Abstract
Network hardening is an optimization problem to find the best combination of countermeasures to protect a network from cyber-attacks. While an attacker exploits the vulnerabilities in the network, the countermeasures can prevent some exploits by disabling the vulnerabilities. Each countermeasure has different effects; for instance, one avoids data breaches while another protects service availability. As a result, the evaluation criteria for the set of countermeasures are multi-objective. This study proposes a multi-objective network hardening algorithm that enumerates the preferable combinations of security patches near the Pareto front. Our algorithm leverages monotonic security metrics defined naturally on attack graphs. Attack graphs are the graph-structured representation of qualitative dependencies among the security incidents that could occur on a network. There exist several quantitative metrics on attack graphs and have monotonicity. Monotonic security metrics guarantee that increased countermeasures always bring better network security. This property enables a gradient-descent algorithm that searches solutions for combinatorial optimization. We show numerical results which exhibit the remarkable efficiency of our approach. The result implies that the proposed algorithm can be a better alternative to the genetic algorithms used in the past network hardening studies.














Similar content being viewed by others
Data availability
The programs developed for this study generate every data shown in this article. There is no external dependency
Code Availability Statement
Not applicable.
References
Albanese, M., Jajodia, S., Noel, S.: Time-efficient and cost-effective network hardening using attack graphs. In: IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012), pp. 1–12. IEEE (2012). ISBN 978-1-4673-1625-5. https://doi.org/10.1109/DSN.2012.6263942. URL http://ieeexplore.ieee.org/document/6263942/
Ali, H., Khan, F.A.: Attributed multi-objective comprehensive learning particle swarm optimization for optimal security of networks. Appl. Soft Comput. 13(9), 3903–3921 (2013). https://doi.org/10.1016/j.asoc.2013.04.015
Almohri, H.M.J., Watson, L.T., Yao, D., Ou, X.: Security optimization of dynamic networks with probabilistic graph modeling and linear programming. IEEE Trans. Dependable Secure Comput. 13(4), 474–487 (2016). https://doi.org/10.1109/TDSC.2015.2411264
Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, graph-based network vulnerability analysis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security - CCS’02, p. 217. ACM Press, New York, USA (2002). ISBN 1581136129. https://doi.org/10.1145/586110.586140. http://portal.acm.org/citation.cfm?doid=586110.586140
Bacic, E., Froh, M., Henderson, G.: MulVAL Extensions For Dynamic Asset Protection. Defence R&D Canada (2006)
Bhuiyan, T.H., Nandi, A.K., Medal, H., Halappanavar, M.: Minimizing expected maximum risk from cyber-Attacks with probabilistic attack success. In: 2016 IEEE Symposium on Technologies for Homeland Security, HST 2016, pp. 1–6 (2016). https://doi.org/10.1109/THS.2016.7568892
Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1(1), 146–166 (1989). https://doi.org/10.1109/69.43410
Cheng, P., Wang, L., Jajodia, S., Singhal, A.: Aggregating CVSS base scores for semantics-rich network security metrics. In: 2012 IEEE 31st Symposium on Reliable Distributed Systems, pp. 31–40. IEEE (2012). ISBN 978-1-4673-2397-0. https://doi.org/10.1109/SRDS.2012.4. URL http://ieeexplore.ieee.org/document/6424837/
Cordon, O., Herrera, F., Stützle, T.: A review on the ant colony optimization metaheuristic: basis, models and new trends. Mathw. Soft Comput. 9, 141–175 (2002)
de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-3_24. URL http://link.springer.com/10.1007/978-3-540-78800-3_24
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017
Dewri, R., Poolsappasit, N., Ray, I., Whitley, D.: Optimal security hardening using multi-objective optimization on attack tree models of networks. In: Proceedings of the 14th ACM Conference on Computer and Communications Security - CCS ’07, p. 20. ACM Press, New York, USA (2007). ISBN 9781595937032. https://doi.org/10.1145/1315245.1315272. URL http://portal.acm.org/citation.cfm?doid=1315245.1315272
