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The polynomial method for random matrices

N. Raj Rao∗ Alan Edelman†
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Abstract

We define a class of “algebraic” random matrices. These are random matrices for which the Stieltjes
transform of the limiting eigenvalue distribution function is algebraic, i.e., it satisfies a (bivariate) poly-
nomial equation. The Wigner and Wishart matrices whose limiting eigenvalue distributions are given by
the semi-circle law and the Marčenko-Pastur law are special cases.

Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of
the limiting eigenvalue density function. The limiting moments of algebraic random matrix sequences,
when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently
enumerated in closed form.

In this article, we develop the mathematics of the polynomial method which allows us to describe
the class of algebraic matrices by its generators and map the constructive approach we employ when
proving algebraicity into a software implementation that is available for download in the form of the
RMTool random matrix “calculator” package. Our characterization of the closure of algebraic probability
distributions under free additive and multiplicative convolution operations allows us to simultaneously
establish a framework for computational (non-commutative) “free probability” theory. We hope that the
tools developed allow researchers to finally harness the power of the infinite random matrix theory.

Key words Random matrices, stochastic eigen-analysis, free probability, algebraic functions, resul-
tants, D-finite series.

1. Introduction

We propose a powerful method that allows us to calculate the limiting eigenvalue distribution of a
large class of random matrices. We see this method as allowing us to expand our reach beyond the well
known special random matrices whose limiting eigenvalue distributions have the semi-circle density [38], the
Marčenko-Pastur density [18], the McKay density [19] or their close cousins [8,25]. In particular, we encode
transforms of the limiting eigenvalue distribution function as solutions of bivariate polynomial equations.
Then canonical operations on the random matrices become operations on the bivariate polynomials. We
illustrate this with a simple example. Suppose we take the Wigner matrix, sampled in Matlab as:

G = sign(randn(N))/sqrt(N); A = (G+G’)/sqrt(2);

whose eigenvalues in the N → ∞ limit follow the semicircle law, and the Wishart matrix which may be
sampled in Matlab as:

G = randn(N,2*N)/sqrt(2*N); B = G*G’;
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whose eigenvalues in the limit follow the Marčenko-Pastur law. The associated limiting eigenvalue distribu-
tion functions have Stieltjes transforms mA(z) and mB(z) that are solutions of the equations LA

mz(m, z) = 0
and LB

mz(m, z) = 0, respectively, where

LA
mz(m, z) = m2 + z m + 1, LB

mz(m, z) = m2z − (−2 z + 1)m + 2.

The sum and product of independent samples of these random matrices have limiting eigenvalue distribution
functions whose Stieltjes transform is a solution of the bivariate polynomial equations LA+B

mz (m, z) = 0 and
LAB

mz (m, z) = 0, respectively, which can be calculated from LA
mz and LB

mz alone. To obtain LA+B
mz (m, z) we

apply the transformation labelled as “Add Atomic Wishart” in Table 7 with c = 2, p1 = 1 and λ1 = 1/c = 0.5
to obtain the operational law

LA+B
mz (m, z) = LA

mz

(
m, z − 1

1 + 0.5m

)
. (1.1)

Substituting LA
mz = m2 + z m + 1 in (1.1) and clearing the denominator, yields the bivariate polynomial

LA+B
mz (m, z) = m3 + (z + 2)m2 − (−2 z + 1)m + 2. (1.2)

Similarly, to obtain LAB
mz , we apply the transformation labelled as “Multiply Wishart” in Table 7 with c = 0.5

to obtain the operational law

LAB
mz (m, z) = LA

mz

(
(0.5 − 0.5zm)m,

z

0.5 − 0.5zm

)
. (1.3)

Substituting LA
mz = m2 + z m + 1 in (1.3) and clearing the denominator, yields the bivariate polynomial

LAB
mz (m, z) = m4z2 − 2 m3z + m2 + 4 mz + 4. (1.4)

Figure 1 plots the density function associated with the limiting eigenvalue distribution for the Wigner and
Wishart matrices as well as their sum and product extracted directly from LA+B

mz (m, z) and LAB
mz (m, z). In

these examples, algebraically extracting the roots of these polynomials using the cubic or quartic formulas
is of little use except to determine the limiting density function. As we shall demonstrate in Section 8.,
the algebraicity of the limiting distribution (in the sense made precise next) is what allows us to readily
enumerate the moments efficiently directly from the polynomials LA+B

mz (m, z) and LAB
mz (m, z).

1.1 Algebraic random matrices: Definition and Utility

A central object in the study of large random matrices is the empirical distribution function which is
defined, for an N × N matrix AN with real eigenvalues, as

FAN (x) =
Number of eigenvalues of AN ≤ x

N
. (1.5)

For a large class of random matrices, the empirical distribution function FAN (x) converges, for every x,
almost surely (or in probability) as N → ∞ to a non-random distribution function FA(x). The dominant
theme of this paper is that “algebraic” random matrices form an important subclass of analytically tractable
random matrices and can be effectively studied using combinatorial and analytical techniques that we bring
into sharper focus in this paper.
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(a) The limiting eigenvalue density function for the GOE and Wishart ma-
trices.
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(b) The limiting eigenvalue density function for the sum and product of
independent GOE and Wishart matrices.

Figure 1: A representative computation using the random matrix calculator.
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A6

-

Limiting
Density

-

B6

-

Limiting
Density

A + α I α × A A−1 pA + qI

rA + sI

Deterministic

A + W (c) W (c) × A W−1(c) × A
(A1/2 + G)

×
(A1/2 + G)′

Stochastic

Figure 2: A random matrix calculator where a sequence of deterministic and stochastic operations performed
on an algebraic random matrix sequence AN produces an algebraic random matrix sequence BN .
The limiting eigenvalue density and moments of a algebraic random matrix can be computed
numerically, with the latter often in closed form.

Definition 1 (Algebraic random matrices). Let FA(x) denote the limiting eigenvalue distribution function
of a sequence of random matrices AN . If a bivariate polynomial Lmz(m, z) exists such that

mA(z) =

∫
1

x − z
dFA(x) z ∈ C

+ \ R

is a solution of Lmz(mA(z), z) = 0 then AN is said to be an algebraic random matrix. The density function
fA := dFA (in the distributional sense) is referred to as an algebraic density and we say that AN ∈ Malg,
the class of algebraic random matrices and fA ∈ Palg, the class of algebraic distributions.

The utility of this, admittedly technical, definition comes from the fact that we are able to concretely
specify the generators of this class. We illustrate this with a simple example. Let G be an n × m random
matrix with i.i.d. standard normal entries with variance 1/m. The matrix W(c) = GG′ is the Wishart
matrix parameterized by c = n/m. Let A be an arbitrary algebraic random matrix independent of W(c).
Figure 2 identifies deterministic and stochastic operations that can be performed on A so that the resulting
matrix is algebraic as well. The calculator analogy is apt because once we start with an algebraic random
matrix, if we keep pushing away at the buttons we still get an algebraic random matrix whose limiting
eigenvalue distribution is concretely computable using the algorithms developed in Section 6..

