Skip to main content
Log in

On practical privacy-preserving fault-tolerant data aggregation

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

In this paper, we propose a fault-tolerant privacy-preserving data aggregation protocol which utilizes limited local communication between nodes. As a starting point, we analyze the Binary Protocol presented by Chan et al. Comparing to previous work, their scheme guaranteed provable privacy of individuals and could work even if some number of users refused to participate. In our paper we demonstrate that despite its merits, their method provides unacceptably low accuracy of aggregated data for a wide range of assumed parameters and cannot be used in majority of real-life systems. To show this we use both analytic and experimental methods. On the positive side, we present a precise data aggregation protocol that provides provable level of privacy even when facing massive failures of nodes. Moreover, our protocol requires significantly less computation (limited exploiting of heavy cryptography) than most of currently known fault-tolerant aggregation protocols and offers better security guarantees that make it suitable for systems of limited resources (including sensor networks). Most importantly, our protocol significantly decreases the error (compared to Binary Protocol). However, to obtain our result we relax the model and allow some limited communication between the nodes. Our approach is a general way to enhance privacy of nodes in networks that allow such limited communication, i.e., social networks, VANETs or other IoT appliances. Additionally, we conduct experiments on real data (Facebook social network) to compare our protocol with protocol presented by Chan et al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Beimel, A.: Secret-sharing schemes: a survey. In: Proceedings of the Third International Conference on Coding and Cryptology, IWCC’11, pp. 11–46. Springer, Berlin (2011)

  2. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret. In: Advances in Cryptology. Springer, Berlin (1987)

  3. Benhamouda, F., Joye, M., Libert, B.: A new framework for privacy-preserving aggregation of time-series data. ACM Trans. Inf. Syst. Secur. (TISSEC) 18(3), 10 (2016)

    Article  Google Scholar 

  4. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 103–112. ACM, New York, NY (1988)

  5. Caliskan, M., Graupner, D., Mauve, M.: Decentralized discovery of free parking places. In: Proceedings of the 3rd International Workshop on Vehicular Ad Hoc Networks, VANET ’06, pp. 30–39. ACM, New York, NY (2006)

  6. Chan, H., Perrig, A., Przydatek, B., Song, D.: Sia: Secure information aggregation in sensor networks. J. Comput. Secur. 15(1), 69–102 (2007)

    Article  Google Scholar 

  7. Chan, T.-H.H., Shi, E., Song, D.: Optimal lower bound for differentially private multi-party aggregation. IACR Cryptology ePrint Archive 2012:373, informal publication (2012)

  8. Chan, T.-H. H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) Financial Cryptography, volume 7397 of Lecture Notes in Computer Science, pp. 200–214. Springer, Berlin (2012)

  9. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: NSDI, pp. 259–282 (2017)

  10. Cynthia Dwork: Differential privacy: a survey of results. In: TAMC, pp. 1–19 (2008)

  11. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, March 4–7, 2006, Proceedings, pp. 265–284. New York, NY (2006)

  12. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Emura, K.: Privacy-preserving aggregation of time-series data with public verifiability from simple assumptions. In: Australasian Conference on Information Security and Privacy, pp. 193–213. Springer, Berlin (2017)

  14. Feng, Y., Tang, S., Dai, G.: Fault tolerant data aggregation scheduling with local information in wireless sensor networks. Tsinghua Sci. Technol. 16(5), 451–463 (2011)

    Article  Google Scholar 

  15. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Golle, P., Jakobsson, M., Juels, A., Syverson, P.F.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) Topics in Cryptology–CT-RSA 2004, The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA, USA, February 23–27, 2004, Proceedings, volume 2964 of Lecture Notes in Computer Science, pp. 163–178. Springer, Berlin (2004)

  17. Gomulkiewicz, M., Klonowski, M., Kutylowski, M.: Onions based on universal re-encryption–anonymous communication immune against repetitive attack. In: Lim, C.H., Yung, M. (ed.) Information Security Applications, 5th International Workshop, WISA 2004, Jeju Island, Korea, August 23–25, 2004, Revised Selected Papers, volume 3325 of Lecture Notes in Computer Science, pp 400–410. Springer, Berlin (2004)

  18. Han, Q., Du, S., Ren, D., Zhu, H.: SAS: a secure data aggregation scheme in vehicular sensing networks. In: Proceedings of IEEE International Conference on Communications, ICC 2010, Cape Town, South Africa, 23–27 May 2010, pp 1–5. IEEE, New York (2010)

  19. He, W., Liu, X., Nguyen, H., Nahrstedt, K.: A cluster-based protocol to enforce integrity and preserve privacy in data aggregation. In: ICDCS Workshops, pp. 14–19. IEEE Computer Society, New York (2009)

  20. Heinzelman, W.R., Kulik, J., Balakrishnan, H.: Adaptive protocols for information dissemination in wireless sensor networks. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, MobiCom ’99, pages 174–185, ACM, New York, NY (1999)

  21. Hermann. SOTIS–a self-organizing traffic information system. In: Proceedings of the IEEE Vehicular Technology Conference Spring, pp. 2442–2246 (2003)

  22. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. Wiley, New York (2011)

