extraction

As mentioned above, we experimented with three categories
of features:

Content features capture linguistic cues and specific prop-
erties of the tweet text posted by a user. Given that our dataset
contains multiple tweets for each user, we extract the densi-
ties, averages or frequencies of content attributes. A sum-
mary of the features used and their description can be found
in table. 3. Features are inspired by [57,39,6,20,30].

Profile features are based on Twitter meta-data related to
an account, including language, geographic locations, and
account creation time (see Table 4). Similar features were
used in [6,26]

Social interaction features capture various dimensions
of information diffusion patterns. We build networks based
on mentions, replies and follow relationships, and extracts
their statistical features. Examples include degree distribu-
tion, and centrality measures (see Table 5). Several of these
features has been used previously in the literature [6,39,20,
53,37,26].

A note on categorical features: While categorical fea-
tures can easily be coded as integers, where each integer
value represents a different category, such integer values may
be misinterpreted as being ordered, which may result in un-
desired behaviors. Therefore, in our experiments, we used
the 1-of-K encoding [34,1] technique to convert a categori-
cal feature with k possible values to a set of k binary features.
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Table 3 Content features summary.

Feature Description Type

Mean tweets similarity The average pair-wise tweets similarity based on the term frequencyinverse
document frequency. Float

sampled tweets count
The number of sampled tweets appearing in our dataset for a specific user.
This feature is an indication of the account activity level during the data
collection period

Integer

Tweets with mentions The number of tweets containing mentions to other users (i.e., if one tweets
contains more than one mentioned user, it still count as one) Integer

tweets with Hashtags The number of tweets containing hashtags (i.e., if one tweets contains more
than one hashtag, it still counts as one). Integer

Hashtags density The number of hashtags (i.e., one tweet can include more than one hashtag)
normalized by the number of tweets. Float

tweets with links The number of tweets containing urls (i.e., if one tweets has more than one
URL, it still counts as one). Integer

links density The number of urls normalized by the number of tweets. Float

Table 4 Summary of profile features.

Feature Description Type
total number of tweets The total number of tweets posted by the user. Integer
favorite count The total number of tweets that the user has marked as favorite Integer

verification status
Whether the user account is verified by twitter. Verification is currently
used to establish authenticity of identities of key individuals and brands on
Twitter.

Integer

default profile image Whether the user is using Twitter’s default avatar image. Boolean
listed count The number of Twitter lists on which the user appears. Integer
geo enabled Whether the geographical location of the user account is activated. Boolean

account age The number of days between the time of creation of the account until the
date of the last tweets captured in our dataset. Float

6.2 Classification Performance

For each one of the four binary classification tasks and each
one of the three categories of features (i.e., content, pro-
file and social features), we trained and tested seven dif-
ferent machine learning algorithms (i.e., ZeroR, Bayesian
Network, Naive Bayes, Logistic Regression, Decision Trees,
and Random Forest) in a 5-Folds Cross-Validation manner
to compute the average Area under the ROC curve (AU-
ROC) and the standard deviation.

In our first experiment, we attempted to distinguish spam
accounts from legitimate users. Focusing on the best per-
forming algorithm (Decision Tree) in Figure 9 we observe
that the social interaction features outperform profile and
content features and hence seem to be a better indicator for
classifying spam accounts. We also notice that profile fea-
tures outperform content features in this case.

The second experiment focused on separating C1 spam
accounts from normal accounts (Cnormal). As shown in Fig-
ure 10, we observe again a similar pattern where the social
interaction features achieve the highest detection score (with
the only exception of the Bayes network classifier).

It is also important to notice the scale in this experiment;
the detection AUC score is relatively higher than the scores
obtained in the previous experiment. This result is quite ex-

Fig. 9 The results of experiment #1 where we try to distinguish Cnormal
from C1∪C2.

pected from our previous analyses due to the fact that C1
spam accounts deviate significantly from Cnormal accounts
across different attributes.