The algebraicity definition is important because everything we want to know about the limiting eigenvalue
distribution of A is encoded in the bivariate polynomial LA

mz(m, z). In this paper, we establish the algebraicity
of each of the transformations in Figure 2 using the “hard” approach that we label as the polynomial
method whereby we explicitly determine the operational law for the polynomial transformation LA

mz(m, z) 7→
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LB
mz(m, z) corresponding to the random matrix transformation A 7→ B. This is in contrast to the “soft”

approach taken in a recent paper by Anderson and Zeitouni [3, Section 6] where the algebraicity of Stieltjes
transforms under hypotheses frequently fulfilled in RMT is proven using dimension theory for noetherian
local rings. The catalogue of admissible transformations, the corresponding “hard” operational law and
their software realization is found in Section 6.. This then allows us to calculate the eigenvalue distribution
functions of a large class of algebraic random matrices that are generated from other algebraic random
matrices. In the simple case involving Wigner and Wishart matrices considered earlier, the transformed
polynomials were obtained by hand calculation. Along with the theory of algebraic random matrices we also
develop a software realization that maps the entire catalog of transformations (see Tables 7 -9) into symbolic
Matlab code. Thus, for the same example, the sequence of commands:

>> syms m z

>> LmzA = m^2+z*m+1;

>> LmzB = m^2-(-2*z+1)*m+2;

>> LmzApB = AplusB(LmzA,LmzB);

>> LmzAtB = AtimesB(LmzA,LmzB);

could also have been used to obtain LA+B
mz and LAB

mz . We note that the commands AplusB and AtimesB

implicitly use the free convolution machinery (see Section 9.) to perform the said computation. To summarize,
by defining the class of algebraic random matrices, we are able to extend the reach of infinite random matrix
theory well beyond the special cases of matrices with Gaussian entries. The key idea is that by encoding
probability densities as solutions of bivariate polynomial equations, and deriving the correct operational laws
on this encoding, we can take advantage of powerful symbolic and numerical techniques to compute these
densities and their associated moments.

1.2 Outline

This paper is organized as follows. We introduce various transform representations of the distribution
function in Section 2.. We define algebraic distributions and the various manners in which they can be
implicitly represented in 3. and describe how they may be algebraically manipulated in 4.. The class of
algebraic random matrices is described in Section 5. where the theorems are stated and proved by obtaining
the operational law on the bivariate polynomials summarized in Section 6.. Techniques for determining the
density function of the limiting eigenvalue distribution function and the associated moments are discussed
in Sections 7. and 8., respectively. We discuss the relevance of the polynomial method to computational free
probability in Section 9., provide some applications in Section 10. and conclude with some open problems in
Section 11..

2. Transform representations

We now describe the various ways in which transforms of the empirical distribution function can be
encoded and manipulated.

2.1 The Stieltjes transform and some minor variations

The Stieltjes transform of the distribution function FA(x) is given by

mA(z) =

∫
1

x − z
dFA(x) for z ∈ C

+ \ R. (2.1)

The Stieltjes transform may be interpreted as the expectation

mA(z) = Ex

[
1

x − z

]
,
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with respect to the random variable x with distribution function FA(x). Consequently, for any invertible
function h(x) continuous over the support of dFA(x), the Stieltjes transform mA(z) can also be written in
terms of the distribution of the random variable y = h(x) as

mA(z) = Ex

[
1

x − z

]
= Ey

[
1

h〈−1〉(y) − z

]
, (2.2)

where h〈−1〉(·) is the inverse of h(·) with respect to composition i.e. h(h〈−1〉(x)) = x. Equivalently, for
y = h(x), we obtain the relationship

Ey

[
1

y − z

]
= Ex

[
1

h(x) − z

]
. (2.3)

The well-known Stieltjes-Perron inversion formula [1]

fA(x) ≡ dFA(x) =
1

π
lim

ξ→0+
Im mA(x + iξ). (2.4)

can be used to recover the probability density function fA(x) from the Stieltjes transform. Here and for the
remainder of this thesis, the density function is assumed to be distributional derivative of the distribution
function. In a portion of the literature on random matrices, the Cauchy transform is defined as

gA(z) =

∫
1

z − x
dFA(x) forz ∈ C

−1 \ R.

The Cauchy transform is related to the Stieltjes transform, as defined in (2.1), by

gA(z) = −mA(z). (2.5)

2.2 The moment transform

When the probability distribution is compactly supported, the Stieltjes transform can also be expressed
as the series expansion

mA(z) = −1

z
−

∞∑

j=1

MA
j

zj+1
, (2.6)

about z = ∞, where MA
j :=

∫
xjdFA(x) is the j-th moment. The ordinary moment generating function,

µA(z), is the power series

µA(z) =

∞∑

j=0

MA
j zj , (2.7)

with MA
0 = 1. The moment generating function, referred to as the moment transform, is related to the

Stieltjes transform by

µA(z) = −1

z
mA

(
1

z

)
. (2.8)

The Stieltjes transform can be expressed in terms of the moment transform as

mA(z) = −1

z
µA

(
1

z

)
. (2.9)

The eta transform, introduced by Tulino and Verdù in [32], is a minor variation of the moment transform.
It can be expressed in terms of the Stieltjes transform as

ηA(z) =
1

z
mA

(
−1

z

)
, (2.10)
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while the Stieltjes transform can be expressed in terms of the eta transform as

mA(z) = −1

z
ηA

(
−1

z

)
. (2.11)

2.3 The R transform

The R transform is defined in terms of the Cauchy transform as

rA(z) = g
〈−1〉
A (z) − 1

z
, (2.12)

where g
〈−1〉
A (z) is the functional inverse of gA(z) with respect to composition. It will often be more convenient

to use the expression for the R transform in terms of the Cauchy transform given by

rA(g) = z(g) − 1

g
. (2.13)

The R transform can be written as a power series whose coefficients KA
j are known as the “free cumulants.”

For a combinatorial interpretation of free cumulants, see [28]. Thus the R transform is the (ordinary) free
cumulant generating function

rA(g) =

∞∑

j=0

KA
j+1 gj . (2.14)

2.4 The S transform

The S transform is relatively more complicated. It is defined as

sA(z) =
1 + z

z
Υ

〈−1〉
A (z) (2.15)

where ΥA(z) can be written in terms of the Stieltjes transform mA(z) as

ΥA(z) = −1

z
mA(1/z)− 1. (2.16)

This definition is quite cumbersome to work with because of the functional inverse in (2.15). It also places
a technical restriction (to enable series inversion) that MA

1 6= 0. We can, however, avoid this by expressing
the S transform algebraically in terms of the Stieltjes transform as shown next. We first plug in ΥA(z) into
the left-hand side of (2.15) to obtain

sA(ΥA(z)) =
1 + ΥA(z)

ΥA(z)
z.

This can be rewritten in terms of mA(z) using the relationship in (2.16) to obtain

sA(−1

z
m(1/z) − 1) =

z m(1/z)

m(1/z) + z

or, equivalently:

sA(−z m(z) − 1) =
m(z)

z m(z) + 1
. (2.17)

We now define y(z) in terms of the Stieltjes transform as y(z) = −z m(z) − 1. It is clear that y(z) is an
invertible function of m(z). The right hand side of (2.17) can be rewritten in terms of y(z) as

sA(y(z)) = −m(z)

y(z)
=

m(z)

z m(z) + 1
. (2.18)
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Equation (2.18) can be rewritten to obtain a simple relationship between the Stieltjes transform and the S
transform

mA(z) = −y sA(y). (2.19)

Noting that y = −z m(z) − 1 and m(z) = −y sA(y) we obtain the relationship

y = z y sA(y) − 1

or, equivalently

z =
y + 1

y sA(y)
. (2.20)

3. Algebraic distributions

Notation 3.1 (Bivariate polynomial). Let Luv denote a bivariate polynomial of degree Du in u and Dv in
v defined as

Luv ≡ Luv(·, ·) =

Du∑

j=0

Dv∑

k=0

cjk uj vk =

Du∑

j=0

lj(v)uj . (3.1)

The scalar coefficients cjk are real valued.

