Skip to main content
Log in

A typology of secure multicast communication over 5 G/6 G networks

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

The growth of media services, multimedia conferencing, interactive distance learning, and distributed interactive simulations is becoming more dependent on the security of multicast communication over 5 G and 6 G networks. In order to ensure the security and efficacy of multicast communication, our research came up with the idea of combining multicast public-key encryption with digital signatures known as “Multi-Receiver Signcryption (MRSC).” As compared to multicast encryption and signature primitives, MRSC significantly improves the effectiveness of secure information delivery through multicast communication over 5 G and 6 G networks. In this paper, we first provide the formal model of MRSC schemes used in Public Key Infrastructure, Identity-based Cryptography, and Certificateless Cryptography. Secondly, we present a typology of MRSC, as well as a summary of an in-depth investigation of the qualities of security, the cost of computing, and the overhead of communication over the networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data are available upon request from the authors.

References

  1. Park, M.-H., Park, Y.-H., Jeong, H.-Y., Seo, S.-W.: Key management for multiple multicast groups in wireless networks. IEEE Trans. Mob. Comput. 12(9), 1712–1723 (2012)

    Article  Google Scholar 

  2. Striccoli, D., Piro, G., Boggia, G.: Multicast and broadcast services over mobile networks: A survey on standardized approaches and scientific outcomes. IEEE Commun. Surv. Tutor. 21(2), 1020–1063 (2018)

    Article  Google Scholar 

  3. Islam, S., Muslim, N., Atwood, J.W.: A survey on multicasting in software-defined networking. IEEE Commun. Surv. Tutor. 20(1), 355–387 (2017)

    Article  Google Scholar 

  4. Hassouna, A.B., Koubaa, H., Saidane, L.A.: Multi-user diversity wireless multicast: a survey. Comput. Netw. 175, 107282 (2020)

    Article  Google Scholar 

  5. Linsong, D., Huang, C., Guo, W., Ma, J., Ma, X., Tang, Y.: Reconfigurable intelligent surfaces assisted secure multicast communications. IEEE Wirel. Commun. Lett. 9(10), 1673–1676 (2020)

    Article  Google Scholar 

  6. Pizzi, S., Suraci, C., Iera, A., Molinaro, A., Araniti, G.: A sidelink-aided approach for secure multicast service delivery: From human-oriented multimedia traffic to machine type communications. IEEE Trans. Broadcast. 67(1), 313–323 (2020)

    Article  Google Scholar 

  7. Sekar, S., Latha, B.: Lightweight reliable and secure multicasting routing protocol based on cross-layer for manet. Concurr. Comput. Pract. Exper. 32(4), e5025 (2020)

    Article  Google Scholar 

  8. Curtmola, R., Kamara, S.: A mechanism for communication-efficient broadcast encryption over wireless ad hoc networks. Electr. Notes Theor. Comput. Sci. 171(1), 57–69 (2007)

    Article  MATH  Google Scholar 

  9. Zheng, Y.: Signcryption and its applications in efficient public key solutions. In: International Workshop on Information Security, pp. 291–312. Springer, (1998)

  10. Zheng, Y..: Digital signcryption or how to achieve cost (signature & encryption)D\(\ll \) cost(signature)+cost (encryption). In: Annual International Cryptology Conference, pp. 165–179. Springer, (1997)

  11. Fagen Li and Muhammad Khurram Khan: A survey of identity-based signcryption. IETE Tech. Rev. 28(3), 265–272 (2011)

    Article  Google Scholar 

  12. Singh, A.K.: A review of elliptic curve based signcryption schemes. Int. J. Comput. Appl. 102, 6 (2014)

    Google Scholar 

  13. Mandal, M., Sharma, G., Verma, A.K.: Putational review of identity-based signcryption schemes. Int. J. Netw. Secur. 18(5), 969–977 (2016)

    Google Scholar 

  14. Ullah, S., Li, X.-Y., Zhang, L.: A review of signcryption schemes based on hyper elliptic curve. In: 2017 3rd International Conference on Big Data Computing and Communications (BIGCOM), pp. 51–58. IEEE, (2017)