Dewri, R., Ray, I., Poolsappasit, N., Whitley, D.: Optimal security hardening on attack tree models of networks: a cost-benefit analysis. Int. J. Inf. Secur. 11(3), 167–188 (2012). https://doi.org/10.1007/s10207-012-0160-y
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 26(1), 29–41 (1996). https://doi.org/10.1109/3477.484436
Durkota, K., Lisý, V., Bošanský, B., Kiekintveld, C.: Approximate solutions for attack graph games with imperfect information. In: Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9406, pp. 228–249. (2015). ISSN 16113349. https://doi.org/10.1007/978-3-319-25594-1_13
Durkota, K., Lisy, V., Bosansky, B., Kiekintveld, C.: Optimal network security hardening using attack graph games. IJCAI Int. Jt. Conf. Artif. Intell. 2015(Ijcai), 526–532 (2015)
Durkota, K., Lisy, V., Kiekintveld, C., Bosansky, B., Pechoucek, M.: Case studies of network defense with attack graph games. IEEE Intell. Systems 31(5), 24–30 (2016). https://doi.org/10.1109/MIS.2016.74.ISSN15411672
Enoch, S.Y., Hong, J.B., Ge, M., Khan, K.M., Kim, D.S.: Multi-objective security hardening optimisation for dynamic networks. IEEE Int. Conf. Commun. (2019). https://doi.org/10.1109/ICC.2019.8761984
Fikes, R.E., Nilsson, N.J.: Strips: A new approach to the application of theorem proving to problem solving. Artif. Intell. 2(3–4), 189–208 (1971). https://doi.org/10.1016/0004-3702(71)90010-5
Fila, B., Widel, W.: Exploiting attack-defense trees to find an optimal set of countermeasures. Proc. IEEE Comput. Secur. Found. Symp. 2020, 395–410 (2020). https://doi.org/10.1109/CSF49147.2020.00035
FIRST: Common Vulnerability Scoring System version 3.1: Specification Document Revision 1. pp. 1–28. (2019)
Fortin, F.-A., De, R., François-Michel, G., Marc-André, P., Marc, G.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(Jul), 2171–2175 (2012)
Froh, M., Henderson, G.: MulVAL Extensions II Defence R&D Canada-Ottawa. (2009)
Fukuda, E.H., Drummond, L.M.G.: A survey on multiobjective descent methods. Pesqui. Oper. 34(3), 585–620 (2014). https://doi.org/10.1590/0101-7438.2014.034.03.0585
Glover, F., Laguna, M.: Tabu search. In: Handbook of Combinatorial Optimization, pp. 2093–2229. Springer US, Boston, MA (1998). https://doi.org/10.1007/978-1-4613-0303-9_33. URL http://spot.colorado.edu/~glover. http://link.springer.com/10.1007/978-1-4613-0303-9_33
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968). https://doi.org/10.1109/TSSC.1968.300136
Homer, J., Ou, X., McQueen, M.A.: From attack graphs to automated configuration management-an iterative approach. Technical report (2008). URL https://people.cs.ksu.edu/~xou/publications/tr_ou_0108.pdf
Homer, J., Ou, X., Schmidt, D.: A sound and practical approach to quantifying security risk in enterprise networks. Kansas State University Technical Report, pp. 1–15. (2009)
Huang, V.L., Suganthan, P.N., Liang, J.J.: Comprehensive learning particle swarm optimizer for solving multiobjective optimization problems. Int. J. Intell. Syst. 21(2), 209–226 (2006). https://doi.org/10.1002/int.20128
Jajodia, S., Noel, S.: Topological vulnerability analysis. In: Cyber Situational Awareness, pp. 139–154. Elsevier, Amsterdam (2010). https://doi.org/10.1007/978-1-4419-0140-8_7
Jajodia, S., Park, N., Serra, E., Subrahmanian, V.S.: SHARE. ACM Trans. Internet Technol. 18(3), 1–41 (2018). https://doi.org/10.1145/3137571
Jha, S., Sheyner, O., Wing, J.: Two formal analysis of attack graphs. In: Proceedings - Computer Security Foundations Workshop, 15th IEEE, pp. 49–63. (2002). ISBN 0-7695-1689-0. https://doi.org/10.3724/SP.J.1001.2010.03584. URL http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1001.2010.03584
Khouzani, M.H.R., Liu, Z., Malacaria, P.: Scalable min-max multi-objective cyber-security optimisation over probabilistic attack graphs. Eur. J. Oper. Res. 278(3), 894–903 (2019). https://doi.org/10.1016/j.ejor.2019.04.035
Kordy, B., Wideł, W.: How well can i secure my system?. In: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence And Lecture Notes in Bioinformatics), 10510 LNCS, pp. 332–347 (2017). https://doi.org/10.1007/978-3-319-66845-1_22
Kordy, B., Wideł, W.: On quantitative analysis of attack defense trees with repeated labels. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10804 LNCS:325–346. (2018). ISSN 16113349. https://doi.org/10.1007/978-3-319-89722-6_14
Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Log. Comput. 24(1), 55–87 (2014). https://doi.org/10.1093/logcom/exs029
Joshua, L., Yevgeniy, V.: Optimal interdiction of attack plans. In: 12th International Conference on Autonomous Agents and Multiagent Systems 2013, AAMAS 2013, vol. 1, pp. 199–206. (2013)
Li, X.Y.: Optimization algorithms for the minimum-cost satisfiability problem. PhD thesis, North Carolina State University, Raleigh, North Carolina, (2004). URL http://www.lib.ncsu.edu/resolver/1840.16/4594
Miehling, E., Rasouli, M., Teneketzis, D.: Optimal defense policies for partially observable spreading processes on Bayesian attack graphs. In: MTD 2015 - Proceedings of the 2nd ACM Workshop on Moving Target Defense, Co-located with: CCS 2015, pp. 67–76. (2015). https://doi.org/10.1145/280475.28084828
Miehling, E., Rasouli, M., Teneketzis, D.: A POMDP approach to the dynamic defense of large-scale cyber networks. IEEE Trans. Inf. Forensics Secur. 13(10), 2490–2505 (2018). https://doi.org/10.1109/TIFS.2018.2819967
Nandi, A.K., Medal, H.R., Vadlamani, S.: Interdicting attack graphs to protect organizations from cyber attacks: a bi-level defender-attacker model. Comput. Oper. Res. 75, 118–131 (2016). https://doi.org/10.1016/j.cor.2016.05.005
Noel, S., Jajodia, S., O’Berry, B., Jacobs, M.: Efficient minimum-cost network hardening via exploit dependency graphs. In: 19th Annual Computer Security Applications Conference, 2003. Proceedings., pp. 86–95. IEEE (2003). https://doi.org/10.1109/CSAC.2003.1254313. URL http://ieeexplore.ieee.org/document/1254313/
Ou, X.: A Logic-programming Approach to Network Security Analysis. PhD thesis, Princeton University, USA (2005)
Ou, X., Govindavajhala, S., Appel, A.W.: MulVAL: a logic-based network security analyzer. In: Proceedings of the 14th Conference on USENIX Security Symposium, vol. 14. (2005). URL https://www.usenix.org/conference/14th-usenix-security-symposium/mulval-logic-based-network-security-analyzer
Ou, X., Boyer, W.F., McQueen, M.A.: A scalable approach to attack graph generation. In: Proceedings of the 13th ACM Conference on Computer and Communications Security - CCS ’06, pp. 336–345. ACM Press, New York, USA, (2006) . ISBN 1595935185. https://doi.org/10.1145/1180405.1180446. URL http://dl.acm.org/citation.cfm?doid=1180405.1180446
Phillips, C., Swiler, L.P.: A Graph-based System for Network-vulnerability Analysis. In: Proceedings of the 1998 Workshop on New Security Paradigms, pp. 71–79. (1998). ISBN 1-58113-168-2. https://doi.org/10.1145/310889.310919
Poolsappasit, N., Dewri, R., Ray, I.: Dynamic security risk management using bayesian attack graphs. IEEE Trans. Dependable Secure Comput. 9(1), 61–74 (2012). https://doi.org/10.1109/TDSC.2011.34
Rahman, M.A., Al-Shaer, E.: A formal approach for network security management based on qualitative risk analysis. In: Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network Management, IM 2013, pp. 244–251. (2013)
Rahman, M.A., Al-Shaer, E.: automated synthesis of distributed network access controls: a formal framework with refinement. IEEE Trans. Parallel Distrib. Syst. 28(2), 416–430 (2017). https://doi.org/10.1109/TPDS.2016.2585108
Ritchey, R., O’Berry, B., Noel, S.: Representing TCP/IP connectivity for topological analysis of network security. Proc. Ann. Comput. Secur. Appl. Conf. ACSAC 2002, 25–31 (2002). https://doi.org/10.1109/CSAC.2002.1176275
Roy, A., Kim, D.S., Trivedi, K.S.: Scalable optimal countermeasure selection using implicit enumeration on attack countermeasure trees. Proc. Int. Conf. Depend. Syst. Netw. (2012). https://doi.org/10.1109/DSN.2012.6263940
Roy, A., Kim, D.S., Trivedi, K.S.: Attack countermeasure trees (ACT): towards unifying the constructs of attack and defense trees. Secur. Commun. Netw. 5(8), 929–943 (2012). https://doi.org/10.1002/sec.299
Saha, D.: Extending logical attack graphs for efficient vulnerability analysis. Proc. ACM Conf. Comput. Commun. Secur. (2008). https://doi.org/10.1145/1455770.1455780
Sarraute, C., Buffet, O., Hoffmann, J.: POMDPs make better hackers: accounting for uncertainty in penetration testing. Proc. Natl. Conf. Artif. Intell. 3, 1816–1824 (2012)