In the third experiment (see Figure 11) we study the de-
tectability of C2 spam accounts from normal accounts (Cnormal).
We find that social interaction features provide a better indi-
cation in comparison to other types of features. However, in
this experiment the reported AUC scores are lower than the
ones that were reported in the second experiment (i.e., C1
vs. Cnormal). Again, this result is quite expected due to our
earlier observations that C2 and Cnormal manifested similar
patterns across multiple attributes.
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Table 5 Summary of social interaction features.

Feature Network Description Type

out degree follow The number of accounts a user is following (i.e., following
count). Integer

out degree density follow The density of followings. Float

in degree follow The number of accounts following the user (i.e., followers
count). Integer

in degree density follow The density of followers. Float
in degree mention The number of accounts mentioning the user of interest. Integer
weighted in degree mention The number of time the user of interest was mentioned. Integer

weighted in degree density mention The number of time the user of interest was mentioned
normalized by the number of accounts mentioning the user. Float

out degree mention The number of accounts mentioned by the user of interest. Integer
weighted out degree mention The number of time the user of interest mentioned other users. Integer

weighted out degree density mention The number of time the user of interest mentioned other users
normalized by the number of accounts that mentioned the user. Float

bi degree mention The number of reciprocal mention relationships. Integer
weighted bi degree mention The weighted reciprocal relationship or conversations length. Integer

closeness centrality mention The closeness centrality of the node with respect to the 1.5
egonetwork. Float

betweenness centrality mention The betweenness centrality of the user with respect to the 1.5
mention egonetwork Float

relative edges density mention The total degree of the user normlized by the total number of
edges in the 1.5 egonetwork. Float

open strongly connected
components mention The number of strongly connected components in the

neighborhood of the user (i.e., excluding the user of interest). Integer

open weakly connected
components mention The number of weakly connected components in the

neighborhood of the user(i.e., excluding the user of interest). Integer

ego strongly connected
components mention The number of strongly connected components in the 1.5

egonetwork of the user (i.e., including the user of interest). Integer

ego weakly connected
components mention The number of weakly connected components in the 1.5

egonetwork of the user (i.e., including the user of interest). Integer

Fig. 10 The results of experiment #2 where we try to distinguish C1
types of spam accounts.

Fig. 11 The results of experiment #3 where we try to distinguish C2
types of spam accounts from Cnormal .

In our fourth experiment we focused on spam accounts
only (see Figure 12). Surprisingly, although we used some

of the profile features to infer the separation between the
two classes in section 4, the content features (generally) pro-
vided a better detection signal than the profile features and
a comparable signal to the social interaction features. The

Fig. 12 The results of experiment #4 where we try to distinguish the
different types of spam accounts.

discrepancy between the results obtained in the first three
experiments above and this experiment might be explained
as follows. Both C1 and C2 users engage with their environ-
ment in an anomalous manners compared to Cnormal users
and hence both types can be distinguished relatively easily
from Cnormal using such features. However, comparing C1
users to C2 users becomes difficult since they both exhibit
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anomalous social interaction patterns, and therefore, content
features become more important.

6.3 Information Gain Results

Finally, it is worth mentioning, that in all four experiments,
and for all seven machine learning algorithms, the compos-
ite model (involving all features presented in this work) per-
formed significantly better than single category models (e.g.
content or profile based).

While the four experiments (presented in subsection 6.2
focused on evaluating the different categories of features, in
this section we evaluate individual features in terms of their
information gain. Note however that as opposed to the pre-
vious approach, this approach does not capture the depen-
dencies between the different features.

The information gain IG for an attribute α in each ex-
periment’s training examples T evaluates the worth of α by
measuring the IG with respect to the class C. This concept
can be formulated as follows:

IG(T,a) = H(T )−H(T |α)

where H is the is the information entropy (i.e., the average
amount of information contained in each attribute).