  15. Ishai, Y., Kushilevitz, E., Ostrovsky, R.: Sufficient conditions for collision-resistant hashing. In: Theory of Cryptography Conference, pp. 445–456. Springer, (2005)

  16. Hsiao, C.-Y., Reyzin, L.: Finding collisions on a public road, or do secure hash functions need secret coins? In: Annual International Cryptology Conference, pp. 92–105. Springer, (2004)

  17. Diffie, W., Hellman, M.E.: New directions in cryptography. In: Democratizing Cryptography: The Work of Whitfield Diffie and Martin Hellman, pp. 365–390. (2022)

  18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ullah, I., Khan, M.A., Alkhalifah, A., Nordin, R., Alsharif, M.H., Alghtani, A.H., Aly, A.A.: A multi-message multi-receiver signcryption scheme with edge computing for secure and reliable wireless internet of medical things communications. Sustainability 13(23), 13184 (2021)

    Article  Google Scholar 

  21. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Workshop on the theory and application of cryptographic techniques, pp. 47–53. Springer, (1984)

  22. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Annual International Cryptology Conference, pp. 213–229. Springer, (2001)

  23. Xiaopeng, Yu., Zhao, W., Tang, D.: Efficient and provably secure multi-receiver signcryption scheme using implicit certificate in edge computing. J. Syst. Archit. 126, 102457 (2022)

    Article  Google Scholar 

  24. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: International Conference on the Theory and Application of Cryptology and Information Security, pp. 452–473. Springer, (2003)

  25. Schaad, J., Ramsdell, B., Turner, S.: Secure/multipurpose internet mail extensions (s/mime) version 4.0 message specification. In: Technical Report, (2019)

  26. Kurosawa, K.: Multi-recipient public-key encryption with shortened ciphertext. In: International Workshop on Public Key Cryptography, pp. 48–63. Springer, (2002)

  27. Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: security notions and randomness re-use. PKC 2003, 85–99 (2003)

    MATH  Google Scholar 

  28. Bellare, M., Boldyreva, A., Kurosawa, K., Staddon, J.: Multi-recipient encryption schemes: efficient constructions and their security. IEEE Trans. Inf. Theory 53(11), 3927–3943 (2007)

    Article  MATH  Google Scholar 

  29. Fiat, A., Naor, M.: Broadcast encryption. In: Annual International Cryptology Conference, pp. 480–491. Springer, (1993)

  30. Elkamchouchi, H.M., Emarah, A.-A.M., Hagras, E.A.A.: Public key multi-message signcryption (pk-mms) scheme for secure communication systems. In: Fifth Annual Conference on Communication Networks and Services Research (CNSR’07), pp. 329–334. IEEE, (2007)

  31. Elkamchouchi, H.M., Hagras, E.A.A.: Public key threshold multi-message signcryption (pk-tmms) scheme with (t, n) shared verification. In: 2009 National Radio Science Conference, pp. 1–9. IEEE, (2009)

  32. Elkamchouchi, H.M., et al.: A new public key multi-message dynamic signcryption (pk-mm-ds) scheme for cryptographic transmission. In: 2007 National Radio Science Conference, pp. 1–10. IEEE, (2007)

  33. Yavuz, A.A., et al.: Sat05-6: Nameps: n-tier satellite multicast security protocol based on signcryption schemes. In: IEEE Globecom 2006, pp. 1–6. IEEE, (2006)

  34. Han, Y., Yang, X., Hu, Y.: Signcryption based on elliptic curve and its multi-party schemes. In: Proceedings of the 3rd International Conference on Information Security, pp. 216–217 (2004)

  35. Elkamchouchi, H.M., et al.: A new efficient public key multi-message multi-recipient signcryption (pk-mm-mrs) scheme for provable secure communications. In: 2007 International Conference on Computer Engineering & Systems, pp. 89–94. IEEE, (2007)

  36. Han, Y., Gui, X.: Multi-recipient signcryption for secure group communication. In: 2009 4th IEEE Conference on Industrial Electronics and Applications, pp. 161–165. IEEE, (2009)