The two letter subscripts for the bivariate polynomial Luv provide us with a convention of which dummy
variables we will use. We will generically use the first letter in the subscript to represent a transform of the
density with the second letter acting as a mnemonic for the dummy variable associated with the transform.
By consistently using the same pair of letters to denote the bivariate polynomial that encodes the transform
and the associated dummy variable, this abuse of notation allows us to readily identify the encoding of the
distribution that is being manipulated.

Remark 3.2 (Irreducibility). Unless otherwise stated it will be understood that Luv(u, v) is “irreducible” in
the sense that the conditions:

• l0(v), . . . , lDu
(v) have no common factor involving v,

• lDu
(v) 6= 0,

• discL(v) 6= 0,

are satisfied, where discL(v) is the discriminant of Luv(u, v) thought of as a polynomial in v.

We are particularly focused on the solution “curves,” u1(v), . . . , uDu
(v), i.e.,

Luv(u, v) = lDu
(v)

Du∏

i=1

(u − ui(v)) .

Informally speaking, when we refer to the bivariate polynomial equation Luv(u, v) = 0 with solutions ui(v)
we are actually considering the equivalence class of rational functions with this set of solution curves.

Remark 3.3 (Equivalence class). The equivalence class of Luv(u, v) may be characterized as functions of
the form Luv(u, v)g(v)/h(u, v) where h is relatively prime to Luv(u, v) and g(v) is not identically 0.
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A few technicalities (such as poles and singular points) that will be catalogued later in Section 6. remain,
but this is sufficient for allowing us to introduce rational transformations of the arguments and continue to
use the language of polynomials.

Definition 3.4 (Algebraic distributions). Let F (x) be a probability distribution function and f(x) be its
distributional derivative (here and henceforth). Consider the Stieltjes transform m(z) of the distribution
function, defined as

m(z) =

∫
1

x − z
dF (x) for z ∈ C

+ \ R. (3.2)

If there exists a bivariate polynomial Lmz such that Lmz(m(z), z) = 0 then we refer to F (x) as algebraic
(probability) distribution function, f(x) as an algebraic (probability) density function and say the f ∈ Palg.
Here Palg denotes the class of algebraic (probability) distributions.

Definition 3.5 (Atomic distribution). Let F (x) be a probability distribution function of the form

F (x) =

K∑

i=1

pi I[λi,∞),

where the K atoms at λi ∈ R have (non-negative) weights pi subject to
∑

i pi = 1 and I[x,∞) is the indicator
(or characteristic) function of the set [x,∞). We refer to F (x) as an atomic (probability) distribution
function. Denoting its distributional derivative by f(x), we say that f(x) ∈ Patom. Here Patom denotes the
class of atomic distributions.

Example 3.6. An atomic probability distribution, as in Definition 3.5, has a Stieltjes transform

m(z) =

K∑

i=1

pi

λi − z

which is the solution of the equation Lmz(m, z) = 0 where

Lmz(m, z) ≡
K∏

i=1

(λi − z)m −
K∑

i=1

K∏

j 6=i
j=1

pi(λj − z).

Hence it is an algebraic distribution; consequently Patom ⊂ Palg.

Example 3.7. The Cauchy distribution whose density

f(x) =
1

π(x2 + 1)
,

has a Stieltjes transform m(z) which is the solution of the equation Lmz(m, z) = 0 where

Lmz(m, z) ≡
(
z2 + 1

)
m2 + 2 z m + 1.

Hence it is an algebraic distribution.

It is often the case that the probability density functions of algebraic distributions, according to our def-
inition, will also be algebraic functions themselves. We conjecture that this is a necessary but not sufficient
condition. We show that it is not sufficient by providing the counter-example below.
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Counter-example 3.8. Consider the quarter-circle distribution with density function

f(x) =

√
4 − x2

π
for x ∈ [0, 2].

Its Stieltjes transform :

m(z) = −
4 − 2

√
−z2 + 4 ln

(
− 2+

√
−z2+4
z

)
+ zπ

2π
,

is clearly not an algebraic function. Thus f(x) /∈ Palg.

3.1 Implicit representations of algebraic distributions

We now define six interconnected bivariate polynomials denoted by Lmz, Lgz, Lrg, Lsy, Lµz, and Lηz. We
assume that Luv(u, v) is an irreducible bivariate polynomial of the form in (3.1). The main protagonist of the
transformations we consider is the bivariate polynomial Lmz which implicitly defines the Stieltjes transform
m(z) via the equation Lmz(m, z) = 0. Starting off with this polynomial we can obtain the polynomial Lgz

using the relationship in (2.5) as
Lgz(g, z) = Lmz(−g, z). (3.3)

Perhaps we should explain our abuse of notation once again, for the sake of clarity. Given any one polynomial,
all the other polynomials can be obtained. The two letter subscripts not only tell us which of the six
polynomials we are focusing on, it provides a convention of which dummy variables we will use. The first
letter in the subscript represents the transform; the second letter is a mnemonic for the variable associated
with the transform that we use consistently in the software based on this framework. With this notation in
mind, we can obtain the polynomial Lrg from Lgz using (2.13) as

Lrg(r, g) = Lgz

(
g, r +

1

g

)
. (3.4)

Similarly, we can obtain the bivariate polynomial Lsy from Lmz using the expressions in (2.19) and (2.20) to
obtain the relationship

Lsy = Lmz

(
−y s,

y + 1

sy

)
. (3.5)

Based on the transforms discussed in Sectin 2., we can derive transformations between additional pairs of
bivariate polynomials represented by the bidirectional arrows in Figure 3 and listed in the third column of
Table 3. Specifically, the expressions in (2.8) and (2.11) can be used to derive the transformations between
Lmz and Lµz and Lmz and Lηz respectively. The fourth column of Table 3 lists the Matlab function, imple-
mented using its Maple based Symbolic Toolbox, corresponding to the bivariate polynomial transformations
represented in Figure 3. In the Matlab functions, the function irreducLuv(u,v) listed in Table 1 ensures
that the resulting bivariate polynomial is irreducible by clearing the denominator and making the resulting
polynomial square free.

Example: Consider an atomic probability distribution with

F (x) = 0.5 I[0,∞) + 0.5 I[1,∞), (3.6)

whose Stieltjes transform

m(z) =
0.5

0 − z
+

0.5

1 − z
,

is the solution of the equation
m(0 − z)(1 − z) − 0.5(1 − 2z) = 0,
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Legend 

I

III

VI

V

II
IV

Lµz

Lrg Lsy

LmzLgz

Lηz

m(z) ≡ Stieltjes transform
g(z) ≡ Cauchy transform
r(g) ≡ R transform
s(y) ≡ S transform
µ(z) ≡ Moment transform
η(z) ≡ Eta transform

Figure 3: The six interconnected bivariate polynomials; transformations between the polynomials, indicated
by the labelled arrows, are given in Table 3.

or equivalently, the solution of the equation Lmz(m, z) = 0 where

Lmz(m, z) ≡ m(2 z2 − 2 z)− (1 − 2z). (3.7)

We can obtain the bivariate polynomial Lgz(g, z) by applying the transformation in (3.3) to the bivariate
polynomial Lmz given by (3.7) so that

Lgz(g, z) = −g(2 z2 − 2 z)− (1 − 2z). (3.8)

Similarly, by applying the transformation in (3.4) we obtain

Lrg(r, g) = −g

(
2

(
r +

1

g

)
− 2

(
r +

1

g

)2
)

−
(

1 − 2

(
r +

1

g

))
. (3.9)

which, on clearing the denominator and invoking the equivalence class representation of our polynomials (see
Remark 3.3), gives us the irreducible bivariate polynomial

Lrg(r, g) = −1 + 2 gr2 + (2 − 2 g) r. (3.10)

By applying the transformation in (3.5) to the bivariate polynomial Lmz, we obtain

Lsy ≡ (−s y)

(
2

y + 1

sy
− 2

(
y + 1

sy

)2
)

−
(

1 − 2
y + 1

sy

)

which on clearing the denominator gives us the irreducible bivariate polynomial

LA
sy(s, y) = (1 + 2 y) s − 2 − 2 y. (3.11)

Table 2 tabulates the six bivariate polynomial encodings in Figure 3 for the distribution in (3.6), the semi-
circle distribution for Wigner matrices and the Marčenko-Pastur distribution for Wishart matrices.