The results of the analysis in this subsection conform
with our findings in the previous subsection and with our
findings in Section 5 as we proceed to explain. Table 6 shows
the top ten attributes, ranked in terms of their information
gain scores, for each one of the four classification tasks. As
shown in the table, the social interaction features account for
90%, 60%, 60%, and 40% of the top ten features for the four
classification tasks respectively.

More specifically, we can see that social interaction fea-
tures outperforms other type of features such as profile and
content. Moreover, in the case of the fourth classification
task, the granularity of content becomes relatively more dis-
criminative.

7 Related Work

We discuss prior related work on OSNs’ spam and network
analysis. Although we focus on spam accounts analysis, our
first in its kind approach of spam behavioral categorization
(i.e., identifying subpopulations), analyzing the different classes
of spam accounts, and analyzing the mention interactions,
all provide a unique view in looking at spam trends in OSNs.

7.1 Spam in Social Networks

With the rapid growth of OSNs popularity, we are witness-
ing an increased usage of these services to discuss issues of

public interest and hence shape public opinions [16]. This
model of users as an information contributors has provided
researchers, news organizations, and governments with a tool
to measure (to some degree) representative samples of pop-
ulations in real time [29,43,24]. However, [28] identified
propagandists Twitter accounts that exhibit opinions or ide-
ologies to either sway public opinion, disseminate false in-
formation, or disrupt the conversations of legitimate users.
The study focused on accounts connected to two political
events: i) the 2010 Nevada senate race; and ii) the 2011
debt-ceiling debate. A similar campaign has been analyzed
by[44], in which spam accounts flood out political messages
following the announcement of Russia’s parliamentary elec-
tion results. In addition, classical forms of abuse such as
spam and criminal monetization exist in Twitter including
phishing scams [15], spreading malware [36], and redirect-
ing victims to reputable websites via affiliate links [45] to
generate income.

7.2 Social Network Spam Analysis

Due to the popularity of social media services, several stud-
ies measured and analyzed spam in OSNs. [57] provided
an analysis of some of the evasive techniques utilized by
spammers, and discussed several detection features. In addi-
tion,[58] performed an empirical analysis of the social rela-
tionship in Twitter (i.e., following relationship) in the spam
community. The study showed that spam accounts follow
each other and form small-world networks [41] examined
Twitter account markets, and investigated their association
to abusive behaviors and compromised profiles. [46] per-
formed a study in collaboration with Twitter to investigate
the fraudulent accounts marketplace. The study discussed
prices, availability, and fraud perpetrated by 27 merchants
generating 127 to 459K US dollars for their efforts over the
course of ten months. In another study [45], the authors ex-
amined tools, techniques, and support infrastructure spam
accounts rely upon to sustain their campaigns. Surprisingly,
the study showed that three of the largest spam campaigns in
Twitter direct users to legitimate products appearing on rep-
utable websites via affiliate links that generate income on a
purchase (e.g., Amazon.com. However, the authors consid-
ered only tweets that contained URLs, and thus overlook
malicious accounts that employ other spamming strategies,
such as: i) embedding non-hyperlink URL by encoding the
ASCII code for the dot; ii) follow spam accounts that gener-
ate large amounts of relationships for the hope the victim ac-
count would reciprocate the relationship or at least view the
criminal’s account profile which often has a URL embed-
ded in its bio [22] investigated the spammers’ mechanism
of forming social relationship (link framing) in Twitter, and
found that vast majority of spam accounts are followed by
legitimate users who reciprocate relationships automatically
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Table 6 Summary of the information gain evaluation of individual features for the four experiments.