  37. Elkamchouchi, H., et al.: A new efficient multiple broadcasters signcryption scheme (mbss) for secure distributed networks. In: 2009 Fifth International Conference on Networking and Services, pp. 204–209. IEEE, (2009)

  38. Elkamchouchi, HM., et al.: A new efficient publicly verifiable signcryption scheme and its multiple recipients variant for firewalls implementation. In: 2009 National Radio Science Conference, pp. 1–9. IEEE, (2009)

  39. Ahmed, F., et al.: An efficient multi recipient signcryption scheme offering non repudiation. In: 2010 10th IEEE International Conference on Computer and Information Technology, pp. 1577–1581. IEEE, (2010)

  40. Yang, X., et al.: New ecdsa-verifiable multi-receiver generalization signcryption. In: 2008 10th IEEE International Conference on High Performance Computing and Communications, pp. 1042–1047. IEEE, (2008)

  41. Din, N., et al.: An efficient generalization of multicast signcryption based on elliptic curve for firewalls. Int. J. Comput. Sci. Inf. Secur. 14(5), 432 (2016)

    Google Scholar 

  42. Ullah, I., Khattak, H., Ullah, S., Khan, A., et al.: Multi receiver proxy signcrypion based on hyper elliptic curve cryptography. Int. J. Comput. Sci. Inf. Secur. 14(12), 1003 (2016)

    Google Scholar 

  43. Sadat, A., Ahmad, R., Ullah, I., Khattak, H., Ullah, S.: Multi receiver signcryption based on hyper elliptic curve cryptosystem. J. Appl. Environ. Biol. Sci. 7(12), 194–200 (2017)

    Google Scholar 

  44. Rahman, A.U., et al.: A lightweight multi-message and multi-receiver heterogeneous hybrid signcryption scheme based on hyper elliptic curve. Int. J. Adv. Comput. Sci. Appl. 9, 5 (2018)

    Google Scholar 

  45. Li, F., Yupu, H., Liu, S.: Efficient and provably secure multi-recipient signcryption from bilinear pairings. Wuhan Univ. J. Natl. Sci. 12(1), 17–20 (2007)

    Article  MathSciNet  Google Scholar 

  46. Selvi, S., et al.: On the provable security of multi-receiver signcryption schemes. In: Cryptology ePrint Archive, (2008)

  47. Han, Y., et al.: Parallel multi-recipient signcryption for multicast networks. In: 2010 Second International Workshop on Education Technology and Computer Science, vol. 3, pp. 128–131. IEEE, (2010)

  48. Han, Y., et al.: Multi-recipient signcryption for secure wireless group communication. Cryptology ePrint Archive, (2008)

  49. Wang, Q., He, M., Zheng, X.: Privacy-preserving communication for vehicular with multi receiver conditionally anonymous ring signcryption. In: 2016 3rd International Conference on Materials Engineering, Manufacturing Technology and Control, pp. 496–501. Atlantis Press, (2016)

  50. Han, Y., Gui, X.: Adaptive secure multicast in wireless networks. Int. J. Commun. Syst. 22(9), 1213–1239 (2009)

    Article  Google Scholar 

  51. Zhou, C.-x.: Cryptanalysis and improvement of a multi-receiver generalized signcryption scheme. In: Cryptology ePrint Archive, (2012)

  52. Bohio, M., Miri, A.: An authenticated broadcasting scheme for wireless ad hoc network. In: Proceedings Second Annual Conference on Communication Networks and Services Research, 2004., pp. 69–74. IEEE, (2004)

  53. Duan, S., Cao, Z.: Efficient and provably secure multi-receiver identity-based signcryption. In: Australasian Conference on Information Security and Privacy, pp. 195–206. Springer, (2006)

  54. Tan, C.-H.: On the security of provably secure multi-receiver id-based signcryption scheme. IEICE Trans. Fundament. Electr. Commun. Comput. Scinces 91(7), 1836–1838 (2008)

    Article  Google Scholar 

  55. Yu, Y., et al.: Efficient identity-based signcryption scheme for multiple receivers. In: International Conference on Autonomic and Trusted Computing, pp. 13–21. Springer, (2007)

