Skip to main content
Log in

A systematic literature review for network intrusion detection system (IDS)

  • Regular Contribution
  • Published:
International Journal of Information Security Aims and scope Submit manuscript

Abstract

With the recent increase in internet usage, the number of important, sensitive, confidential individual and corporate data passing through internet has increasingly grown. With gaps in the security systems, attackers have attempted to intrude the network, thereby gaining access to essential and confidential information, which may cause harm to the operation of the systems, and also affect the confidentiality of the data. To counter these possible attacks, intrusion detection systems (IDSs), which is an essential branch of cybersecurity, were employed to monitor and analyze network traffic thereby detects and reports malicious activities. A large number of review papers have covered different approaches for intrusion detection in networks, most of which follow a non-systematic approach, merely made a comparison of the existing techniques without reflecting an in-depth analytical synthesis of the methodologies and performances of the approaches to give a complete understanding of the state of IDS. Nonetheless, many of these reviews investigated more about the anomaly-based IDS with more emphasis on deep-learning models, while signature, hybrid-based (signature + anomaly-based) have received minimal focus. Hence, by adhering to the principles of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), this work reviewed existing contributions on anomaly-, signature-, and hybrid-based approaches to provide a comprehensive overview of network IDS's state of the art. The articles were retrieved from seven databases (ScienceDirect, SpringerNature, IEEE, MDPI, Hindawi, PeerJ, and Taylor & Francis) which cut across various reputable journals and conference Proceedings. Among the 776 pieces of the literature identified, 71 were selected for analysis and synthesis to answer the research questions. Based on the research findings, we identified unexplored study areas and unresolved research challenges. In order to create a better IDS model, we conclude by presenting promising, high-impact future research areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Patel, A., Alhussian, H., Pedersen, J.M., Bounabat, B., Júnior, J.C., Katsikas, S.: A nifty collaborative intrusion detection and prevention architecture for smart grid ecosystems. Comput. Secur. 64, 92–109 (2017). https://doi.org/10.1016/j.cose.2016.07.002

    Article  Google Scholar 

  2. Bridges, R.A., Glass-Vanderlan, T.R., Iannacone, M.D., Vincent, M.S., Chen, Q.: A survey of intrusion detection systems leveraging host data. ACM Comput. Surv. 52(6), 1–35 (2020). https://doi.org/10.1145/3344382

    Article  Google Scholar 

  3. Aldweesh, A., Derhab, A., Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Knowl. Based Syst. 189, 105124 (2020). https://doi.org/10.1016/j.knosys.2019.105124

    Article  Google Scholar 

  4. Masdari, M., Khezri, H.: A survey and taxonomy of the fuzzy signature-based intrusion detection systems. Appl. Soft Comput. 92, 106301 (2020). https://doi.org/10.1016/j.asoc.2020.106301

    Article  Google Scholar 

  5. Masdari, M., Khezri, H.: Towards fuzzy anomaly detection-based security: a comprehensive review. Fuzzy Optim. Decis. Mak. 20(1), 1–49 (2021). https://doi.org/10.1007/s10700-020-09332-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Ashfaq, R.A.R., Wang, X.-Z., Huang, J.Z., Abbas, H., He, Y.-L.: Fuzziness based semi-supervised learning approach for intrusion detection system. Inf. Sci. 378, 484–497 (2017). https://doi.org/10.1016/j.ins.2016.04.019

    Article  Google Scholar 

  7. Gu, J., Wang, L., Wang, H., Wang, S.: A novel approach to intrusion detection using SVM ensemble with feature augmentation. Comput. Secur. 86, 53–62 (2019). https://doi.org/10.1016/j.cose.2019.05.022

    Article  Google Scholar 

  8. Nazir, A., Khan, R.A.: A novel combinatorial optimization based feature selection method for network intrusion detection. Comput. Secur. 102, 102164 (2021). https://doi.org/10.1016/j.cose.2020.102164

    Article  Google Scholar 

  9. Sohi, S.M., Seifert, J.-P., Ganji, F.: RNNIDS: enhancing network intrusion detection systems through deep learning. Comput. Secur. 102, 102151 (2021). https://doi.org/10.1016/j.cose.2020.102151

    Article  Google Scholar 

  10. Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G., Zhang, R.: Model of the intrusion detection system based on the integration of spatial-temporal features. Comput. Secur. 89, 101681 (2020). https://doi.org/10.1016/j.cose.2019.101681

    Article  Google Scholar 

  11. Liu, J., Gao, Y., Hu, F.: A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Comput. Secur. 106, 102289 (2021). https://doi.org/10.1016/j.cose.2021.102289