The polynomial method 12

Procedure Matlab Code
function Luv = irreducLuv(Luv,u,v)

Simplify and clear the denominator L = numden(simplify(expand(Luv)));

L = Luv / maple(’gcd’,L,diff(L,u));

Make square free L = simplify(expand(L));

L = Luv / maple(’gcd’,L,diff(L,v));

Simplify Luv = simplify(expand(L));

Table 1: Making Luv irreducible.

(a) The atomic distribution in (3.6).

L Bivariate Polynomials
Lmz m(2 z2 − 2 z)− (1 − 2z)
Lgz −g(2 z2 − 2 z) − (1 − 2z)
Lrg −1 + 2 gr2 + (2 − 2 g) r
Lsy (1 + 2 y) s − 2 − 2 y
Lµz (−2 + 2 z)µ + 2 − z
Lηz (2 z + 2) η − 2 − z

(b) The Marčenko-Pastur distribution.

L Bivariate Polynomials
Lmz czm2 − (1 − c − z)m + 1
Lgz czg2 + (1 − c − z) g + 1
Lrg (cg − 1) r + 1
Lsy (cy + 1) s − 1
Lµz µ2zc− (zc + 1 − z)µ + 1
Lηz η2zc + (−zc + 1 − z) η − 1

(c) The semi-circle distribution.

L Bivariate polynomials

Lmz m2 + m z + 1
Lgz g2 − g z + 1
Lrg r − g
Lsy s2 y − 1
Lµz µ2z2 − µ + 1
Lηz z2η2 − η + 1

Table 2: Bivariate polynomial representations of some algebraic distributions.
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ConversionLabel MATLAB Code

III

II

I

V

syms m eta z

Lmz = irreducLuv(Lmz,m,z);

VI

IV

Transformation

function Lmz = Lrg2Lmz(Lrg)

function Lrg = Lgz2Lrg(Lgz)

syms m z r g
Lgz = Lrg2Lgz(Lrg);
Lmz = Lgz2Lmz(Lgz);

function Lrg = Lmz2Lrg(Lmz)
syms m z r g
Lgz = Lmz2Lgz(Lmz);
Lrg = Lgz2Lrg(Lgz);

syms r g z
Lrg = subs(Lgz,g,r+1/g);
Lrg = irreducLuv(Lrg,r,g);

function Lmz = Lsy2Lmz(Lsy)
syms m z s y
Lmz = subs(Lsy,s,m/(z*m+1));
Lmz = subs(Lmz,y,-z*m-1);

Lmz = irreducLuv(Lmz,m,z);
Lmz = subs(Lmz,eta,-z*m);
Lmz = subs(Letaz,z,-1/z);

function Lsy = Lmz2Lsy(Lmz)

Letaz = subs(Letaz,m,z*eta);
Letaz = irreducLuv(Letaz,eta,z);

function Lmz = Lgz2Lmz(Lgz)
syms m g z
Lmz = subs(Lgz,g,-m);

function Lgz = Lmz2Lgz(Lmz)
syms m g z
Lgz = subs(Lmz,m,-g);

function Lgz = Lrg2Lgz(Lrg)
syms r g z
Lgz = subs(Lrg,r,z-1/g);
Lgz = irreducLuv(Lgz,g,z);

syms m z s y
Lsy = subs(Lmz,m,-y*s);
Lsy = subs(Lsy,z,(y+1)/y/s);
Lsy = irreducLuv(Lsy,s,y);

syms m myu z
Lmyuz = subs(Lmz,z,1/z);

Lmyuz = irreducLuv(Lmyuz,myu,z);

function Lmz = Letaz2Lmz(Letaz) 

syms m myu z

function Lmyuz = Lmz2Lmyuz(Lmz)

Lmz = irreducLuv(Lmz,m,z);

function Lmz = Lmyuz2Lmz(Lmyuz)

function Letaz = Lmz2Letaz(Lmz)
syms m eta z
Letaz = subs(Lmz,z,-1/z);

Lmyuz = subs(Lmyuz,m,-myu*z);

Lmz = subs(Lmyuz,z,1/z);
Lmz = subs(Lmz,myu,-m*z);

Lmz
⇀↽ Lηz

Lmz
⇀↽ Lµz

Lmz
⇀↽ Lsy

Lmz
⇀↽ Lgz

Lgz
⇀↽ Lrg

L
mz

= L
gz

(−m, z)

L
gz

= L
mz

(−g, z)

L
gz

= L
rg

(z − 1

g
, z)

L
rg

= L
gz

(g, r +
1

g
)

L
mz

= L
sy

(
m

z m + 1
,−z m − 1)

L
sy

= L
mz

(−y s,
y + 1

s y
)

L
mz

= Lηz(−z m,−1

z
)

Lηz = L
mz

(z η,−1

z
)

Lmz
⇀↽ Lrg L

mz
⇀↽ L

gz
⇀↽ L

rg

Lµz
= L

mz
(−µ z,

1

z
)

L
mz

= Lµz
(−mz,

1

z
)

Table 3: Transformations between the different bivariate polynomials. As a guide to Matlab notation, the
command syms declares a variable to be symbolic while the command subs symbolically substitutes every
occurrence of the second argument in the first argument with the third argument. Thus, for example, the
command y=subs(x-a,a,10) will yield the output y=x-10 if we have previously declared x and a to be
symbolic using the command syms x a.
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4. Algebraic operations on algebraic functions

Algebraic functions are closed under addition and multiplication. Hence we can add (or multiply) two al-
gebraic functions and obtain another algebraic function. We show, using purely matrix theoretic arguments,
how to obtain the polynomial equation whose solution is the sum (or product) of two algebraic functions
without ever actually computing the individual functions. In Section 4.2, we interpret this computation
using the concept of resultants [31] from elimination theory. These tools will feature prominently in Section
5. when we encode the transformations of the random matrices as algebraic operations on the appropriate
form of the bivariate polynomial that encodes their limiting eigenvalue distributions.

4.1 Companion matrix based computation

Definition 4.1 (Companion Matrix). The companion matrix Ca(x) to a monic polynomial

a(x) ≡ a0 + a1 x + . . . + an−1 xn−1 + xn

is the n × n square matrix

Ca(x) =

2

6

6

6

6

6

6

4

0 . . . . . . . . . −a0

1 · · · · · · · · · −a1

0
. . . −a2

...
. . .

...

0 . . . . . . 1 −an−1

3

7

7

7

7

7

7

5

with ones on the sub-diagonal and the last column given by the negative coefficients of a(x).

Remark 4.2. The eigenvalues of the companion matrix are the solutions of the equation a(x) = 0. This is
intimately related to the observation that the characteristic polynomial of the companion matrix equals a(x),
i.e.,

a(x) = det(x In − Ca(x)).

Consider the bivariate polynomial Luv as in (3.1). By treating it as a polynomial in u whose coefficients are
polynomials in v, i.e., by rewriting it as

Luv(u, v) ≡
Du∑

j=0

lj(v)uj , (4.1)

we can create a companion matrix Cu
uv whose characteristic polynomial as a function of u is the bivariate

polynomial Luv. The companion matrix Cu
uv is the Du ×Du matrix in Table 4.