  56. Selvi, S., et al.: Cryptanalysis of id-based signcryption scheme for multiple receivers. Cryptology ePrint Archive, (2008)

  57. Li, F., et al.: A new multi-receiver id-based signcryption scheme for group communications. In 2009 International Conference on Communications, Circuits and Systems, pp. 296–300. IEEE, (2009)

  58. Selvi, S, et al.: An efficient identity-based signcryption scheme for multiple receivers. In: International workshop on security, pp. 71–88. Springer, (2009)

  59. Khullar, S., Richhariya, V., Richhariya, V.: An efficient identity based multi-receiver signcryption scheme using ecc. Int. J. Adv. Res. Technol. 2(4), 189–193 (2013)

    Google Scholar 

  60. Qin, H., Dai, Y., Wang, Z.: Identity-based multi-receiver threshold signcryption scheme. Secur. Commun. Netw. 4(11), 1331–1337 (2011)

    Article  Google Scholar 

  61. Zhang, J., et al.: On the security of id-based multi-receiver threshold signcryption scheme. In: 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet), pp. 1944–1948. IEEE, (2012)

  62. Zhang, B., Xu, Q.-L.: Identity-based multi-signcryption scheme without random oracles. J. Comput. Sci. (2010)

  63. Zhang, J., Mao, J.: A novel identity-based multi-signcryption scheme. Comput. Commun. 32(1), 14–18 (2009)

    Article  MATH  Google Scholar 

  64. Selvi, S., et al.: Breaking and fixing of an identity based multi-signcryption scheme. In: International Conference on Provable Security, pp. 61–75. Springer, (2009)

  65. Elkamchouchi, H., Abouelseoud, Y.: A new multi-recipient tree-based signcryption scheme. In: 2007 International Conference on Computer Engineering & Systems, pp. 126–130. IEEE, (2007)

  66. Elkamchouchi, H., Abouelseoud, Y.: A multi-recipient tree-based signcryption scheme. In: 2007 IEEE International Conference on Signal Processing and Communications, pp. 69–72. IEEE, (2007)

  67. Naor, D., et al.: Revocation and tracing schemes for stateless receivers. In: Annual International Cryptology Conference, pp. 41–62. Springer, (2001)

  68. Lal, S., Kushwah, P.: Anonymous id based signcryption scheme for multiple receivers. In: Cryptology ePrint Archive, (2009)

  69. Zhang, B., Xu, Q.: An id-based anonymous signcryption scheme for multiple receivers secure in the standard model. In: Advances in Computer Science and Information Technology, pp. 15–27. Springer, (2010)

  70. Wang, H., Zhang, Y., Qin, B.: Analysis and improvements of two identity based anonymous signcryption schemes for multiple receivers. In: 2012 IEEE 11th International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1057–1062. IEEE, (2012)

  71. AN ID-BASED MULTI-RECEIVER SIGNCRYPTION. Scheme in manet. J. Theor. Appl. Inf. Technol, 46(1), (2012)

  72. Hien, D.T., et al.: An efficient identity-based broadcast signcryption scheme. In: 2010 Second International Conference on Knowledge and Systems Engineering, pp. 209–216. IEEE, (2010)

  73. Khullar, S., et al.: A survey of identity based multireceiver signcryption scheme. Int. J. Sci. Eng. Res. 4(4), (2013)

  74. Zhou, C.: A multi-receiver id-based generalized signcryption scheme. In: Cryptology ePrint Archive, (2011)

  75. Singh, T., Ali, R.: An identity based multi-receiver generalized signcryption scheme. Asian J. Appl. Sci. 6, 4 (2018)

    Google Scholar 

  76. Ming, Y., et al.: Multi-receiver identity-based signcryption scheme in the standard model. In: International Conference on Information Computing and Applications, pp. 487–494. Springer, (2011)

  77. Liaojun Pang, L., Gao, H.L., Wang, Y.: Anonymous multi-receiver id-based signcryption scheme. IET Inf. Secur. 9(3), 194–201 (2015)