Experiment #1
# Feature Type IG

1 Mention out degree
density social interaction 0.044

2 Mention in degree
density social interaction 0.043

3 Follow in degree social interaction 0.040

4 Follow out degree social interaction 0.039

5 total number of
tweets profile 0.028

6 Mention out degree social interaction 0.028

7 Mention weighted
out degree density social interaction 0.023

8 Follow in degree
density social interaction 0.019

9 Follow out degree
density social interaction 0.019

10 Mention closeness
centrality social interaction 0.015

Experiment #2
# Feature Type IG

1 Mention out degree
density social interaction 0.075

2 Mention in degree
density social interaction 0.074

3 Follow in degree social interaction 0.066

4 Follow out degree social interaction 0.059

5 total number of
tweets profile 0.049

6 favourites count profile 0.030

7 links
density content 0.020

8 tweets with links content 0.019

9 Follow out degree
density social interaction 0.019

10 Follow in degree
density social interaction 0.019

Experiment #3
# Feature Type IG

1 Mention out degree
density social interaction 0.056

2 Mention in degree
density social interaction 0.055

3 Follow in degree social interaction 0.050

4 Follow out degree social interaction 0.047

5 total number of
tweets profile 0.035

6 favourites count profile 0.019

7 links
density content 0.014

8 tweets with links content 0.014

9 Follow out degree social interaction 0.014

10 Follow in degree
density social interaction 0.013

Experiment #4
# Feature Type IG

1 Mention out degree
density social interaction 0.316

2 Mention in degree
density social interaction 0.315

3 Follow in degree social interaction 0.254

4 Follow out degree social interaction 0.223

5 total number of
tweets profile 0.218

6 favourites count profile 0.184

7 links
density content 0.140

8 tweets with links content 0.139

9 replies
density content 0.118

10 mean tweets
similarity content 0.110

(social capitalists). The dataset used in this study contained
41,352 suspended Twitter accounts that posted a blacklisted
URL. However,[25] discussed the ineffectiveness of black-
listing at detecting social network spam in a timely fashion
and also suggested the existence of subpopulations of spam
accounts.

Moreover, Boshmaf et al. evaluated how OSNs are vul-
nerable to large-scale infiltration campaign caused by social
bots by building and coordinating a group of programmable
social bots on Facebook for 8-weeks then evaluated the col-
lected data and studied the effects for the spamming cam-
paigns and users behavior [10]. Influenced by Boshmaf et al.
work [10], Elyashar et al. studied infiltration targeting spe-

cific organizations’ employees using Facebook [19]. They
have created social bots which were able to get connected
with 50% to 70% of organizations’ employees and get ac-
cess to their personal information.

7.3 Social Network Spam Detection

A number of detection and combating techniques proposed
in the literature rely on machine learning [7] manually la-
beled 8,207 Twitter accounts, and developed a classifier to
detect spammers based on the URL and hashtag densities,
followers to following ratio, account-age, and other profile-
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based features. The account-age and number of URLs sent
were the most discriminating features. [42] created a diverse
set of ”honey-profiles”, and monitored activities across three
different social networks (Facebook, Twitter, and MySpace)
for approximately one year. They also built a tool to detect
spammers on Twitter and successfully detected and deleted
15,857 spam accounts in collaboration with Twitter.

Another approach is presented by [56], where they de-
signed and implemented a system that recognizes legitimate
users early in OSNs. They utilized an implicit vouching pro-
cess, where legitimate users help in identifying other le-
gitimate users. Additionally,[55] investigated the feasibil-
ity of utilizing crowdsourcing as the enabling methodology
for the detection of fraudulent accounts. This study ana-
lyzed the detection accuracy by both ‘experts’ and ‘turk-
ers’ (i.e., workers from Amazon Mechanical Turk under a
variety of conditions. Moreover,[30], used traditional classi-
fiers to detect spam users in Twitter. They defined a collec-
tion of content-based and user-based features. Similarly,[53]
proposed content-based and graph-based features to facili-
tate spam detection using different classification algorithms.
His results show that the Bayesian classifier generates best
overall performance [52] proposed a new system that pre-
dicts whether a user will interact with the social bots in
Twitter using a set of selected features and six classifiers
(5-Nearest Neighbor, Logistic Regression, Multi-Layer Per-
ceptron, Naive Bayes and Random Forest). Wang et al. pre-
sented a new sybil detection system using server-side click-
stream models for Renren which is a large Chinese social
network [54]. The clickstream models are created by clus-
tering clickstream into behavioral clusters.

