Skip to main content

Advertisement

Log in

Design and implementation of a new lightweight chaos-based cryptosystem to secure IoT communications

  • Regular contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Internet of things (IoT) provides several applications such as intelligent urban transportation, smart factory, and smart health. In such systems, the transmitted data are important and must be secured to prevent destructive and unauthorized access to critical data. Indeed, existing IoT solutions come with conventional cryptographic techniques such as AES, RSA, and DES. However, some of these algorithms are no longer reliable and others require significant resources in terms of energy, memory, and computing power, making them unsuitable for IoT nodes that may have limited resources. To address these challenges, this paper develops a new lightweight and efficient cryptosystem to secure IoT communications. The proposed cryptosystem is composed of a chaos-based random generator, confusion, and diffusion blocks. Through a use case, the experimental results, at implementation and statistical levels, demonstrate good performances. The implementation results in the Mbed microcontroller NXP LPC1768 include low memory usage, fast encryption and decryption speed, and low energy consumption. The statistical results confirm the robustness of the proposed cryptosystem against many attacks according to the NIST test, key size, key sensitivity, information entropy, and statistical histogram analysis. Compared to related works, this paper proposes an enhanced lightweight cryptosystem with optimized confusion–diffusion layers that can be implemented in different resource-constrained hardware boards. Moreover, the proposed solution does not make any assumptions about the data types to be used in IoT networks. It is open to any type (sensing value, text, voice, image, etc.). These features guarantee the potential use of the proposed cryptosystem in many real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Cosgrave, J.: Ready to respond:skills gaps for responding to humanitarian crises in urban settings in the wash and shelter sectors (2013). https://www.urban-response.org/help-library. Accessed Feb 2022

  2. UD. of Transportation: Smart city challenge (2021). https://www.transportation.gov/smartcity. Accessed Oct 2021

  3. Yaacoub, J.-P.A., Noura, H.N., Salman, O., Chehab, A.: Robotics cyber security: vulnerabilities, attacks, countermeasures, and recommendations. Int. J. Inf. Secur. 66, 1–44 (2021). https://doi.org/10.1007/s10207-021-00545-8

    Article  Google Scholar 

  4. Stellios, I., Kotzanikolaou, P., Psarakis, M., Alcaraz, C., Lopez, J.: A survey of iot-enabled cyberattacks: assessing attack paths to critical infrastructures and services. IEEE Commun. Surv. Tutor. 20(4), 3453–3495 (2018). https://doi.org/10.1109/COMST.2018.2855563

    Article  Google Scholar 

  5. Rajbir, K., Navroop, K., Sood Sandeep, K.: Security in iot network based on stochastic game net model [j]. Int. J. Netw. Manag. 27(4), 1–13 (2017). https://doi.org/10.1002/nem.1975

    Article  Google Scholar 

  6. Sakiz, F., Sen, S.: A survey of attacks and detection mechanisms on intelligent transportation systems: Vanets and iov. Ad Hoc Netw. 61, 33–50 (2017). https://doi.org/10.1016/j.adhoc.2017.03.006

  7. Yang, Q., Yang, J., Yu, W., An, D., Zhang, N., Zhao, W.: On false data-injection attacks against power system state estimation: modeling and countermeasures. IEEE Trans. Parallel Distrib. Syst. 25(3), 717–729 (2013). https://doi.org/10.1109/TPDS.2013.92

    Article  Google Scholar 

  8. Obaidat, M.S., Rana, S.P., Maitra, T., Giri, D., Dutta, S.: Biometric security and internet of things (iot). In: Biometric-Based Physical and Cybersecurity Systems, pp. 477–509. Springer (2019). https://doi.org/10.1007/978-3-319-98734-7_19

  9. Prevezianou, M.F.: Wannacry as a creeping crisis. Underst. Creep. Cris. 37, 2021 (2021). https://doi.org/10.1007/978-3-030-70692-0_3