    Article  Google Scholar 

  12. Mebawondu, J.O., Alowolodu, O.D., Mebawondu, J.O., Adetunmbi, A.O.: Network intrusion detection system using supervised learning paradigm. Sci. Afr. 9, e00497 (2020). https://doi.org/10.1016/j.sciaf.2020.e00497

    Article  Google Scholar 

  13. Wang, Z., Liu, Y., He, D., Chan, S.: Intrusion detection methods based on integrated deep learning model. Comput. Secur. 103, 102177 (2021). https://doi.org/10.1016/j.cose.2021.102177

    Article  Google Scholar 

  14. Selvakumar, B., Muneeswaran, K.: Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 81, 148–155 (2019). https://doi.org/10.1016/j.cose.2018.11.005

    Article  Google Scholar 

  15. Ashiku, L., Dagli, C.: Network intrusion detection system using deep learning. Procedia Comput. Sci. 185, 239–247 (2021). https://doi.org/10.1016/j.procs.2021.05.025

    Article  Google Scholar 

  16. Gu, J., Lu, S.: An effective intrusion detection approach using SVM with naïve Bayes feature embedding. Comput. Secur. 103, 102158 (2021). https://doi.org/10.1016/j.cose.2020.102158

    Article  Google Scholar 

  17. Bhati, B.S., Rai, C.S., Balamurugan, B., Al-Turjman, F.: An intrusion detection scheme based on the ensemble of discriminant classifiers. Comput. Electr. Eng. 86, 106742 (2020). https://doi.org/10.1016/j.compeleceng.2020.106742

    Article  Google Scholar 

  18. Ozkan-Okay, M., Samet, R., Aslan, Ö., Gupta, D.: A comprehensive systematic literature review on intrusion detection systems. IEEE Access 9, 157727–157760 (2021). https://doi.org/10.1109/ACCESS.2021.3129336

    Article  Google Scholar 

  19. Maseno, E.M., Wang, Z., Xing, H.: A systematic review on hybrid intrusion detection system. Secur. Commun. Netw. 2022, 9663052 (2022). https://doi.org/10.1155/2022/9663052

    Article  Google Scholar 

  20. Luo, G., Chen, Z., Mohammed, B.O.: A systematic literature review of intrusion detection systems in the cloud-based IoT environments. Concurr. Comput. Pract. Exp. 34(10), e6822 (2022). https://doi.org/10.1002/cpe.6822

    Article  Google Scholar 

  21. Ayyagari, M.R., Kesswani, N., Kumar, M., Kumar, K.: Intrusion detection techniques in network environment: a systematic review. Wirel. Netw. 27(2), 1269–1285 (2021). https://doi.org/10.1007/s11276-020-02529-3

    Article  Google Scholar 

  22. Alsoufi, M.A., et al.: Anomaly-based intrusion detection systems in IoT Using deep learning: a systematic literature review. Appl. Sci. (2021). https://doi.org/10.3390/app11188383

    Article  MATH  Google Scholar 

  23. Yang, Z., et al.: A systematic literature review of methods and datasets for anomaly-based network intrusion detection. Comput. Secur. 116, 102675 (2022). https://doi.org/10.1016/j.cose.2022.102675

    Article  Google Scholar 

  24. Liberati, A., et al.: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339, b2700 (2009). https://doi.org/10.1136/bmj.b2700

    Article  Google Scholar 

  25. Kitchenham, B., Brereton, P.: A systematic review of systematic review process research in software engineering. Inf. Softw. Technol. 55(12), 2049–2075 (2013). https://doi.org/10.1016/j.infsof.2013.07.010

    Article  Google Scholar 

  26. Kitchenham B.A., Stuart C.: Guidelines for performing systematic literature reviews in software engineering. In: EBSE Technical Report, Keele University and Durham University Joint Report, Report EBSE 2007-001 (2007). https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf

  27. Gupta, N., Jindal, V., Bedi, P.: LIO-IDS: Handling class imbalance using LSTM and improved one-vs-one technique in intrusion detection system. Comput. Netw. 192, 108076 (2021). https://doi.org/10.1016/j.comnet.2021.108076

    Article  Google Scholar 

  28. Nguyen, M.T., Kim, K.: Genetic convolutional neural network for intrusion detection systems. Future Gener. Comput. Syst. 113, 418–427 (2020). https://doi.org/10.1016/j.future.2020.07.042

    Article  Google Scholar 

  29. Wu, Z., Wang, J., Hu, L., Zhang, Z., Wu, H.: A network intrusion detection method based on semantic re-encoding and deep learning. J. Netw. Comput. Appl. 164, 102688 (2020). https://doi.org/10.1016/j.jnca.2020.102688

    Article  Google Scholar 

  30. Kim, J., Kim, J., Kim, H., Shim, M., Choi, E.: CNN-based network intrusion detection against denial-of-service attacks. Electronics (2020). https://doi.org/10.3390/electronics9060916