    Article  Google Scholar 

  78. Pang, L., Yan, X., Zhao, H., Yufei, H., Li, H.: A novel multi-receiver signcryption scheme with complete anonymity. PloS one 11(11), e0166173 (2016)

    Article  Google Scholar 

  79. Yu, Z., Jing, Z., Yang, H., Gu, C.: A forward-secure multi-receiver signcryption scheme. J. Harbin Inst. Technol. 23, 5 (2016)

    MATH  Google Scholar 

  80. Chaudhari, P., Das, M.L.: Privacy preserving signcryption scheme. In: International Conference on Distributed Computing and Internet Technology, pp. 196–209. Springer, (2017)

  81. Zhang, X., Chunxiang, X., Xue, J.: Efficient multi-receiver identity-based signcryption from lattice assumption. Int. J. Electr. Secur. Dig. Forens. 10(1), 20–38 (2018)

    Article  Google Scholar 

  82. Rezaeibagha, F., Yi, M., Zhang, S., Wang, X.: Provably secure (broadcast) homomorphic signcryption. Int. J. Found. Comput. Sci. 30(04), 511–529 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  83. Selvi, S., et al.: Efficient and provably secure certificateless multi-receiver signcryption. In: International Conference on Provable Security, pp. 52–67. Springer, (2008)

  84. Selvi, S., et al.: A note on the certificateless multi-receiver signcryption scheme. Cryptology ePrint Archive, (2009)

  85. Miao, S., et al.: Cryptanalysis of a certificateless multi-receiver signcryption scheme. In: 2010 International Conference on Multimedia Information Networking and Security, pp. 593–597. IEEE, (2010)

  86. Wang, C., Liu, C., Li, Y., Qiao, H., Chen, L.: Multi-message and multi-receiver heterogeneous signcryption scheme for ad-hoc networks. Inf. Secur. J. Global Perspect. 26(3), 136–152 (2017)

    Article  Google Scholar 

  87. Win, E.K., Yoshihisa, T., Ishi, Y., Kawakami, T., Teranishi, Y., Shimojo, S.: Lightweight and secure certificateless multi-receiver encryption based on ecc. J. Inf. Process. 26, 612–624 (2018)

    Google Scholar 

  88. Pang, L., Kou, M., Wei, M., Li, H.: Efficient anonymous certificateless multi-receiver signcryption scheme without bilinear pairings. IEEE Access 6, 78123–78135 (2018)

    Article  Google Scholar 

  89. Pang, L., Kou, M., Wei, M., Li, H.: Anonymous certificateless multi-receiver signcryption scheme without secure channel. IEEE Access 7, 84091–84106 (2019)

    Article  Google Scholar 

  90. Peng, C., Chen, J., Obaidat, M.S., Vijayakumar, P., He, D.: Efficient and provably secure multireceiver signcryption scheme for multicast communication in edge computing. IEEE Internet Things J. 7(7), 6056–6068 (2019)

    Article  Google Scholar 

  91. Gao, R., Zeng, J., Deng, L.: An efficient certificateless multi-receiver threshold decryption scheme. RAIRO-Theor. Inf. Appl. 53(1–2), 67–84 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  92. Fu, M., et al.: Secure multi-receiver communications: Models, proofs, and implementation. In: International Conference on Algorithms and Architectures for Parallel Processing, pp. 689–709. Springer, (2020)

  93. Pang, L., Wei, M., Li, H.: Efficient and anonymous certificateless multi-message and multi-receiver signcryption scheme based on ecc. IEEE Access 7, 24511–24526 (2019)

    Article  Google Scholar 

  94. Wang, B., Rong, J., Zhang, S., Liu, L.: Research on data security of multicast transmission based on certificateless multi-recipient signcryption in ami. Int. J. Electr. Power Energy Syst. 121, 106123 (2020)

    Article  Google Scholar 

  95. Wang, L., Guan, Z., Chen, Z., Mingsheng, H.: Multi-receiver signcryption scheme with multiple key generation centers through public channel in edge computing. China Commun. 19(4), 177–198 (2022)

    Article  Google Scholar 

  96. Li, H., Chenhao, W., Pang, L.: Completely anonymous certificateless multi-receiver signcryption scheme with sender traceability. J. Inf. Secur. Appl. 71, 103384 (2022)