    Article  Google Scholar 

  10. Farion-Melnyk, A., Rozheliuk, V., Slipchenko, T., Banakh, S., Farion, M., Bilan, O.: Ransomware attacks: risks, protection and prevention measures. In: 2021 11th International Conference on Advanced Computer Information Technologies (ACIT), pp. 473–478. IEEE (2021). https://doi.org/10.1109/ACIT52158.2021.9548507

  11. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Inácio, P.R.: Security issues in cloud environments: a survey. Int. J. Inf. Secur. 13(2), 113–170 (2014). https://doi.org/10.1007/s10207-013-0208-7

    Article  Google Scholar 

  12. Singh, S., Sharma, P.K., Moon, S.Y., Park, J.H.: Advanced lightweight encryption algorithms for iot devices: survey, challenges and solutions. J. Ambient Intell. Hum. Comput. 66, 1–18 (2017). https://doi.org/10.1007/s12652-017-0494-4

    Article  Google Scholar 

  13. Seyhan, K., Nguyen, T.N., Akleylek, S., Cengiz, K.: Lattice-based cryptosystems for the security of resource-constrained iot devices in post-quantum world: a survey. Clust. Comput. 66, 1–20 (2021). https://doi.org/10.1007/s10586-021-03380-7

    Article  Google Scholar 

  14. McKay, K., Bassham, L., Turan, M., Mouha, N.: Report on lightweight cryptography. National Institute of Standards and Technology internal report 8114 (2017). https://doi.org/10.6028/NIST.IR.8114

  15. Lee, H., Lee, K., Shin, Y.: Aes implementation and performance evaluation on 8-bit microcontrollers, arXiv preprint arXiv:0911.0482 (2009). https://arxiv.org/abs/0911.0482

  16. Omrani, T., Rhouma, R., Becheikh, R.: Licid: a lightweight image cryptosystem for iot devices. Cryptologia 43(4), 313–343 (2019). https://doi.org/10.1080/01611194.2018.1563009

    Article  Google Scholar 

  17. Al-Haija, Q.A., Al Tarayrah, M., Al-Qadeeb, H., Al-Lwaimi, A.: A tiny rsacryptosystem based on arduino microcontroller useful for small scalenetworks. Procedia Comput. Sci. 34, 639–646 (2014)

    Article  Google Scholar 

  18. Aishwarya, R., Sreerangaraju, M.: Enhanced security using dna cryptography. Int. Res. J. Eng. Technol. 6, 3193–3196 (2019)

    Google Scholar 

  19. Pasupuleti, S.K., Varma, D.: Lightweight ciphertext-policy attribute-based encryption scheme for data privacy and security in cloud-assisted iot. In: Real-Time Data Analytics for Large Scale Sensor Data, pp. 97–114. Elsevier (2020)

  20. Chen, S., Yu, S., Lü, J., Chen, G., He, J.: Design and fpga-based realization of a chaotic secure video communication system. IEEE Trans. Circuits Syst. Video Technol. 28(9), 2359–2371 (2017). https://doi.org/10.1109/TCSVT.2017.2703946

    Article  Google Scholar 

  21. Nguyen, N., Pham-Nguyen, L., Nguyen, M.B., Kaddoum, G.: A low power circuit design for chaos-key based data encryption. IEEE Access 8, 104432–104444 (2020)

    Article  Google Scholar 

  22. Nesa, N., Banerjee, I.: A lightweight security protocol for iot using Merkle hash tree and chaotic cryptography. In: Advanced Computing and Systems for Security, pp. 3–16. Springer (2020). https://doi.org/10.1007/978-981-13-8969-6_1

  23. Ahmad, J., Larijani, H., Emmanuel, R., Mannion, M., Qureshi, A.-U.-H.: Secure occupancy monitoring system for iot using lightweight intertwining logistic map. In: 2018 10th Computer Science and Electronic Engineering (CEEC), pp. 208–213 (2018). https://doi.org/10.1109/CEEC.2018.8674208