    Article  Google Scholar 

  31. Kanimozhi, V., Jacob, T.P.: Artificial intelligence based network intrusion detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. ICT Express 5(3), 211–214 (2019). https://doi.org/10.1016/j.icte.2019.03.003

    Article  Google Scholar 

  32. Swarna Priya, R.M., et al.: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Comput. Commun. 160, 139–149 (2020). https://doi.org/10.1016/j.comcom.2020.05.048

    Article  Google Scholar 

  33. Jia, H., Liu, J., Zhang, M., He, X., Sun, W.: Network intrusion detection based on IE-DBN model. Comput. Commun. 178, 131–140 (2021). https://doi.org/10.1016/j.comcom.2021.07.016

    Article  Google Scholar 

  34. Onah, J.O., Abdulhamid, Si.M., Abdullahi, M., Hassan, I.H., Al-Ghusham, A.: Genetic algorithm based feature selection and Naïve Bayes for anomaly detection in fog computing environment. Mach. Learn. Appl. 6, 100156 (2021). https://doi.org/10.1016/j.mlwa.2021.100156

    Article  Google Scholar 

  35. Hajisalem, V., Babaie, S.: A hybrid intrusion detection system based on ABC-AFS algorithm for misuse and anomaly detection. Comput. Netw. 136, 37–50 (2018). https://doi.org/10.1016/j.comnet.2018.02.028

    Article  Google Scholar 

  36. Elmasry, W., Akbulut, A., Zaim, A.H.: Evolving deep learning architectures for network intrusion detection using a double PSO metaheuristic. Comput. Netw. 168, 107042 (2020). https://doi.org/10.1016/j.comnet.2019.107042

    Article  Google Scholar 

  37. Vijayanand, R., Devaraj, D., Kannapiran, B.: Intrusion detection system for wireless mesh network using multiple support vector machine classifiers with genetic-algorithm-based feature selection. Comput. Secur. 77, 304–314 (2018). https://doi.org/10.1016/j.cose.2018.04.010

    Article  Google Scholar 

  38. Li, X., Chen, W., Zhang, Q., Wu, L.: Building Auto-Encoder Intrusion Detection System based on random forest feature selection. Comput. Secur. 95, 101851 (2020). https://doi.org/10.1016/j.cose.2020.101851

    Article  Google Scholar 

  39. Shahraki, A., Abbasi, M., Haugen, Ø.: Boosting algorithms for network intrusion detection: a comparative evaluation of real AdaBoost, gentle AdaBoost and modest AdaBoost. Eng. Appl. Artif. Intell. 94, 103770 (2020). https://doi.org/10.1016/j.engappai.2020.103770

    Article  Google Scholar 

  40. Alazzam, H., Sharieh, A., Sabri, K.E.: A feature selection algorithm for intrusion detection system based on pigeon inspired optimizer. Expert Syst. Appl. 148, 113249 (2020). https://doi.org/10.1016/j.eswa.2020.113249

    Article  Google Scholar 

  41. Zhou, Y., Mazzuchi, T.A., Sarkani, S.: M-AdaBoost-A based ensemble system for network intrusion detection. Expert Syst. Appl. 162, 113864 (2020). https://doi.org/10.1016/j.eswa.2020.113864

    Article  Google Scholar 

  42. Thilagam, T., Aruna, R.: Intrusion detection for network based cloud computing by custom RC-NN and optimization. ICT Express 7(4), 512–520 (2021). https://doi.org/10.1016/j.icte.2021.04.006

    Article  Google Scholar 

  43. Zhao, H., Li, M., Zhao, H.: Artificial intelligence based ensemble approach for intrusion detection systems. J. Vis. Commun. Image Represent. 71, 102736 (2020). https://doi.org/10.1016/j.jvcir.2019.102736

    Article  Google Scholar 

  44. Rajesh Kanna, P., Santhi, P.: Unified deep learning approach for efficient intrusion detection system using integrated spatial-temporal features. Knowl. Based Syst. 226, 107132 (2021). https://doi.org/10.1016/j.knosys.2021.107132

    Article  Google Scholar 

  45. Sona, A.S., Sasirekha, N.: Kulczynski indexed dragonfly feature optimization based Polytomous Adaptive Base classifier for anomaly intrusion detection. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2021.01.765

    Article  Google Scholar 

  46. Alazzam, H., Sharieh, A., Sabri, K.E.: A lightweight intelligent network intrusion detection system using OCSVM and pigeon inspired optimizer. Appl. Intell. 52(4), 3527–3544 (2022). https://doi.org/10.1007/s10489-021-02621-x

