Skip to main content

Advertisement

Log in

LASSI: a lightweight authenticated key agreement protocol for fog-enabled IoT deployment

  • Regular contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

Due to the massive increase in the Internet of Things (IoT) devices in various applications requiring an IoT–cloud environment, the network latency is high since all the IoT devices have to be authenticated by the cloud servers. Fog nodes can be used as an intercessor between IoT devices and the cloud, thereby reducing the latency of the network since the burden of authenticating the devices can be offloaded from the cloud. This paper proposes a lightweight secure mutual authentication scheme based on physically unclonable function that best addresses the current issues. Since the fog nodes are constrained, a lightweight authentication scheme will be the best solution. The formal security analysis of the scheme LASSI is done using real-or-random model. We used the widely accepted tool Scyther for formal security verification, and the results show that the scheme LASSI is resilient against various attacks. The performance evaluation of the scheme and the comparison with related other schemes show that our scheme is better in terms of communication and computation costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets and code generated during the current study are available from the corresponding author on reasonable request.

References

  1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. Ni, J., Zhang, K., Lin, X., Shen, X.S.: Securing fog computing for internet of things applications: challenges and solutions. IEEE Commun. Surv. Tutor. 20(1), 601–628 (2017)

    Article  Google Scholar 

  3. Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., Sikdar, B.: A survey on IoT security: application areas, security threats, and solution architectures. IEEE Access 7, 82721–82743 (2019)

    Article  Google Scholar 

  4. Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration. ACM Comput. Surv. CSUR 51(6), 1–29 (2019)

    Article  Google Scholar 

  5. Botta, A., De Donato, W., Persico, V., Pescapé, A.: Integration of cloud computing and internet of things: a survey. Future Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  6. Sarkar, S., Misra, S.: Theoretical modelling of fog computing: a green computing paradigm to support IoT applications. Iet Netw. 5(2), 23–29 (2016)

    Article  Google Scholar 

  7. Alrawais, A., Alhothaily, A., Hu, C., Cheng, X.: Fog computing for the internet of things: security and privacy issues. IEEE Internet Comput. 21(2), 34–42 (2017)

    Article  Google Scholar 

  8. Mall, P., Amin, R.: EuDaimon: PUF-based robust and lightweight authenticated session key establishment protocol for IoT-enabled smart society. IEEE Syst. J. 16, 2891–2898 (2021)

    Article  Google Scholar 

  9. Mukhopadhyay, D.: PUFs as promising tools for security in internet of things. IEEE Des. Test 33(3), 103–115 (2016)

    Article  Google Scholar 

  10. Mall, P., Amin, R., Das, A.K., Leung, M.T., Choo, K.-K.R.: PUF-based authentication and key agreement protocols for IoT, WSNs and smart grids: a comprehensive survey. IEEE Internet Things J. 9, 8205–8228 (2022)

    Article  Google Scholar 

  11. Guo, Y., Zhang, Z., Guo, Y.: Fog-centric authenticated key agreement scheme without trusted parties. IEEE Syst. J. 15, 5057–66 (2020)

    Article  Google Scholar 

  12. Turkanović, M., Brumen, B., Hölbl, M.: A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the internet of things notion. Ad Hoc Netw. 20, 96–112 (2014)

    Article  Google Scholar 

  13. Farash, M.S., Turkanović, M., Kumari, S., Hölbl, M.: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Netw. 36, 152–176 (2016)

    Article  Google Scholar 

  14. Amin, R., Kumar, N., Biswas, G., Iqbal, R., Chang, V.: A light weight authentication protocol for IoT-enabled devices in distributed cloud computing environment. Future Gener. Comput. Syst. 78, 1005–1019 (2018)

    Article  Google Scholar 

  15. Wazid, M., Bagga, P., Das, A.K., Shetty, S., Rodrigues, J.J., Park, Y.H.: AKM-IoV: authenticated key management protocol in fog computing-based internet of vehicles deployment. IEEE Internet Things J. 6(5), 8804–8817 (2019)