Cu
uv Matlab code

2

6

6

6

6

6

6

4

0 . . . . . . . . . −l0(v)/lDu(v)
1 · · · · · · · · · −l1(v)/lDu(v)

0
. . . −l2(v)/lDu(v)

...
. . .

...
0 . . . . . . 1 −lDu−1(v)/lDu(v)

3

7

7

7

7

7

7

5

function Cu = Luv2Cu(Luv,u)
Du = double(maple(’degree’,Luv,u));
LDu = maple(’coeff’,Luv,u,Du);
Cu = sym(zeros(Du))+ ..

+diag(ones(Du-1,1),-1));
for Di = 0:Du-1

LtuDi = maple(’coeff’,Lt,u,Di);
Cu(Di+1,Du) = -LtuDi/LDu;

end

Table 4: The companion matrix Cu
uv, with respect to u, of the bivariate polynomial Luv given by (4.1).
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Remark 4.3. Analogous to the univariate case, the characteristic polynomial of Cu
uv is det(u I − Cu

uv) =
Luv(u, v)/lDu

(v)Du . Since lDu
(v) is not identically zero, we say that det(u I − Cu

uv) = Luv(u, v) where the
equality is understood to be with respect to the equivalence class of Luv as in Remark 3.3. The eigenvalues
of Cu

uv are the solutions of the algebraic equation Luv(u, v) = 0; specifically, we obtain the algebraic function
u(v).

Definition 4.4 (Kronecker product). If Am (with entries aij) is an m × m matrix and Bn is an n × n
matrix then the Kronecker (or tensor) product of Am and Bn, denoted by Am ⊗Bn, is the mn×mn matrix
defined as:

Am ⊗ Bn =

2

6

4

a11Bn . . . a1nBn

.

..
. . .

.

..

am1Bn . . . amnBn

3

7

5

Lemma 4.5. If αi and βj are the eigenvalues of Am and Bn respectively, then

1. αi + βj is an eigenvalue of (Am ⊗ In) + (Im ⊗ Bn),

2. αi βj is an eigenvalue of Am ⊗ Bn,

for i = 1, . . . , m, j = 1, . . . , n.

Proof. The statements are proved in [16, Theorem 4.4.5] and [16, Theorem 4.2.12].

Proposition 4.6. Let u1(v) be a solution of the algebraic equation L1
uv(u, v) = 0, or equivalently an eigen-

value of the D1
u×D1

u companion matrix Cu1
uv. Let u2(v) be a solution of the algebraic equation L2

uv(u, v) = 0,
or equivalently an eigenvalue of the D2

u × D2
u companion matrix Cu2

uv. Then

1. u3(v) = u1(v) + u2(v) is an eigenvalue of the matrix Cu3
uv =

(
Cu1

uv ⊗ ID2
u

)
+
(
ID1

u
⊗ Cu2

uv

)
,

2. u3(v) = u1(v)u2(v) is an eigenvalue of the matrix Cu3
uv = Cu1

uv ⊗ Cu2
uv.

Equivalently u3(v) is a solution of the algebraic equation L3
uv = 0 where L3

uv = det(u I − Cu3
uv).

Proof. This follows directly from Lemma 4.5. We represent the binary addition and multiplication

operators on the space of algebraic functions by the symbols ⊞u and ⊠u respectively. We define addition
and multiplication as in Table 5 by applying Proposition 4.6. Note that the subscript ‘u’ in ⊞u and ⊠u

provides us with an indispensable convention of which dummy variable we are using. Table 6 illustrates
the ⊞ and ⊠ operations on a pair of bivariate polynomials and underscores the importance of the symbolic
software developed. The (Du +1) × (Dv +1) matrix Tuv lists only the coefficients cij for the term ui vj in
the polynomial Luv(u, v). Note that the indexing for i and j starts with zero.

4.2 Resultants based computation

Addition (and multiplication) of algebraic functions produces another algebraic function. We now demon-
strate how the concept of resultants from elimination theory can be used to obtain the polynomial whose
zero set is the required algebraic function.

Definition 4.7 (Resultant). Given a polynomial

a(x) ≡ a0 + a1 x + . . . + an−1 xn−1 + anxn

of degree n with roots αi, for i = 1, . . . , n and a polynomial

b(x) ≡ b0 + b1 x + . . . + bm−1 xm−1 + bmxm
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Operation: L1
uv, L

2
uv 7−→ L3

uv Matlab Code

L3
uv = L1

uv ⊞u L2
uv ≡ det(u I− Cu3

uv), where

Cu3
uv =





2Cu1

uv if L1
uv = L2

uv,

(Cu1
uv ⊗ ID2

u
) + (ID1

u
⊗ Cu2

uv) otherwise.

function Luv3 = L1plusL2(Luv1,Luv2,u)
Cu1 = Luv2Cu(Luv1,u);
if (Luv1 == Luv2)

Cu3 = 2*Cu1;
else

Cu2 = Luv2Cu(Luv2,u);
Cu3 = kron(Cu1,eye(length(Cu2))) + ..

+kron(eye(length(Cu1)),Cu2);
end
Luv3 = det(u*eye(length(Cu3))-Cu3);

L3
uv = L1

uv ⊠u L2
uv ≡ det(u I− Cu3

uv), where

Cu3
uv =





Cu3
uv = (Cu1

uv)
2 if L1

uv = L2
uv,

Cu3
uv = Cu1

uv ⊗ Cu2
uv otherwise.

function Luv3 = L1timesL2(Luv1,Luv2,u)
Cu1 = Luv2Cu(Luv1,u);
if (Luv1 == Luv2)

Cu3 = Cu2̂;
else

Cu2 = Luv2Cu(Luv2,u);
Cu3 = kron(Cu1,Cu2);

end
Luv3 = det(u*eye(length(Cu3))-Cu3);

Table 5: Formal and computational description of the ⊞u and ⊠u operators acting on the bivariate poly-
nomials L1

uv(u, v) and L2
uv(u, v) where Cu1

uv and Cu2
uv are their corresponding companion matrices

constructed as in Table 4 and ⊗ is the matrix Kronecker product.

of degree m with roots βj, for j = 1, . . . , m, the resultant is defined as

Res x (a(x) , b(x)) = am
n bn

m

n∏

i=1

m∏

j=1

(βj − αi).

From a computational standpoint, the resultant can be directly computed from the coefficients of the
polynomials itself. The computation involves the formation of the Sylvester matrix and exploiting an identity
that relates the determinant of the Sylvester matrix to the resultant.

Definition 4.8 (Sylvester matrix). Given polynomials a(x) and b(x) with degree n and m respectively and
coefficients as in Definition 4.7, the Sylvester matrix is the (n + m) × (n + m) matrix

S(a, b) =




an 0 · · · 0 0 bm 0 · · · 0 0
an−1 an · · · 0 0 bm−1 bm · · · 0 0
. . . . . . · · · . . . . . . . . . . . . · · · . . . . . .
0 0 · · · a0 a1 0 0 · · · b0 b1

0 0 · · · 0 a0 0 0 · · · 0 b0




Proposition 4.9. The resultant of two polynomials a(x) and b(x) is related to the determinant of the
Sylvester matrix by

det(S(a, b)) = Res x (a(x) , b(x))

Proof. This identity can be proved using standard linear algebra arguments. A proof may be found in [2].
For our purpose, the utility of this definition is that the ⊞u and ⊠u operations can be expressed in terms

of resultants. Suppose we are given two bivariate polynomials L1
uv and L2

uv. By using the definition of the
resultant and treating the bivariate polynomials as polynomials in u whose coefficients are polynomials in v,
we obtain the identities

L3
uv(t, v) = L1

uv ⊞u L2
uv ≡ Res u

(
L1

uv(t − u, v) , L2
uv(u, v)