However, most of the work in the literature didn’t con-
sider the behavioral features. This is highly important as
spammers continues to adopt different techniques and work-
arounds to over come the standard detection methods. One
of the recent work that incorporated behavioral features into
the detection mechanism is the work by [20]. They designed
a framework for detecting Twitter social bots, where they
identified several classes of features ranging from users and
content based features, to behavioral network-based features,
to distinguish between bot and human behavior.

Moreover, [5] surveyed sybil defenses approaches that
leverage the structural properties of social networks for ac-
curate identification of sybil accounts. The authors also pro-
vided an analysis of these approaches and highlighted their
strengths and weaknesses. Beeutel et al focused on Page
Likes generated by spammer on Facebook and proposed a
new approach based on social graphs that capture Pages likes,
users who created these likes, and the times at which the
likes are created in order to identify detection patterns of
spammers using iterative and approximate-based algorithms
[8]. Another work by Cao et al. proposed a social graph-
based tool, called SybilRank, to detect sybil accounts in Tuenti

which is the largest OSN in Spain. Their tool was deployed
and tested in Tuentis operation center which helps the Tuenti
system to detect 18 times more sybil account than before.
SybilRank is based on the observation that short random
walks from non-Sybil accounts on the social network tend
to stay within the non-Sybil region of the network [12] [13]
also proposed another tool, called SynchroTrap, to detect
malicious accounts in online social networks and it relies
on the observation that malicious accounts tend to perform
loosely synchronized actions relative to benign accounts.
SynchroTrap was implemented and deployed at Facebook
and Instagram and resulted in detecting more than two mil-
lion malicious accounts.

Beyond detection, Wagner et al. used a set of network,
behavioral, and linguistic features to build a predictive model
to estimate users’ level of susceptibility for Twitter using
data from the Social Bot Challenge 2011 [51]. Stein et al.
built Facebook immune system which checks and classifies
every action in real-time and provides explicit and implicit
user feedbacks and protects its users from malicious activi-
ties including spamming [40]. The classification is built us-
ing various machine learning based classifiers such as ran-
dom forests, SVM and logistic regression.

7.4 Social Bots for the Greater Good

Although social bots are typically refered to as an evil entity
conducting malicious behavior, several social bots actually
perform benign useful functions in online social networks.
Therefore, not all of the identified bots should be suspended
as many of them actually server useful functions. For in-
stance, social bots that aggregat content is being used for
delivering news feeds, hot topics, and breaking news occur-
ing in a user’s social network. One example is Fuego [35],
a Twitter bot designed to deliver the future of journalism by
monitoring a user’s universe of people and returing the links
and stories they are sharing. Another example for a useful
social bot that reports about hazardous events is, Earthquake
Robot [38]. It gathers information from the U.S. Geological
Survey (USGS) and update users about earthquakes as they
happen. Other benign social bots are used by companies to
provide customer care and gather their feedback. Some mar-
keters use social bots that detect specific keywords and send
automated replies/follow requests to customers. The main
challenge here is to be able to distinguish between benign
and harmful social bots.

Although, some social bots may be designed with good
intentions, the fact that they are fully automated may some-
times make them dangerous by spreading rumers and caus-
ing social panic. A recent study demonstrates that Twitter
followers perceive Twitter bots as credible attractive sources
[17]. Thus, false information spread by automated accounts
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is regarded as credible and may lead to false accusations as
happened in the Boston marathon bombing[14].