  24. Akgül, A., Kaçar, S., Aricıoğlu, B., Pehlivan, I.: Text encryption by using one-dimensional chaos generators and nonlinear equations. In: 2013 8th International Conference on Electrical and Electronics Engineering (ELECO), pp. 320–323. IEEE (2013). https://doi.org/10.1109/ELECO.2013.6713853

  25. Rajendran, S., Doraipandian, M.: Chaos based secure medical image transmission model for IoT-powered healthcare systems. IOP Conf. Ser. Mater. Sci. Eng. 1022, 012106 (2021). https://doi.org/10.1088/1757-899X/1022/1/012106

    Article  Google Scholar 

  26. Azzaz, M., Krimil, M.: A new chaos-based text encryption to secure gps data. In: 2018 International Conference on Smart Communications in Network Technologies (SaCoNeT), pp. 294–299. IEEE (2018). https://doi.org/10.1109/SaCoNeT.2018.8585703

  27. García-Guerrero, E., Inzunza-González, E., López-Bonilla, O., Cárdenas-Valdez, J., Tlelo-Cuautle, E.: Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using pic-microcontroller via zigbee channels. Chaos Solitons Fract. 133, 109646(2020)

  28. Yabu, M., Sakiyama, K., Sugawara, T.: Low-memory implementation of authenticated encryption algorithm saeaes on arm cortex-m0 microcontroller. In: 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), pp. 181–185. IEEE (2020)

  29. Ragab, A., Selim, G., Wahdan, A., Madani, A.: Robust hybrid lightweight cryptosystem for protecting iot smart devices. In: International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage, pp. 5–19. Springer (2019). https://doi.org/10.1007/978-3-030-24900-7_1

  30. Company, S.: Internet of things (iot) connected devices installed base worldwide from 2015 to 2025 (2021). https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/. Accessed Oct 2021

  31. Kifouche, A., Hamouche, R., Kocik, R., Rachedi, A., Baudoin, G.: Model driven framework to enhance sensor network design cycle. Trans. Emerg. Telecommun. Technol. 30(8), e3560 (2019). https://doi.org/10.1002/ett.3560

    Article  Google Scholar 

  32. Lv, Z., Qiao, L., Kumar Singh, A., Wang, Q.: Ai-empowered iot security for smart cities. ACM Trans. Internet Technol. 21(4), 1–21 (2021). https://doi.org/10.1145/3406115

    Article  Google Scholar 

  33. Rachedi, A., Rehmani, M.H., Cherkaoui, S., Rodrigues, J.J.: IEEE access special section editorial: the plethora of research in internet of things (iot). IEEE Access 4, 9575–9579 (2016). https://doi.org/10.1109/ACCESS.2016.2647499

    Article  Google Scholar 

  34. Stergiou, C., Psannis, K.E.: Recent advances delivered by mobile cloud computing and internet of things for big data applications: a survey. Int. J. Netw. Manag. 27(3), e1930 (2017). https://doi.org/10.1002/nem.1930

    Article  Google Scholar 

  35. I.I. Initiative, et al.: Towards a definition of the internet of things (iot) (2015)

  36. Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos 16(08), 2129–2151 (2006). https://doi.org/10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, J., Zhang, W., Kumari, S., Choo, K.-K.R., Hogrefe, D.: Security analysis and improvement of a mutual authentication and key agreement solution for wireless sensor networks using chaotic maps. Trans. Emerg. Telecommun. Technol. 29(6), e3295 (2018). https://doi.org/10.1002/ett.3295

    Article  Google Scholar 

  38. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963). https://doi.org/10.1175/1520-0469(1963)0200130:DNF2.0.CO;2

    Article  MathSciNet  MATH  Google Scholar 

  39. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors. Springer, Berlin (2012)

    MATH  Google Scholar 

  40. Moon, S., Baik, J.-J., Seo, J.M.: Chaos synchronization in generalized Lorenz systems and an application to image encryption. Commun. Nonlinear Sci. Numer. Simul. 96, 105708 (2021). https://doi.org/10.1016/j.cnsns.2021.105708