    Article  Google Scholar 

  47. Disha, R.A., Waheed, S.: Performance analysis of machine learning models for intrusion detection system using Gini impurity-based weighted random forest (GIWRF) feature selection technique. Cybersecurity 5(1), 1 (2022). https://doi.org/10.1186/s42400-021-00103-8

    Article  Google Scholar 

  48. Yerriswamy, T., Murtugudde, G.: An efficient algorithm for anomaly intrusion detection in a network. Glob. Trans. Proc. 2(2), 255–260 (2021). https://doi.org/10.1016/j.gltp.2021.08.066

    Article  Google Scholar 

  49. Narayana Rao, K., Venkata Rao, K., Prasad Reddy, P.V.G.D.: A hybrid intrusion detection system based on sparse autoencoder and deep neural network. Comput. Commun. 180, 77–88 (2021). https://doi.org/10.1016/j.comcom.2021.08.026

    Article  Google Scholar 

  50. Sharma, N.V., Yadav, N.S.: An optimal intrusion detection system using recursive feature elimination and ensemble of classifiers. Microprocess. Microsyst 85, 104293 (2021). https://doi.org/10.1016/j.micpro.2021.104293

    Article  Google Scholar 

  51. Halim, Z., et al.: An effective genetic algorithm-based feature selection method for intrusion detection systems. Comput. Secur. 110, 102448 (2021). https://doi.org/10.1016/j.cose.2021.102448

    Article  Google Scholar 

  52. Mazini, M., Shirazi, B., Mahdavi, I.: Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and AdaBoost algorithms. J. King Saud Univ. Comput. Inf. Sci. 31(4), 541–553 (2019). https://doi.org/10.1016/j.jksuci.2018.03.011

    Article  Google Scholar 

  53. Souhail, M., et al.: Network based intrusion detection using the UNSW-NB15 dataset. Int. J. Comput. Digit. Syst. 8, 477 (2019)

    Article  Google Scholar 

  54. Hafiza Anisa, A., Anum, H., Narmeen Zakaria, B.: Network intrusion detection using oversampling technique and machine learning algorithms. PeerJ Comput. Sci. (2022). https://doi.org/10.7717/peerj-cs.820

    Article  Google Scholar 

  55. Aljawarneh, S., Aldwairi, M., Yassein, M.B.: Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 25, 152–160 (2018). https://doi.org/10.1016/j.jocs.2017.03.006

    Article  Google Scholar 

  56. Tama, B.A., Comuzzi, M., Rhee, K.: TSE-IDS: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 7, 94497–94507 (2019). https://doi.org/10.1109/ACCESS.2019.2928048

    Article  Google Scholar 

  57. Dwivedi, S., Vardhan, M., Tripathi, S., Shukla, A.K.: Implementation of adaptive scheme in evolutionary technique for anomaly-based intrusion detection. Evol. Intell. 13(1), 103–117 (2020). https://doi.org/10.1007/s12065-019-00293-8

    Article  Google Scholar 

  58. Devan, P., Khare, N.: An efficient XGBoost–DNN-based classification model for network intrusion detection system. Neural Comput. Appl. 32(16), 12499–12514 (2020). https://doi.org/10.1007/s00521-020-04708-x

    Article  Google Scholar 

  59. Yang, Y., Zheng, K., Wu, C., Yang, Y.: Improving the classification effectiveness of intrusion detection by using improved conditional variational autoencoder and deep neural network. Sensors (2019). https://doi.org/10.3390/s19112528

    Article  Google Scholar 

  60. Krishnaveni, S., Vigneshwar, P., Kishore, S., Jothi, B., Sivamohan, S.: Anomaly-based intrusion detection system using support vector machine. In: Dash, S.S., Lakshmi, C., Das, S., Panigrahi, B.K. (eds.) Artificial Intelligence and Evolutionary Computations in Engineering Systems, pp. 723–731. Springer Singapore, Singapore (2020)

    Chapter  Google Scholar 

  61. Ahmad, I., Ul Haq, Q.E., Imran, M., Alassafi, M.O., AlGhamdi, R.A.: An efficient network intrusion detection and classification system. Mathematics (2022). https://doi.org/10.3390/math10030530

    Article  Google Scholar 

  62. Qureshi A.U.H., Larijani H., Ahmad J., Mtetwa N.: A novel random neural network based approach for intrusion detection systems. In 2018 10th Computer Science and Electronic Engineering (CEEC), 19–21 Sept 2018, pp. 50–55. (2018). https://doi.org/10.1109/CEEC.2018.8674228

  63. Gao, X., Shan, C., Hu, C., Niu, Z., Liu, Z.: An adaptive ensemble machine learning model for intrusion detection. IEEE Access 7, 82512–82521 (2019). https://doi.org/10.1109/ACCESS.2019.2923640