    Google Scholar 

  97. Niu, S., Zhou, S., Fang, L., Ying, H., Wang, C.: Broadcast signcryption scheme based on certificateless in wireless sensor network. Comput. Netw. 211, 108995 (2022)

    Article  Google Scholar 

  98. Huixian, L., Jin, G., Lingyun, W., Liaojun, P.: Mpkc-based threshold proxy signcryption scheme. Int. Arab J. Inf. Tech. 17(2), 196–206 (2020)

    Google Scholar 

  99. Sun, Y.X., Li, H.: Efficient signcryption between tpkc and idpkc and its multi-receiver construction. Sci. China Inf. Sci. 53(3), 557–566 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  100. Raveendranath, S., Aneesh, A.: Efficient multi-receiver heterogenous signcryption. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1693–1697. IEEE, (2016)

  101. Li, Y., Wang, C., Zhang, Y., Niu, S.: Privacy-preserving multi-receiver signcryption scheme for heterogeneous systems. Secur. Commun. Netw. 9(17), 4574–4584 (2016)

    Article  Google Scholar 

  102. Niu, S., Niu, L., Yang, X., Wang, C., Jia, X.: Heterogeneous hybrid signcryption for multi-message and multi-receiver. PloS one 12(9), e0184407 (2017)

    Article  Google Scholar 

  103. Wang, C., Liu, C., Li, Y., Qiao, H., Chen, L.: Multi-message and multi-receiver heterogeneous signcryption scheme for ad-hoc networks. Inf. Secur. J. Global Perspect. 26(3), 136–152 (2017)

    Article  Google Scholar 

  104. Niu, S., et al.: Privacy-preserving multi-party aggregate signcryption for heterogeneous systems. In: International Conference on Cloud Computing and Security, pp. 216–229. Springer, (2017)

  105. Qiu, J., Fan, K., Zhang, K., Pan, Q., Li, H., Yang, Y.: An efficient multi-message and multi-receiver signcryption scheme for heterogeneous smart mobile iot. IEEE Access 7, 180205–180217 (2019)

    Article  Google Scholar 

  106. Daniel, R.M., Rajsingh, E.B., Silas, S.: A forward secure signcryption scheme with ciphertext authentication for e-payment systems using conic curve cryptography. J. King Saud Univ. Comput. Inf. Sci. 33(1), 86–98 (2021)

    Google Scholar 

  107. Ch, S.A., Sher, M., Ghani, A., Naqvi, H., Irshad, A., et al.: An efficient signcryption scheme with forward secrecy and public verifiability based on hyper elliptic curve cryptography. Multim. Tools Appl. 74(5), 1711–1723 (2015)

    Article  Google Scholar 

  108. Yu, H., Ren, R.: Certificateless elliptic curve aggregate signcryption scheme. IEEE Syst. J. (2021)

  109. Ullah, S., Din, N.: Blind signcryption scheme based on hyper elliptic curves cryptosystem. Peer-to-Peer Netw. Appl. 14(2), 917–932 (2021)

    Article  Google Scholar 

  110. Zhu, H., Wang, Y., Wang, C., Cheng, X.: An efficient identity-based proxy signcryption using lattice. Fut. Gener. Comput. Syst. 117, 321–327 (2021)

    Article  Google Scholar 

  111. Le, H.Q., Duong, D.H., Roy, P.S., Susilo, W., Fukushima, K., Kiyomoto, S.: Lattice-based signcryption with equality test in standard model. Comput. Stand. Interf. 76, 103515 (2021)

    Article  Google Scholar 

  112. Chatterjee, S., et al.: Signcryption in a quantum world. In: Cryptology ePrint Archive, (2020)

  113. Huifang, Yu., Bai, L., Hao, M., Wang, N.: Certificateless signcryption scheme from lattice. IEEE Syst. J. 15(2), 2687–2695 (2020)

    Google Scholar 

  114. Zhu, H., Wang, Y., Wang, C., Cheng, X.: An efficient identity-based proxy signcryption using lattice. Fut. Gener. Comput. Syst. 117, 321–327 (2021)