Schneier, B.: Attack Trees. Secrets and Lies: Digital Security in a Networked World, pp. 318–333. (2015)
Serra, E., Jajodia, S., Pugliese, A., Rullo, A., Subrahmanian, V.S.: Pareto-optimal adversarial defense of enterprise systems. ACM Trans. Inf. Syst. Secur. 17(3), 1–39 (2015). https://doi.org/10.1145/2699907
Silver, D., Veness, J.: Monte-Carlo planning in large POMDPs. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems - Volume 2, vol. 23, pp. 2164–2172. (2010). https://doi.org/10.5555/2997046.2997137
Speicher, P., Steinmetz, M., Backes, M., Hoffmann, J., Künnemann, R.: Stackelberg planning: towards effective leader-follower state space search. In: 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 6286–6293. (2018)
Speicher, P., Steinmetz, M., Kunnemann, R., Simeonovski, M., Pellegrino, G., Hoffmann, J., Backes, M.: Formally reasoning about the cost and efficacy of securing the email infrastructure. In: Proceedings - 3rd IEEE European Symposium on Security and Privacy, EURO S and P 2018, pp. 77–91. (2018). https://doi.org/10.1109/EuroSP.2018.00014
Speicher, P., Steinmetz, M., Hoffmann, J., Backes, M., Künnemann, R.: Towards automated network mitigation analysis. Proc. ACM Symp. Appl. Comput. Part F1477, 1971–1978 (2019). https://doi.org/10.1145/3297280.3297473
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Yoshinobu, O., Tomohiko, Y., Elovici, Y., Shabtai, A.: extending attack graphs to represent cyber-attacks in communication protocols and modern IT networks. IEEE Trans. Depend. Secure Comput. 5971(c), 1–18 (2020). https://doi.org/10.1109/TDSC.2020.3041999
Stan, O., Bitton, R., Ezrets, M., Dadon, M., Inokuchi, M., Ohta, Y., Yagyu, T., Elovici, Y., Shabtai, A.: Heuristic Approach for Countermeasure Selection Using Attack Graphs, pp. 1–16. (2021). https://doi.org/10.1109/csf51468.2021.00003
Sun, X., Dai, J., Singhal, A., Liu, P.: Inferring the stealthy bridges between enterprise network islands in cloud using cross-layer bayesian networks. Lecture Notes Inst. Comput. Sci. Soc.-Inf. Telecommun. Eng. LNICST 152, 3–23 (2015). https://doi.org/10.1007/978-3-319-23829-6_1
Sun, X., Singhal, A., Liu, P.: Towards actionable mission impact assessment in the context of cloud computing. In: Livraga, G., Zhu, S. (eds.) Data and Applications Security and Privacy XXXI, pp. 259–274. Springer, Cham (2017)
Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool. Proc. DARPA Inf. Surviv. Conf. Expo. II, DISCEX 2001 2, 307–321 (2001). https://doi.org/10.1109/DISCEX.2001.932182
Viduto, V., Maple, C., Huang, W., LóPez-PeréZ, D.: A novel risk assessment and optimisation model for a multi-objective network security countermeasure selection problem. Decis. Support Syst. 53(3), 599–610 (2012)
Wang, L., Noel, S., Jajodia, S.: Minimum-cost network hardening using attack graphs. Comput. Commun. 29(18), 3812–3824 (2006). https://doi.org/10.1016/j.comcom.2006.06.018
Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S.: An attack graph-based probabilistic security metric. In: IFIP Annual Conference on Data and Applications Security and Privacy, pp. 283–296. 2008. ISBN 978-3-540-70567-3. https://doi.org/10.1007/978-3-540-70567-3_22
Wang, S., Zhang, Z., Kadobayashi, Y.: Exploring attack graph for cost-benefit security hardening: a probabilistic approach. Comput. Secur. 32(61100156), 158–169 (2013). https://doi.org/10.1016/j.cose.2012.09.013
While, L., Hingston, P., Barone, L., Huband, S.: A faster algorithm for calculating hypervolume. IEEE Trans. Evol. Comput. 10(1), 29–38 (2006). https://doi.org/10.1109/TEVC.2005.851275
Acknowledgements
The author wishes to acknowledge Dr. Junichi Iijima, Professor in the Department of International Digital and Design Management, School of Management, Tokyo University of Science, and Dr. Keisuke Tanaka, Professor in the Department of Mathematical and Computing Science, School of Computing, Tokyo Institute of Technology, for reviewing and providing constructive advice on the drafts of this article.
Funding
No funding was received for conducting this study.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Zenitani, K. A multi-objective cost–benefit optimization algorithm for network hardening. Int. J. Inf. Secur. 21, 813–832 (2022). https://doi.org/10.1007/s10207-022-00586-7
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10207-022-00586-7