    Article  Google Scholar 

  64. Xiao, Y., Xing, C., Zhang, T., Zhao, Z.: An intrusion detection model based on feature reduction and convolutional neural networks. IEEE Access 7, 42210–42219 (2019). https://doi.org/10.1109/ACCESS.2019.2904620

    Article  Google Scholar 

  65. Zhou, Y., Cheng, G., Jiang, S., Dai, M.: Building an efficient intrusion detection system based on feature selection and ensemble classifier. Comput. Netw. 174, 107247 (2020). https://doi.org/10.1016/j.comnet.2020.107247

    Article  Google Scholar 

  66. Li, X., Yi, P., Wei, W., Jiang, Y., Tian, L.: LNNLS-KH: a feature selection method for network intrusion detection. Secur. Commun. Netw. 2021, 8830431 (2021). https://doi.org/10.1155/2021/8830431

    Article  Google Scholar 

  67. Chiche, A., Meshesha, M.: Towards a Scalable and Adaptive Learning Approach for Network Intrusion Detection. J. Comput. Netw. Commun. 2021, 8845540 (2021). https://doi.org/10.1155/2021/8845540

    Article  Google Scholar 

  68. Lv, L., Wang, W., Zhang, Z., Liu, X.: A novel intrusion detection system based on an optimal hybrid kernel extreme learning machine. Knowl. Based Syst. 195, 105648 (2020). https://doi.org/10.1016/j.knosys.2020.105648

    Article  Google Scholar 

  69. Jiang, K., Wang, W., Wang, A., Wu, H.: Network intrusion detection combined hybrid sampling with deep hierarchical network. IEEE Access 8, 32464–32476 (2020). https://doi.org/10.1109/ACCESS.2020.2973730

    Article  Google Scholar 

  70. Kumar, V., Sinha, D., Das, A.K., Pandey, S.C., Goswami, R.T.: An integrated rule based intrusion detection system: analysis on UNSW-NB15 data set and the real time online dataset. Clust. Comput. 23(2), 1397–1418 (2020). https://doi.org/10.1007/s10586-019-03008-x

    Article  Google Scholar 

  71. Kanimozhi, V., Jacob, T.P.: Artificial intelligence outflanks all other machine learning classifiers in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing. ICT Express 7(3), 366–370 (2021). https://doi.org/10.1016/j.icte.2020.12.004

    Article  Google Scholar 

  72. Hadem, P., Saikia, D.K., Moulik, S.: An SDN-based intrusion detection system using SVM with selective logging for IP traceback. Comput. Netw. 191, 108015 (2021). https://doi.org/10.1016/j.comnet.2021.108015

    Article  Google Scholar 

  73. Abbasi, J.S., Bashir, F., Qureshi, K.N., Najam ul Islam, M., Jeon, G.: Deep learning-based feature extraction and optimizing pattern matching for intrusion detection using finite state machine. Comput. Electr. Eng. 92, 107094 (2021). https://doi.org/10.1016/j.compeleceng.2021.107094

    Article  Google Scholar 

  74. Kayode Saheed, Y., Idris Abiodun, A., Misra, S., Kristiansen Holone, M., Colomo-Palacios, R.: A machine learning-based intrusion detection for detecting internet of things network attacks. Alex. Eng. J. 61(12), 9395–9409 (2022). https://doi.org/10.1016/j.aej.2022.02.063

    Article  Google Scholar 

  75. D’Agostini, G.: A multidimensional unfolding method based on Bayes’ theorem. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 362(2), 487–498 (1995). https://doi.org/10.1016/0168-9002(95)00274-X

    Article  Google Scholar 

  76. Box, G.E.P., Tiao, G.C.: Bayesian inference in statistical analysis. Int. Stat. Rev. 43, 242 (1973)

    MATH  Google Scholar 

  77. Ng A., Jordan M.I.: On discriminative versus generative classifiers: a comparison of logistic regression and naive Bayes. In: NIPS. (2001)

  78. Soucy P., Mineau G. W.: A simple KNN algorithm for text categorization. In: Proceedings 2001 IEEE International Conference on Data Mining, 29 Nov-2 Dec 2001, pp. 647–648. (2001). https://doi.org/10.1109/ICDM.2001.989592.