    Article  Google Scholar 

  115. Kumar, G., et al.: A lattice signcrypted secured localization in wireless sensor networks. IEEE Syst. J. 14(3), 3949–3956 (2020)

    Article  Google Scholar 

  116. Shkorkina, E.N., Aleksandrova, E.B.: Securing post-quantum resistance for quantum-protected communication systems. Autom. Contr. Comput. Sci. 54(8), 949–951 (2020)

    Article  Google Scholar 

  117. Luo, L., et al.: Splitcast: Optimizing multicast flows in reconfigurable datacenter networks. In: IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pp. 2559–2568. IEEE, (2020)

  118. Wang, H., Sui, G., Zhao, Y., Chen, K.: Efficient sse with forward id-privacy and authentication in the multi-data-owner settings. IEEE Access 9, 10443–10459 (2020)

    Article  Google Scholar 

  119. Ma, Y., et al.: Online nfv-enabled multicasting in mobile edge cloud networks. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 821–830. IEEE, (2019)

  120. Huang, Q., et al.: Privacy-preserving traceable attribute-based keyword search in multi-authority medical cloud. IEEE Trans. Cloud Comput. (2021)

  121. Qin, Y., Xia, Q., Xu, Z., Zhou, P., Galis, A., Rana, O.F., Ren, J., Wu, G.: Enabling multicast slices in edge networks. IEEE Int. Things J. 7(9), 8485–8501 (2020)

    Article  Google Scholar 

  122. Hussen, H.R., et al.: Stateless and predictive geographic multicast scheme in flying ad-hoc networks. In: 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 685–690. IEEE, (2017)

  123. Li, J., Zhou, Y., Chen, H.: On the age of information for multicast transmission with hard deadlines in iot systems. In: 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6. IEEE, (2020)

  124. Li, J., Zhou, Y., Chen, H.: Age of information for multicast transmission with fixed and random deadlines in iot systems. IEEE Internet Things J. 7(9), 8178–8191 (2020)

    Article  Google Scholar 

  125. Subho Shankar Basu and Somanath Tripathy: Securing multicast group communication in iot-enabled systems. IETE Tech. Rev. 36(1), 83–93 (2019)

    Article  Google Scholar 

  126. Cui, J., Jie, L., Zhong, H., Zhang, Q., Chengjie, G., Liu, L.: Parallel key-insulated multiuser searchable encryption for industrial internet of things. IEEE Trans. Indus. Inf. 18(7), 4875–4883 (2021)

    Article  Google Scholar 

  127. Araniti, G., Condoluci, M., Scopelliti, P., Molinaro, A., Iera, A.: Multicasting over emerging 5g networks: Challenges and perspectives. IEEE Netw. 31(2), 80–89 (2017)

    Article  Google Scholar 

  128. Nait-Hamoud, O., Kenaza, T., Challal, Y.: Certificateless public key systems aggregation: An enabling technique for 5g multi-domain security management and delegation. Comput. Netw. 199, 108443 (2021)

  129. Khasawneh, S., Kadoch, M.: Ecs-cp-abe: a lightweight elliptic curve signcryption scheme based on ciphertext-policy attribute-based encryption to secure downlink multicast communication in edge envisioned advanced metering infrastructure networks. Trans. Emerg. Telecommun. Technol. 32(8), e4102 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by ND, AW, SU, NUA., FU, GS, and JCWL.; Methodology was contributed by ND, AW, SU, NUA, FU, GS, and JCWL; Validation was contributed by ND; Writing—original draft, was contributed by ND, AW, SU, NUA, FU, GS, and JCWL; Writing—review and editing, was contributed by ND, AW, SU, NUA, FU, GS, and JCWL; Supervision was contributed by GS.

Corresponding author

Correspondence to Gautam Srivastava.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest in this paper.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, N., Waheed, A., Ullah, S. et al. A typology of secure multicast communication over 5 G/6 G networks. Int. J. Inf. Secur. 22, 1055–1073 (2023). https://doi.org/10.1007/s10207-023-00678-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00678-y

Keywords

Navigation