    Article  Google Scholar 

  16. Saleem, M.A., Mahmood, K., Kumari, S.: Comments on “AKM-IoV: authenticated key management protocol in fog computing-based internet of vehicles deployment’’. IEEE Internet Things J. 7(5), 4671–4675 (2020)

    Article  Google Scholar 

  17. Kunal, S., Saha, A., Amin, R.: An overview of cloud-fog computing: architectures, applications with security challenges. Secur. Priv. 2(4), e72 (2019)

    Google Scholar 

  18. Gope, P.: LAAP: lightweight anonymous authentication protocol for D2D-aided fog computing paradigm. Comput. Secur. 86, 223–237 (2019)

    Article  Google Scholar 

  19. Wazid, M., Das, A.K., Kumar, N., Vasilakos, A.V.: Design of secure key management and user authentication scheme for fog computing services. Future Gener. Comput. Syst. 91, 475–492 (2019)

    Article  Google Scholar 

  20. Jia, X., He, D., Kumar, N., Choo, K.-K.R.: Authenticated key agreement scheme for fog-driven IoT healthcare system. Wirel. Netw. 25(8), 4737–4750 (2019)

    Article  Google Scholar 

  21. Amin, R., Kunal, S., Saha, A., Das, D., Alamri, A.: CFSec: password based secure communication protocol in cloud–fog environment. J. Parallel Distrib. Comput. 140, 52–62 (2020)

    Article  Google Scholar 

  22. Chatterjee, U., Chakraborty, R.S., Mukhopadhyay, D.: A PUF-based secure communication protocol for IoT. ACM Trans. Embed. Comput. Syst. (TECS) 16(3), 1–25 (2017)

    Article  Google Scholar 

  23. Aman, M.N., Chua, K.C., Sikdar, B.: Mutual authentication in IoT systems using physical unclonable functions. IEEE Internet Things J. 4(5), 1327–1340 (2017)

    Article  Google Scholar 

  24. Gope, P., Sikdar, B.: Lightweight and privacy-preserving two-factor authentication scheme for IoT devices. IEEE Internet Things J. 6(1), 580–589 (2018)

    Article  Google Scholar 

  25. Byun, J.W.: End-to-end authenticated key exchange based on different physical unclonable functions. IEEE Access 7, 102951–102965 (2019)

    Article  Google Scholar 

  26. Li, S., Zhang, T., Yu, B., He, K.: A provably secure and practical PUF-based end-to-end mutual authentication and key exchange protocol for IoT. IEEE Sens. J. 21(4), 5487–5501 (2020)

    Article  Google Scholar 

  27. Chang, C.-C., Le, H.-D.: A provably secure, efficient, and flexible authentication scheme for ad hoc wireless sensor networks. IEEE Trans. Wirel. Commun. 15(1), 357–366 (2015)

    Article  Google Scholar 

  28. Gope, P., Hwang, T.: A realistic lightweight anonymous authentication protocol for securing real-time application data access in wireless sensor networks. IEEE Trans. Ind. Electron. 63(11), 7124–7132 (2016)

    Article  Google Scholar 

  29. Bansal, G., Naren, N., Chamola, V., Sikdar, B., Kumar, N., Guizani, M.: Lightweight mutual authentication protocol for V2G using physical unclonable function. IEEE Trans. Veh. Technol. 69(7), 7234–7246 (2020)

    Article  Google Scholar 

  30. Chuang, Y.-H., Lei, C.-L.: PUF based authenticated key exchange protocol for IoT without verifiers and explicit CRPs. IEEE Access 9, 112733–112743 (2021)

    Article  Google Scholar 

  31. Jiang, Q., Zhang, X., Zhang, N., Tian, Y., Ma, X., Ma, J.: Three-factor authentication protocol using physical unclonable function for IoV. Comput. Commun. 173, 45–55 (2021)