  79. Li, W.-C., Yi, P., Wu, Y., Pan, L., Li, J.: A new intrusion detection system based on knn classification algorithm in wireless sensor network. J. Electr. Comput. Eng. 2014, 240217 (2014)

    Google Scholar 

  80. Kotsiantis S.B.: Supervised machine learning: a review of classification techniques. In: Presented at the Proceedings of the 2007 Conference on Emerging Artificial Intelligence Applications in Computer Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. (2007)

  81. Du W., Zhan Z.: Building decision tree classifier on private data. In: Presented at the Proceedings of the IEEE International Conference on Privacy, Security and Data Mining, vol. 14, Maebashi City, Japan. (2002)

  82. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986). https://doi.org/10.1007/BF00116251

    Article  Google Scholar 

  83. Kotsiantis, S.B.: Decision trees: a recent overview. Artif. Intell. Rev. 39(4), 261–283 (2013). https://doi.org/10.1007/s10462-011-9272-4

    Article  Google Scholar 

  84. Loh, W.-Y.: Classification and regression trees. WIREs Data Min. Knowl. Discovery 1(1), 14–23 (2011). https://doi.org/10.1002/widm.8

    Article  Google Scholar 

  85. Kim, G., Lee, S., Kim, S.: A novel hybrid intrusion detection method integrating anomaly detection with misuse detection. Expert Syst. Appl. 41(4), 1690–1700 (2014). https://doi.org/10.1016/j.eswa.2013.08.066

    Article  MathSciNet  Google Scholar 

  86. Goeschel, K.: Reducing false positives in intrusion detection systems using data-mining techniques utilizing support vector machines, decision trees, and naive Bayes for off-line analysis. SoutheastCon 2016, 1–6 (2016)

    Google Scholar 

  87. Deng, H., Runger, G., Tuv, E.: Bias of importance measures for multi-valued attributes and solutions. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) Artificial Neural Networks and Machine Learning—ICANN 2011, pp. 293–300. Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

    Chapter  Google Scholar 

  88. Tong, S., Koller, D.: Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 2, 45–66 (2001)

    MATH  Google Scholar 

  89. Miranda, C., Kaddoum, G., Bou-Harb, E., Garg, S., Kaur, K.: A collaborative security framework for software-defined wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 15, 2602–2615 (2020). https://doi.org/10.1109/TIFS.2020.2973875

    Article  Google Scholar 

  90. Liu, Y., Pi, D.: A novel kernel SVM algorithm with game theory for network intrusion detection. KSII Trans. Internet Inf. Syst. 11, 4043–4060 (2017)

    Google Scholar 

  91. Hu W., Liao Y., Vemuri V.R.: Robust support vector machines for anomaly detection in computer security. In: ICMLA. (2003)

  92. Cutler, D.R., et al.: Random forests for classification in ecology. Ecology 88(11), 2783–2792 (2007). https://doi.org/10.1890/07-0539.1

    Article  Google Scholar 

  93. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Commun. Surv. Tutor 18, 1153–1176 (2016)

    Article  Google Scholar 

  94. R. Doshi, N. Apthorpe, and N. Feamster, “Machine Learning DDoS Detection for Consumer Internet of Things Devices,” in 2018 IEEE Security and Privacy Workshops (SPW), 24–24 May 2018 2018, pp. 29–35, https://doi.org/10.1109/SPW.2018.00013

  95. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13, 517–530 (2005)

    Article  Google Scholar 

  96. Moustafa N., Ahmed M., Ahmed S.: Data analytics-enabled intrusion detection: evaluations of ToN_IoT Linux datasets. In: 2020 IEEE 19th International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom), 29 Dec–1 Jan 2021, pp. 727–735. (2020). https://doi.org/10.1109/TrustCom50675.2020.00100.

  97. Abdi, H., Williams, L.J.: Principal component analysis. WIREs Comput. Stat. 2(4), 433–459 (2010). https://doi.org/10.1002/wics.101

    Article  Google Scholar 

  98. Huang, G.-B., Zhu, Q.-Y., Siew, C.-K.: Extreme learning machine: theory and applications. Neurocomputing 70(1), 489–501 (2006). https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  99. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  100. Chen, X.W., Lin, X.: Big data deep learning: challenges and perspectives. IEEE Access 2, 514–525 (2014). https://doi.org/10.1109/ACCESS.2014.2325029

    Article  Google Scholar 

  101. Ciresan D.C., Meier U., Masci J., Gambardella L.M., Schmidhuber J.: Flexible, high performance convolutional neural networks for image classification. In: International Joint Conference on Artificial Intelligence. (2011)

  102. Chen Y., Zhang Y., Maharjan S.: Deep learning for secure mobile edge computing. arXiv:1709.08025 (2017)

  103. Hermans M., Schrauwen B.: Training and analyzing deep recurrent neural networks. In: NIPS 2013. (2013)

  104. Pascanu R., Gülçehre Ç., Cho K., Bengio Y.: How to construct deep recurrent neural networks. In: CoRR. arXiv:1312.6026 (2014)

  105. Nweke, H.F., Teh, Y.W., Al-garadi, M.A., Alo, U.R.: Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: state of the art and research challenges. Expert Syst. Appl. 105, 233–261 (2018). https://doi.org/10.1016/j.eswa.2018.03.056