)
, (4.2)
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Luv Tuv C
u
uv C

v
uv

L1
uv ≡ u2v + u (1 − v) + v2

1 v v2

1

u

u2

2664 · · 1

1 −1 ·

· 1 ·

3775 


0 −v

1
−1 + v

v




[

0 −u

1 −u2 + u

]

L2
uv ≡ u2

(
v2 − 3 v + 1

)
+ u (1 + v) + v2

1 v v2

1

u

u2

2664 · · 1

1 1 ·

1 −3 1

3775 


0
−v2

v2 − 3 v + 1

1
−1 − v

v2 − 3 v + 1







0
−u2 − u

u2 + 1

1
3u2 − u

u2 + 1




L1
uv ⊞u L2

uv

1 v v2 v3 v4 v5 v6 v7 v8

1

u

u2

u3

u4

2666666664 · · 2 −6 11 −10 18 −8 1

2 · 2 −8 4 · · · ·

5 · 1 −4 2 · · · ·

4 · · · · · · · ·

1 · · · · · · · ·

3777777775
L1

uv ⊠u L2
uv

1 v v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14

1

u

u2

u3

u4

2666666664 · · · · · · · · · · 1 −6 11 −6 1

· · · · · −1 3 · −3 1 · · · · ·

· · 1 −4 10 −6 7 −2 · · · · · · ·

−1 · 1 · · · · · · · · · · · ·

1 · · · · · · · · · · · · · ·

3777777775
L1

uv ⊞v L2
uv L2

uv ⊠v L2
uv

1 v v2 v3 v4

1

u

u2

u3

u4

u5

u6

u7

u8

26666666666666666666664
· · · · 1

· · 4 · ·

· · 1 −4 ·

· −8 6 · ·

1 −2 3 · ·

8 −12 · · ·

3 2 · · ·

2 · · · ·

−1 · · · ·

37777777777777777777775

1 v v2 v3 v4

1

u

u2

u3

u4

u5

u6

u7

u8

u9

u10

26666666666666666666666666664

· · · · 1

· · · · ·

· · −2 1 ·

· · · −4 ·

1 1 −9 3 ·

2 −3 7 · ·

3 · · · ·

4 · −1 · ·

3 −1 1 · ·

2 3 · · ·

1 · · · ·

37777777777777777777777777775
Table 6: Examples of ⊞ and ⊠ operations on a pair of bivariate polynomials, L1

uv and L2
uv.
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and

L3
uv(t, v) = L1

uv ⊠u L2
uv ≡ Res u

(
uD1

uL1
uv(t/u, v) , L2

uv(u, v)
)

, (4.3)

where D1
u is the degree of L1

uv with respect to u. By Proposition 4.9, evaluating the ⊞u and ⊠u operations
via the resultant formulation involves computing the determinant of the (D1

u + D2
u) × (D1

u + D2
u) Sylvester

matrix. When L1
uv 6= L2

uv, this results in a steep computational saving relative to the companion matrix
based formulation in Table 5 which involves computing the determinant of a (D1

uD2
u)× (D1

uD2
u) matrix. Fast

algorithms for computing the resultant exploit this and other properties of the Sylvester matrix formulation.
In Maple , the computation L3

uv = L1
uv ⊞u L2

uv may be performed using the command:

Luv3 = subs(t=u,resultant(subs(u=t-u,Luv1),Luv2,u));

The computation L3
uv = L1

uv ⊠u L2
uv can be performed via the sequence of commands:

Du1 = degree(Luv1,u);

Luv3 = subs(t=u,resultant(simplify(u^Du1*subs(u=t/u,Luv1)),Luv2,u));

When L1
uv = L2

uv, however, the ⊞u and ⊠u operations are best performed using the companion matrix
formulation in Table 5. The software implementation of the operations in Table 5 in [22] uses the companion
matrix formulation when L1

uv = L2
uv and the resultant formulation otherwise.

Thus far we have established our ability to encode algebraic distribution as solutions of bivariate polynomial
equations and to manipulate the solutions. This sets the stage for defining the class of “algebraic” random
matrices next.

5. Class of algebraic random matrices

We are interested in identifying canonical random matrix operations for which the limiting eigenvalue
distribution of the resulting matrix is an algebraic distribution. This is equivalent to identifying operations
for which the transformations in the random matrices can be mapped into transformations of the bivariate
polynomial that encodes the limiting eigenvalue distribution function. This motivates the construction of
the class of “algebraic” random matrices which we shall define next.

The practical utility of this definition, which will become apparent in Section 6. and 10. can be succinctly
summarized: if a random matrix is shown to be algebraic then its limiting eigenvalue density function can
be computed using a simple root-finding algorithm. Furthermore, if the moments exist, they will satisfy a
finite depth linear recursion (see Theorem 8.6) with polynomial coefficients so that we will often be able to
enumerate them efficiently in closed form. Algebraicity of a random matrix thus acts as a certificate of the
computability of its limiting eigenvalue density function and the associated moments. In this chapter our
objective is to specify the class of algebraic random matrices by its generators.

5.1 Preliminaries

Let AN , for N = 1, 2, . . . be a sequence of N × N random matrices with real eigenvalues. Let FAN

denote the e.d.f., as in (1.5). Suppose FAN (x) converges almost surely (or in probability), for every x, to
FA(x) as N → ∞, then we say that AN 7→ A. We denote the associated (non-random) limiting probability
density function by fA(x).

Notation 5.1 (Mode of convergence of the empirical distribution function). When necessary we highlight

the mode of convergence of the underlying distribution function thus: if AN
a.s.7−→ A then it is shorthand

for the statement that the empirical distribution function of AN converges almost surely to the distribution

function FA; likewise AN
p7−→ A is shorthand for the statement that the empirical distribution function of

AN converges in probability to the distribution function FA. When the distinction is not made then almost
sure convergence is assumed.
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Remark 5.2. The element A above is not to be interpreted as a matrix. There is no convergence in the
sense of an ∞ × ∞ matrix. The notation AN

a.s7−→ A is shorthand for describing the convergence of the
associated distribution functions and not of the matrix itself. We think of A as being an (abstract) element
of a probability space with distribution function FA and associated density function fA.

Definition 5.3 (Atomic random matrix). If fA ∈ Patom then we say that AN is an atomic random matrix.
We represent this as AN 7→ A ∈ Matom where Matom denotes the class of atomic random matrices.

Definition 5.4 (Algebraic random matrix). If fA ∈ Palg then we say that AN is an algebraically char-
acterizable random matrix (often suppressing the word characterizable for brevity). We represent this as
AN 7−→ A ∈ Malg where Malg denotes the class of algebraic random matrices. Note that, by definition,
Matom ⊂ Malg.

5.2 Key idea used in proving algebraicity preserving nature of a random matrix

transformation

The ability to describe the class of algebraic random matrices and the technique needed to compute the
associated bivariate polynomial is at the crux our investigation. In the theorems that follow, we accomplish
the former by cataloguing random matrix operations that preserve algebraicity of the limiting distribution.

Our proofs shall rely on exploiting the fact that some random matrix transformations, say AN 7−→ BN ,
can be most naturally expressed as transformations of LA

mz 7−→ LB
mz; others as LA

rg 7−→ LB
rg while some as

LA
sy 7−→ LB

sy. Hence, we manipulate the bivariate polynomials (using the transformations depicted in Figure
3) to the form needed to apply the appropriate operational law, which we derive as part of the proof, and then
reverse the transformations to obtain the bivariate polynomial LB

mz. Once we have derived the operational
law for computing LB

mz from LA
mz, we have established the algebraicity of the limiting eigenvalue distribution

of BN and we are done. Readers interested in the operational law may skip directly to Section 6..
The following property of the convergence of distributions will be invaluable in the proofs that follow .