    Article  Google Scholar 

  32. Masud, M., Gaba, G.S., Choudhary, K., Hossain, M.S., Alhamid, M.F., Muhammad, G.: Lightweight and anonymity-preserving user authentication scheme for IoT-based healthcare. IEEE Internet Things J. 9, 2649–2656 (2021)

    Article  Google Scholar 

  33. Gope, P., Das, A.K., Kumar, N., Cheng, Y.: Lightweight and physically secure anonymous mutual authentication protocol for real-time data access in industrial wireless sensor networks. IEEE Trans. Ind. Inform. 15(9), 4957–4968 (2019)

    Article  Google Scholar 

  34. Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) Advances in Cryptology–EUROCRYPT 2001, pp. 453–474. Springer, Berlin (2001)

    Chapter  Google Scholar 

  35. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory 29(2), 198–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  36. Amin, R., Biswas, G.: An improved rsa based user authentication and session key agreement protocol usable in tmis. J. Med. Syst. 39(8), 79 (2015)

    Article  Google Scholar 

  37. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Examining smart-card security under the threat of power analysis attacks. IEEE Trans. Comput. 51(5), 541–552 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bera, B., Saha, S., Das, A.K., Kumar, N., Lorenz, P., Alazab, M.: Blockchain-envisioned secure data delivery and collection scheme for 5g-based IoT-enabled internet of drones environment. IEEE Trans. Veh. Technol. 69(8), 9097–9111 (2020)

    Article  Google Scholar 

  39. Hu, P., Dhelim, S., Ning, H., Qiu, T.: Survey on fog computing: architecture, key technologies, applications and open issues. J. Netw. Comput. Appl. 98, 27–42 (2017)

    Article  Google Scholar 

  40. Mukherjee, M., Shu, L., Wang, D.: Survey of fog computing: fundamental, network applications, and research challenges. IEEE Commun. Surv. Tutor. 20(3), 1826–1857 (2018)

    Article  Google Scholar 

  41. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key exchange in the three-party setting. In: International Workshop on Public Key Cryptography, pp. 65–84. Springer (2005)

  42. Wazid, M., Das, A.K., Odelu, V., Kumar, N., Susilo, W.: Secure remote user authenticated key establishment protocol for smart home environment. IEEE Trans. Dependable Secur. Comput. 17(2), 391–406 (2017)

    Article  Google Scholar 

  43. Nadeau, P., Cremers, C.J., Lafourcade, P.: Comparing state spaces in automatic security protocol analysis. In: Cortier, V., Kirchner, C., Okada, M., Sakurada, H. (eds.) Formal to Practical Security, pp. 70–94. Springer, Berlin (2009)

    MATH  Google Scholar 

  44. Ali, R., Pal, A.K., Kumari, S., Sangaiah, A.K., Li, X., Wu, F.: An enhanced three factor based authentication protocol using wireless medical sensor networks for healthcare monitoring. J. Ambient Intell. Humaniz. Comput. (2018). https://doi.org/10.1007/s12652-018-1015-9

  45. Ma, M., He, D., Wang, H., Kumar, N., Choo, K.-K.R.: An efficient and provably secure authenticated key agreement protocol for fog-based vehicular ad-hoc networks. IEEE Internet Things J. 6(5), 8065–8075 (2019)

    Article  Google Scholar 

  46. Ali, Z., Chaudhry, S.A., Mahmood, K., Garg, S., Lv, Z., Zikria, Y.B.: A clogging resistant secure authentication scheme for fog computing services. Comput. Netw. 185, 107731 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This research work is supported by DR SPM International Institute of Information Technology, Naya Raipur, and also supported by University Grants Commission, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruhul Amin.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Ethical statements

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdussami, M., Amin, R. & Vollala, S. LASSI: a lightweight authenticated key agreement protocol for fog-enabled IoT deployment. Int. J. Inf. Secur. 21, 1373–1387 (2022). https://doi.org/10.1007/s10207-022-00619-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-022-00619-1

Keywords

Navigation