8 Conclusion and Future Work

This paper presents a unique look at spam accounts in OSNs
through the lens of the behavioral characteristics, and spam-
mers’ techniques for reaching victims. We find that there
exist two main classes of spam accounts that exhibit dif-
ferent spamming patterns and employ distinct strategies for
spreading spam content and reaching victims. We find that
C2 (i.e. category 2 of spammers) and Cnormal (i.e. legitimate
users) manifest similar patterns across multiple attributes.
We attempt to explain this observation through the hypothe-
sis that C2 mainly consists of compromised accounts, while
the accounts in C1 (i.e. category 1 of spammers) are fraudu-
lent accounts, as we find support for the hypothesis through-
out our analysis of profile properties. It is also possible that
fraudulent and compromised accounts can gain more fol-
lowers by purchasing them from online services [2] to evade
detection [58,57]. In terms of the relationship graph, we find
that spam accounts that belong to C1 are heavily skewed to-
wards following rather than followers, which indicates dif-
ficulty in forming reciprocal relationships. Furthermore, we
observe a low in-degree density for C1, while C2 has a more
balanced in/out degree densities. We show that the between-
ness centrality for C1 in the mention graph is significantly
lower than C2, which might be a result of hijacking conver-
sations, targeting hubs, or crawling profiles.

Following the behavioral analysis, we also investigated
the detectability of spam accounts with respect to three cate-
gories of features, namely, content attributes, social interac-
tions, and profile properties, focusing on two types of analy-
sis: (1) relative classification performance; and (2) informa-
tion gain. The results of these analyses highlighted the im-
portance of social interaction features when distinguishing
between legitimate users and spammers. However, once we
attempt to distinguish the two types of spammers, the very
obvious features (i.e., social interaction and profile) dimin-
ish and the details (i.e., content) become more relevant. Gen-
erally, in all classification tasks, using the union of all feature
types provided the highest classification performance. The
socio-behavioral features demonstrated to work with rela-
tively few examples in the learning phase, before automati-
cally detecting spamming accounts with minimal processing
time. Thus there is a good chance that the proposed socio-
behavioral features are more robust (i.e., harder to evade by
spammers) and will allow for the detection of such accounts
much faster than Twitter’s current approach. We cannot cur-
rently test this hypothesis since we do not know the exact
time in which the accounts were suspended.

We acknowledge that our analysis may contain some
bias. We have a partial view of the activities occurring dur-

ing the data collection period due to the at most 1% sam-
pling limit imposed by Twitter. However, the work of [31]
showed that the implications of using the Twitter Streaming
API depend on the coverage and type of analysis. Generally,
the streaming API can be sufficient to provide representa-
tive samples, that get better with higher coverage, for certain
types of analysis (i.e., top hashtags, topics, retweet network
measures). Furthermore, we lack the absolute ground truth
labels for the accounts presented in the dataset and primar-
ily rely on Twitter’s suspension algorithm. This might im-
pose a lower bound on the number of spam accounts in our
dataset (i.e., uncaught spam accounts are treated as legiti-
mate users). In addition, there might be a fraction of legit-
imate users who deactivated their accounts during the col-
lection period, and hence would be labeled as removed. We
also lack the appropriate resolution for important attributes
used in the analysis; for example, we only have the number
of followers and following for each user, and not the ac-
tual relationships list. Finally, our sample suffers from other
technical limitations, such as a number of service outages
that affected the collection during some days throughout the
accounted month. Despite such limitations, we believe that
our first in its kind analysis of twitter functions and spam be-
havioral categorization describe well the current trends and
phenomenon of OSN’s spam and can be leveraged in design-
ing OSN spam detectors and resilient architectures.

In our future work, we will design and test alternative la-
beling and validation mechanisms for the analyzed accounts.
In particular, given that the compromised accounts are very
different from the fraudulent accounts, sudden changes in
the behavior of compromised accounts could be detected,
which would indicate the time at which the account got com-
promised. This will require collecting and analyzing a new
dataset with more frequent checking for suspension in or-
der to provide accurate timestamp of when the suspension
occurred. In addition, we plan to further investigate the dif-
ferences between the spam accounts utilizing other interac-
tions functions (e.g., hashtag, retweet, and favorite). We also
intend to quantify the success of spam campaigns and ex-
plore the tools, techniques, and spam underground markets
utilized by spam accounts to spread their content and evade
many of the known detection mechanisms.
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