    Article  Google Scholar 

  106. Tang T.A., Mhamdi L., McLernon D., Zaidi S.A.R., Ghogho M.: Deep recurrent neural network for intrusion detection in sdn-based networks. In: 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), 25–29 June 2018, pp. 202–206. https://doi.org/10.1109/NETSOFT.2018.8460090

  107. Yu, Y., Si, X., Hu, C., Zhang, J.: A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 31(7), 1235–1270 (2019). https://doi.org/10.1162/neco_a_01199

    Article  MathSciNet  MATH  Google Scholar 

  108. Gers F.A., Schmidhuber J., Cummins F.: Learning to forget: continual prediction with LSTM. In: 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No. 470), 7–10 Sept. 1999, vol. 2, pp. 850–855.https://doi.org/10.1049/cp:19991218.

  109. Bai S., Kolter J.Z., Koltun V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271 (2018)

  110. Tschannen M., Bachem O., Lucic M.: Recent advances in autoencoder-based representation learning. arXiv:1812.05069 (2018)

  111. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade, 2nd edn., pp. 599–619. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

    Chapter  Google Scholar 

  112. Mayuranathan, M., Murugan, M., Dhanakoti, V.: Best features based intrusion detection system by RBM model for detecting DDoS in cloud environment. J. Ambient Intell. Humaniz. Comput. 12, 3609–3619 (2021)

    Article  Google Scholar 

  113. Fiore, U., Palmieri, F., Castiglione, A., Santis, A.D.: Network anomaly detection with the restricted Boltzmann machine. Neurocomput. 122, 13–23 (2013). https://doi.org/10.1016/j.neucom.2012.11.050

    Article  Google Scholar 

  114. Keyvanrad M.A., Homayounpour M.M.: A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet). arXiv:1408.3264 (2014)

  115. Dietterich, T.G.: Ensemble methods in machine learning. In: Goos, G., Hartmanis, J., van Leeuwen, J. (eds.) Multiple Classifier Systems, pp. 1–15. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

    Google Scholar 

  116. Woniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). https://doi.org/10.1016/j.inffus.2013.04.006

    Article  Google Scholar 

  117. Illy P., Kaddoum G., Moreira C.M., Kaur K., Garg S.: securing fog-to-things environment using intrusion detection system based on ensemble learning. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–7. (2019)

  118. Domingos, P.M.: A few useful things to know about machine learning. Commun. ACM 55, 78–87 (2012)

    Article  Google Scholar 

  119. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655

    Article  MATH  Google Scholar 

  120. Baba, N.M., Makhtar, M., Fadzli, S.A., Awang, M.K.: Current issues in ensemble methods and its applicaTIONS. J. Theor. Appl. Inf. Technol. 8, 1 (2015)

    Google Scholar 

  121. Santana L.E.A., Silva L., Canuto A.M.P., Pintro F., Vale K.M.O.: A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers. In: IEEE Congress on Evolutionary Computation, pp. 1–8. (2010)

  122. Bosman, H.H.W.J., Iacca, G., Tejada, A., Wörtche, H.J., Liotta, A.: Ensembles of incremental learners to detect anomalies in ad hoc sensor networks. Ad Hoc Netw. 35, 14–36 (2015)

    Article  Google Scholar 

  123. Chen T., Guestrin C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (2016)

  124. Kumar, P., Gupta, G.P., Tripathi, R.: A distributed ensemble design based intrusion detection system using fog computing to protect the internet of things networks. J. Ambient Intell. Humaniz. Comput. 12(10), 9555–9572 (2021). https://doi.org/10.1007/s12652-020-02696-3

    Article  Google Scholar 

  125. Ke G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: NIPS. (2017)

  126. Aldwairi M., Alshboul M. A., Seyam A.: Characterizing realistic signature-based intrusion detection benchmarks. In: Presented at the Proceedings of the 6th International Conference on Information Technology: IoT and Smart City, Hong Kong. (2018). Available at https://doi.org/10.1145/3301551.3301591

  127. ManoharNaik, S., Geethanjali, N.: A multi-fusion pattern matching algorithm for signature-based network intrusion detection system. Preprints 2016, 1–8 (2016). https://doi.org/10.20944/preprints201608.0197.v1

    Article  Google Scholar 

  128. Folorunso, O., Ayo, F.E., Babalola, Y.E.: Ca-NIDS: a network intrusion detection system using combinatorial algorithm approach. J. Inf. Priv. Secur. 12(4), 181–196 (2016). https://doi.org/10.1080/15536548.2016.1257680

    Article  Google Scholar 

  129. Rao, C.S., Raju, K.B.: MapReduce accelerated signature-based intrusion detection mechanism (IDM) with pattern matching mechanism. In: Nayak, J., Abraham, A., Krishna, B.M., Chandra Sekhar, G.T., Das, A.K. (eds.) Soft Computing in Data Analytics, pp. 157–164. Springer Singapore, Singapore (2019)