Proposition 5.5 (Continuous mapping theorem). Let AN 7−→ A. Let fA and Sδ
A denote the corresponding

limiting density function and the atomic component of the support, respectively. Consider the mapping
y = h(x) continuous everywhere on the real line except on the set of its discontinuities denoted by Dh. If
Dh ∩ Sδ

A = ∅ then BN = h(AN ) 7−→ B. The associated non-random distribution function, FB is given by
FB(y) = FA

(
h〈−1〉(y)

)
. The associated probability density function is its distributional derivative.

Proof. This is a restatement of continuous mapping theorem which follows from well-known facts about
the convergence of distributions [7].

5.3 Deterministic operations

We first consider some simple deterministic transformations on an algebraic random matrix AN that
produce an algebraic random matrix BN .

Theorem 5.6. Let AN 7→ A ∈ Malg and p, q, r, and s be real-valued scalars. Then,

BN = (pAN + q IN )/(r AN + s IN ) 7→ B ∈ Malg,

provided fA does not contain an atom at −s/r and r, s are not zero simultaneously.

Proof. Here we have h(x) = (p x + r)/(q x + s) which is continuous everywhere except at x = −s/r for
s and r not simultaneously zero. From Proposition 5.5, unless fA(x) has an atomic component at −s/r,
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BN 7→ B. The Stieltjes transform of FB can be expressed as

mB(z) = Ey

[
1

y − z

]
= Ex

[
r x + s

p x + q − z(r x + s)

]
. (5.1)

Equation (5.1) can be rewritten as

mB(z) =

∫
rx + s

(p − rz)x + (q − sz)
dFA(x) =

1

p − rz

∫
rx + s

x + q−sz
p−rz

dFA(x). (5.2)

With some algebraic manipulations, we can rewrite (5.2) as

mB(z) = βz

∫
rx + s

x + αz
dFA(x) = βz

(
r

∫
x

x + αz
dFA(x) + s

∫
1

x + αz
dFA(x)

)

= βz

(
r

∫
dFA(x) − r αz

∫
1

x + αz
dFA(x) + s

∫
1

x + αz
dFA(x)

)
.

(5.3)

where βz = 1/(p − r z) and αz = (q − s z)/(p − r z). Using the definition of the Stieltjes transform and the
identity

∫
dFA(x) = 1, we can express mB(z) in (5.3) in terms of mA(z) as

mB(z) = βz r + (βz s − β r αz)mA(−αz). (5.4)

Equation (5.4) can, equivalently, be rewritten as

mA(−αz) =
mB(z) − βz r

βz s − βz r αz
. (5.5)

Equation (5.5) can be expressed as an operational law on LA
mz as

LB
mz(m, z) = LA

mz((m − βz r)/(βz s − βz r αz),−αz). (5.6)

Since LA
mz exists, we can obtain LB

mz by applying the transformation in (5.6), and clearing the denominator
to obtain the irreducible bivariate polynomial consistent with Remark 3.3. Since LB

mz exists, this proves that
fB ∈ Palg and BN 7→ B ∈ Malg.

Appropriate substitutions for the scalars p, q, r and s in Theorem 5.6 leads to the following Corollary.

Corollary 5.7. Let AN 7→ A ∈ Malg and let α be a real-valued scalar. Then,

1. BN = A−1
N 7→ B ∈ Malg, provided fA does not contain at atom at 0,

2. BN = α AN 7→ B ∈ Malg,

3. BN = AN + α IN 7→ B ∈ Malg.

Theorem 5.8. Let Xn,N be an n × N matrix. If AN = Xn,NX
′

n,N 7→ A ∈ Malg then

BN = X
′

n,NXn,N 7→ B ∈ Malg .

Proof. Here Xn,N is an n×N matrix, so that An and BN are n×n and N ×N sized matrices respectively.
Let cN = n/N . When cN < 1, BN will have N − n eigenvalues of magnitude zero while the remaining n
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eigenvalues will be identically equal to the eigenvalues of An. Thus, the e.d.f. of BN is related to the e.d.f.
of An as

FBN (x) =
N − n

N
I[0,∞) +

n

N
FAn(x)

= (1 − cN ) I[0,∞) + cN FAn(x).
(5.7)

where I[0,∞) is the indicator function that is equal to 1 when x ≥ 0 and is equal to zero otherwise.
Similarly, when cN > 1, An will have n − N eigenvalues of magnitude zero while the remaining N

eigenvalues will be identically equal to the eigenvalues of BN . Thus the e.d.f. of An is related to the e.d.f.
of BN as

FAn(x) =
n − N

n
I[0,∞) +

N

n
FBN (x)

=

(
1 − 1

cN

)
I[0,∞) +

1

cN
FBN (x).

(5.8)

Equation (5.8) is (5.7) rearranged; so we do not need to differentiate between the case when cN < 1 and
cN > 1.

Thus, as n, N → ∞ with cN = n/N → c, if FAn converges to a non-random d.f. FA, then FBN will also
converge to a non-random d.f. FB related to FA by

FB(x) = (1 − c)I[0,∞) + c FA(x). (5.9)

From (5.9), it is evident that the Stieltjes transform of the limiting distribution functions FA and FB are
related as

mA(z) = −
(

1 − 1

c

)
1

z
+

1

c
mB(z). (5.10)

Rearranging the terms on either side of (5.10) allows us to express mB(z) in terms of mA(z) as

mB(z) = −1 − c

z
+ c mA(z). (5.11)

Equation (5.11) can be expressed as an operational law on LA
mz as

LB
mz(m, z) = LA

mz

(
−
(

1 − 1

c

)
1

z
+

1

c
m, z

)
. (5.12)

Given LA
mz, we can obtain LB

mz by using (5.12). Hence BN 7→ B ∈ Malg.

Theorem 5.9. Let AN 7→ A ∈ Malg. Then

BN = (AN )
2 7→ B ∈ Malg .

Proof. Here we have h(x) = x2 which is continuous everywhere. From Proposition 5.5, BN 7→ B. The
Stieltjes transform of FB can be expressed as

mB(z) = EY

[
1

y − z

]
= EX

[
1

x2 − z

]
. (5.13)
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Equation (5.13) can be rewritten as

mB(z) =
1

2
√

z

∫
1

x −√
z
dFA(x) − 1

2
√

z

∫
1

x +
√

z
dFA(x) (5.14)

=
1

2
√

z
mA(

√
z) − 1

2
√

z
mA(−√

z). (5.15)

Equation (5.14) leads to the operational law

LB
mz(m, z) = LA

mz(2m
√

z,
√

z) ⊞m LA
mz(−2m

√
z,
√

z). (5.16)

Given LA
mz, we can obtain LB

mz by using (5.16). This proves that BN 7→ B ∈ Malg.

Theorem 5.10. Let An 7→ A ∈ Malg and BN 7→ B ∈ Malg. Then,

CM = diag(An,BN ) 7→ C ∈ Malg,

where M = n + N and n/N → c > 0 as n, N → ∞.

Proof. Let CN be an N × N block diagonal matrix formed from the n × n matrix An and the M × M
matrix BM . Let cN = n/N . The e.d.f. of CN is given by

FCN = cN FAn + (1 − cN )FBM .