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, C., Chen, G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fract. 22(3), 549–554 (2004). https://doi.org/10.1016/j.chaos.2004.02.035

    Article  MATH  Google Scholar 

  42. Agiza, H.: Chaos synchronization of lü dynamical system. Nonlinear Anal. Theory Methods Appl. 58(1–2), 11–20 (2004). https://doi.org/10.1016/j.na.2004.04.002

    Article  MathSciNet  MATH  Google Scholar 

  43. Hu, T.: Discrete chaos in fractional Hénon map. Appl. Math. 2014, 66 (2014). https://doi.org/10.4236/am.2014.515218

    Article  Google Scholar 

  44. Wu, G.-C., Baleanu, D.: Chaos synchronization of the discrete fractional logistic map. Signal Process. 102, 96–99 (2014). https://doi.org/10.1016/j.sigpro.2014.02.022

    Article  Google Scholar 

  45. Yang, T.: A survey of chaotic secure communication systems. Int. J. Comput. Cognit. 2(2), 81–130 (2004)

    Google Scholar 

  46. Lee, R.B., Shi, Z., Yang, X.: Efficient permutation instructions for fast software cryptography. IEEE Micro 21(6), 56–69 (2001). https://doi.org/10.1109/40.977759

    Article  Google Scholar 

  47. Alfarano, G.N., Beierle, C., Isobe, T., Kölbl, S., Leander, G.: Shiftrows alternatives for aes-like ciphers and optimal cell permutations for midori and skinny. In: IACR Transactions on Symmetric Cryptology, pp. 20–47 (2018). https://tosc.iacr.org/index.php/ToSC/article/view/887

  48. Lekić, M., Gardašević, G.: Iot sensor integration to node-red platform. In: 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–5. IEEE (2018). https://doi.org/10.1109/INFOTEH.2018.8345544

  49. M. Inc: Understand your things: the open iot platform with Matlab analytics (2021). https://thingspeak.com/. Accessed Oct 2021

  50. Adnan, S.F.S., Isa, M.A.M., Hashim, H.: Analysis of asymmetric encryption scheme, aa \(\beta \) performance on arm microcontroller. In: 2017 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), pp. 146–151. IEEE (2017)

  51. Bassham, L.E., III, Rukhin, A.L., Soto, J., Nechvatal, J.R., Smid, M.E., Barker, E.B., Leigh, S.D., Levenson, M., Vangel, M., Banks, D.L., et al.: Sp 800-22 rev. 1a. a statistical test suite for random and pseudorandom number generators for cryptographic applications (2010). https://doi.org/10.5555/2206233

  52. Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications, tech. rep., Booz–Allen and Hamilton Inc Mclean, VA (2001)

  53. Marsaglia, G.: Diehard: a battery of tests of randomness. http://stat.fsu.edu/geo (1996)

  54. Bouteghrine, B., Tanougast, C., Sadoudi, S.: Novel image encryption algorithm based on new 3-d chaos map. Multimedia Tools Appl. 66, 1–23 (2021). https://doi.org/10.1007/s11042-021-10773-8

    Article  Google Scholar 

  55. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. J. Cryptol. 4(1), 3–72 (1991). https://doi.org/10.1007/BF00630563

    Article  MathSciNet  MATH  Google Scholar 

  56. Das, A., Hajra, S., Mandal, M.: Rgb image encryption using microcontroller atmega 32. Microsyst. Technol. 27(2), 409–417 (2021). https://doi.org/10.1007/s00542-018-3980-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdenour Kifouche.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kifouche, A., Azzaz, M.S., Hamouche, R. et al. Design and implementation of a new lightweight chaos-based cryptosystem to secure IoT communications. Int. J. Inf. Secur. 21, 1247–1262 (2022). https://doi.org/10.1007/s10207-022-00609-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-022-00609-3

Keywords