    Chapter  Google Scholar 

  130. Aho, A.V., Corasick, M.J.: Efficient string matching. Commun. ACM 18, 333–340 (1975)

    Article  MATH  Google Scholar 

  131. Alicherry, M., Muthuprasanna, M., Kumar, V.P.: High speed pattern matching for network IDS/IPS. In: Proceedings of the 2006 IEEE International Conference on Network Protocols, pp. 187–196. (2006)

  132. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J. Comput. 6, 323–350 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  133. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. (1999)

  134. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10), 762–772 (1977). https://doi.org/10.1145/359842.359859

    Article  MATH  Google Scholar 

  135. Kaur, S., Singh, M.: Hybrid intrusion detection and signature generation using deep recurrent neural networks. Neural Comput. Appl. 32(12), 7859–7877 (2020). https://doi.org/10.1007/s00521-019-04187-9

    Article  Google Scholar 

  136. Liu, J., et al.: Adaptive intrusion detection via GA-GOGMM-based pattern learning with fuzzy rough set-based attribute selection. Expert Syst. Appl. 139, 112845 (2020). https://doi.org/10.1016/j.eswa.2019.112845

    Article  Google Scholar 

  137. Kalavadekar, P.N., Sane, S.S.: Building an effective intrusion detection system using combined signature and anomaly detection techniques. Int. J. Innov. Technol. Explor. Eng. 8(10), 429 (2019)

    Article  Google Scholar 

  138. Ugtakhbayar, N., Usukhbayar, B., Baigaltugs, S.: A Hybrid model for anomaly-based intrusion detection system. In: Pan, J.-S., Li, J., Tsai, P.-W., Jain, L.C. (eds.) Advances in Intelligent Information Hiding and Multimedia Signal Processing, pp. 419–431. Springer Singapore, Singapore (2020)

    Chapter  Google Scholar 

  139. Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., Wahab, A.: A review of intrusion detection systems using machine and deep learning in internet of things: challenges, solutions and future directions. Electronics 9(7), 1177 (2020). https://doi.org/10.3390/electronics9071177

  140. Bhati, N.S., Khari, M., García-Díaz, V., Verdú, E.: A Review on Intrusion Detection Systems and Techniques. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 28(Supp 02), 65–91 (2020). https://doi.org/10.1142/s0218488520400140

    Article  MathSciNet  Google Scholar 

  141. Patel, A., Taghavi, M., Bakhtiyari, K., Celestino Júnior, J.: An intrusion detection and prevention system in cloud computing: a systematic review. J. Netw. Comput. Appl. 36(1), 25–41 (2013). https://doi.org/10.1016/j.jnca.2012.08.007

    Article  Google Scholar 

  142. Hwang, R.H., Peng, M.C., Huang, C.W., Lin, P.C., Nguyen, V.L.: An unsupervised deep learning model for early network traffic anomaly detection. IEEE Access 8, 30387–30399 (2020). https://doi.org/10.1109/ACCESS.2020.2973023

    Article  Google Scholar 

  143. Nagaraju, S., Shanmugham, B., Baskaran, K.: High throughput token driven FSM based regex pattern matching for network intrusion detection system. Mater. Today Proc. 47, 139–143 (2021). https://doi.org/10.1016/j.matpr.2021.04.028. Accessed 1 Jan 2021

  144. AlYousef, M.Y., Abdelmajeed, N.T.: Dynamically detecting security threats and updating a signature-based intrusion detection system’s database. Procedia Comput. Sci. 159, 1507–1516 (2019). https://doi.org/10.1016/j.procs.2019.09.321

    Article  Google Scholar 

  145. Almutairi A.H., Abdelmajeed N.T.: Innovative signature based intrusion detection system: parallel processing and minimized database. In: 2017 International Conference on the Frontiers and Advances in Data Science (FADS), 23–25 Oct 2017, pp. 114–119. (2017). https://doi.org/10.1109/FADS.2017.8253208.

Download references

Funding

The author did not receive any support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

OHA came up with the idea for the article, he also performed the literature search and the drafting, while the data analysis and synthesis were carried out by OHA, TA-T, and SYK. TA-T critically revised the work and make inputs where necessary.

Corresponding author

Correspondence to Oluwadamilare Harazeem Abdulganiyu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest in this paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulganiyu, O.H., Ait Tchakoucht, T. & Saheed, Y.K. A systematic literature review for network intrusion detection system (IDS). Int. J. Inf. Secur. 22, 1125–1162 (2023). https://doi.org/10.1007/s10207-023-00682-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10207-023-00682-2

Keywords

Navigation