    MATH  Google Scholar 

  23. Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In: Fischer-Hubner, S., Wright, M. (eds.) Privacy Enhancing Technologies, volume 7384 of Lecture Notes in Computer Science, pp. 221–238. Springer, Berlin (2012)

  24. Jawurek, M., Kerschbaum, F., Danezis, G.: Sok: Privacy Technologies for Smart Grids–ASurvey of Options. Microsoft Res, Cambridge (2012)

    Google Scholar 

  25. Jhumka, A., Bradbury, M., Saginbekov, S.: Efficient fault-tolerant collision-free data aggregation scheduling for wireless sensor networks. J. Parallel Distrib. Comput. 74(1), 1789–1801 (2014)

    Article  MATH  Google Scholar 

  26. Joye, M.: Cryptanalysis of a privacy-preserving aggregation protocol. IEEE Trans. Dependable Secure Comput. 14(6), 693–694 (2017)

    Article  Google Scholar 

  27. Joye, M., Libert, B.: A scalable scheme for privacy-preserving aggregation of time-series data. In: International Conference on Financial Cryptography and Data Security, pp. 111–125. Springer, Berlin (2013)

  28. Larrea, M., Martin, C., Astrain, J.J.: Hierarchical and fault-tolerant data aggregation in wireless sensor networks. In: 2nd International Symposium on Wireless Pervasive Computing, 2007. ISWPC ’07 (2007)

  29. Leontiadis, I., Elkhiyaoui, K., Molva, R.: Private and dynamic time-series data aggregation with trust relaxation. In: International Conference on Cryptology and Network Security, pp 305–320. Springer, Berlin (2014)

  30. Leontiadis, I., Elkhiyaoui, K., Önen, M., Molva, R.: Puda–privacy and unforgeability for data aggregation. In: International Conference on Cryptology and Network Security, pp. 3–18. Springer, Berlin (2015)

  31. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collection (2014). http://snap.stanford.edu/data

  32. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)

    Article  Google Scholar 

  33. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS, volume 2012, pp. 548–56 (2012)

  34. Mironov, I., Pandey, O., Reingold, O., Vadhan, S.P.: Computational differential privacy. In: 29th Annual International Cryptology Conference Advances in Cryptology–CRYPTO 2009, Santa Barbara, CA, USA, August 16–20, 2009. Proceedings, pp. 126–142 (2009)

  35. Mohanty, S., Jena, D.: Secure data aggregation in vehicular-adhoc networks: a survey. Proced. Technol. 6, 922–929 (2012). 2nd International Conference on Communication, Computing and Security [ICCCS-2012]

    Article  Google Scholar 

  36. Nadeem, T., Dashtinezhad, S., Liao, C., Iftode, L.: Trafficview: traffic data dissemination using car-to-car communication. SIGMOBILE Mob. Comput. Commun. Rev. 8(3), 6–19 (2004)

    Article  Google Scholar 

  37. Papadopoulos, S., Kiayias, A., Papadias, D.: Exact in-network aggregation with integrity and confidentiality. IEEE Trans. Knowl. Data Eng. 24(10), 1760–1773 (2012)

    Article  Google Scholar 

  38. PDA: Privacy-preserving data aggregation in wireless sensor networks (2007)

  39. Pinelis, I.: Characteristic function of the positive part of a random variable and related results, with applications. Stat. Probab. Lett. 106, 281–286 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the 2010 ACM SIGMOD International Conference on Management of Data, SIGMOD ’10, pp. 735–746, ACM, New York, NY (2010)

  41. Rivas, D.A., Barceló-Ordinas, J.M., Zapata, M.G., Morillo-Pozo, J.D.: Security on VANETs: privacy, misbehaving nodes, false information and secure data aggregation. J. Netw. Comput. Appl. 34(6), 1942–1955 (2011)

    Article  Google Scholar 

  42. Rottondi, C., Verticale, G., Krauss, C.: Distributed privacy-preserving aggregation of metering data in smart grids. IEEE J. Sel. Areas Commun. (JSAC)–JSAC Smart Grid Commun. Ser. 31, 1342–1354 (2013)

    Article  Google Scholar 

  43. Roy, S., Conti, M., Setia, S., Jajodia, S.: Secure data aggregation in wireless sensor networks: filtering out the attacker’s impact. Trans. Info. For. Sec. 9(4), 681–694 (2014)

    Article  Google Scholar 

  44. Shi, E., Chow, R., Chan, T.-H.H., Song, D., Rieffel, E.: Privacy-preserving aggregation of time-series data. In: In NDSS (2011)

  45. Wischhof, L., Ebner, A., Rohling, H.: Information dissemination in self-organizing intervehicle networks. IEEE Trans. Intell. Transp. Syst. 6(1), 90–101 (2005)

    Article  Google Scholar 

  46. WolframResearch. Hypergeometric2F1. From WolframResearch (2011). http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric2F1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Grining.

Additional information

Preliminary parts of this paper (without analysis and experiments on real data) has been published as “Practical Fault Tolerant Data Aggregation” in ACNS 2016. Partially supported by Polish National Science Center–2013/09/B/ST6/02258.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grining, K., Klonowski, M. & Syga, P. On practical privacy-preserving fault-tolerant data aggregation. Int. J. Inf. Secur. 18, 285–304 (2019). https://doi.org/10.1007/s10207-018-0413-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-018-0413-5

Keywords

Navigation