Let n, N → ∞ and cN = n/N → c. If FAn and FBM converge in distribution almost surely (or in probability)
to non-random d.f.’s FA and FB respectively, then FCN will also converge in distribution almost surely (or
in probability) to a non-random distribution function FC given by

FC(x) = c FA(x) + (1 − c)FB(x). (5.17)

The Stieltjes transform of the distribution function FC can hence be written in terms of the Stieltjes trans-
forms of the distribution functions FA and FB as

mC(z) = c mA(z) + (1 − c)mB(z) (5.18)

Equation (5.18) can be expressed as an operational law on the bivariate polynomial LA
mz(m, z) as

LC
mz = LA

mz

(m

c
, z
)

⊞m LB
mz

(
m

1 − c
, z

)
. (5.19)

Given LA
mz and LB

mz, and the definition of the ⊞m operator in Section 4., LC
mz is a polynomial which can be

constructed explicitly. This proves that CN 7→ C ∈ Malg.

Theorem 5.11. If An = diag(BN , α In−N ) and α is a real valued scalar. Then,

BN 7→ B ∈ Malg,

as n, N → ∞ with cN = n/N → c,

Proof. Assume that as n, N → ∞, cN = n/N → c. As we did in the proof of Theorem 5.10, we can show
that the Stieltjes transform mA(z) can be expressed in terms of mB(z) as

mA(z) =

(
1

c
− 1

)
1

α − z
+

1

c
mB(z). (5.20)
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This allows us to express LB
mz(m, z) in terms of LA

mz(m, z) using the relationship in (5.20) as

LB
mz(m, z) = LA

mz

(
−
(

1

c
− 1

)
1

α − z
+

1

c
m, z

)
. (5.21)

We can hence obtain LB
mz from LA

mz using (5.21). This proves that BN 7→ B ∈ Malg.

Corollary 5.12. Let AN 7→ A ∈ Malg. Then

BN = diag(An, α IN−n) 7→ B ∈ Malg,

for n/N → c > 0 as n, N → ∞.

Proof. This follows directly from Theorem 5.10.

5.4 Gaussian-like operations

We now consider some simple stochastic transformations that “blur” the eigenvalues of AN by injecting
additional randomness. We show that canonical operations involving an algebraic random matrix AN and
Gaussian-like and Wishart-like random matrices (defined next) produce an algebraic random matrix BN .

Definition 5.13 (Gaussian-like random matrix). Let YN,L be an N×L matrix with independent, identically
distributed (i.i.d.) elements having zero mean, unit variance and bounded higher order moments. We label
the matrix GN,L = 1√

L
YN,L as a Gaussian-like random matrix.

We can sample a Gaussian-like random matrix in Matlab as

G = sign(randn(N,L))/sqrt(L);

Gaussian-like matrices are labelled thus because they exhibit the same limiting behavior in the N → ∞ limit
as “pure” Gaussian matrices which may be sampled in Matlab as

G = randn(N,L)/sqrt(L);

Definition 5.14 (Wishart-like random matrix). Let GN,L be a Gaussian-like random matrix. We label the
matrix WN = GN,L × G′

N,L as a Wishart-like random matrix. Let cN = N/L. We denote a Wishart-like
random matrix thus formed by WN (cN ).

Remark 5.15 (Algebraicity of Wishart-like random matrices). The limiting eigenvalue distribution of the
Wishart-like random matrix has the Marčenko-Pastur density which is an algebraic density since LW

mz exists
(see Table 1(b)).

Proposition 5.16. Assume that GN,L is an N × L Gaussian-like random matrix. Let AN
a.s.7−→A be an

N × N symmetric/Hermitian random matrix and TL
a.s.7−→T be an L × L diagonal atomic random matrix

respectively. If GN,L, AN and TL are independent then BN = AN +G
′

N,LTLGN,L
a.s.7−→B, as cL = N/L → c

for N, L → ∞,. The Stieltjes transform mB(z) of the unique distribution function FB is satisfies the equation

mB(z) = mA

(
z − c

∫
xdFT (x)

1 + xmB(z)

)
. (5.22)
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Proof. This result may be found in Marčenko-Pastur [18] and Silverstein [26].

We can reformulate Proposition 5.16 to obtain the following result on algebraic random matrices.

Theorem 5.17. Let AN , GN,L and TL be defined as in Proposition 5.16. Then

BN = AN + G
′

L,NTLGL,N
a.s.7−→B ∈ Malg,

as cL = N/L → c for N, L → ∞.

Proof. Let TL be an atomic matrix with d atomic masses of weight pi and magnitude λi for i = 1, 2, . . . , d.
From Proposition 5.16, mB(z) can be written in terms of mA(z) as

mB(z) = mA

(
z − c

d∑

i=1

pi λi

1 + λi mB(z)

)
. (5.23)

where we have substituted FT (x) =
∑d

i=1 pi I[λi,∞) into (5.22) with
∑

i pi = 1.
Equation (5.23) can be expressed as an operational law on the bivariate polynomial LA

mz as

LB
mz(m, z) = LA

mz(m, z − αm). (5.24)

where αm = c
∑d

i=1 pi λi/(1 + λi m). This proves that BN
a.s.7−→B ∈ Malg.

Proposition 5.18. Assume that WN (cN ) is an N × N Wishart-like random matrix. Let AN
a.s.7−→A be

an N × N random Hermitian non-negative definite matrix. If WN (cN ) and AN are independent, then

BN = AN × WN(cN )
a.s.7−→B as cN → c. The Stieltjes transform mB(z) of the unique distribution function

FB satisfies

mB(z) =

∫
dFA(x)

{1 − c − c z mB(z)}x − z
. (5.25)

Proof. This result may be found in Bai and Silverstein [4, 26].

We can reformulate Proposition 5.18 to obtain the following result on algebraic random matrices.

Theorem 5.19. Let AN and WN (cN ) satisfy the hypothesis of Proposition 5.18. Then,

BN = AN × WN (cN )
a.s.7−→B ∈ Malg,

as cN → c.

Proof. By rearranging the terms in the numerator and denominator, (5.25) can be rewritten as

mB(z) =
1

1 − c − c z mB(z)

∫
dFA(x)

x − z
1−c−c z mB(z)

. (5.26)

Let αm,z = 1 − c − c z mB(z) so that (5.26) can be rewritten as

mB(z) =
1

αm,z

∫
dFA(x)

x − (z/αm,z)
. (5.27)
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We can express mB(z) in (5.27) in terms of mA(z) as

mB(z) =
1

αm,z
mA(z/αm,z). (5.28)

Equation (5.28) can be rewritten as

mA(z/αm,z) = αm,z mB(z). (5.29)

Equation (5.29) can be expressed as an operational law on the bivariate polynomial LA
mz as

LB
mz(m, z) = LA

mz(αm,z m, z/αm,z). (5.30)

This proves that BN
a.s.7−→B ∈ Malg.

Proposition 5.20. Assume that GN,L is an N × L Gaussian-like random matrix. Let AN
a.s.7−→A be an

N ×N symmetric/Hermitian random matrix independent of GN,L, AN . Let A
1/2
N denote an N ×L matrix.

If s is a positive real-valued scalar then BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)

′ a.s.7−→B, as cL = N/L → c
for N, L → ∞. The Stieltjes transform, mB(z) of the unique distribution function FB satisfies the equation

mB(z) = −
∫

dFA(x)

z {1 + s c mB(z)} − x
1+s c mB(z) + s (c − 1)

. (5.31)

Proof. This result is found in Dozier and Silverstein [12].
We can reformulate Proposition 5.20 to obtain the following result on algebraic random matrices.

Theorem 5.21. Assume AN , GN,L and s satisfy the hypothesis of Proposition 5.20. Then

BN = (A
1/2
N +

√
sGN,L)(A

1/2
N +

√
sGN,L)

′ a.s.7−→B ∈ Malg,

as cL = N/L → c for N, L → ∞.

Proof. By rearranging the terms in the numerator and denominator, (5.31) can be rewritten as

mB(z) =

∫ {1 + s c mB(z)} dFA(x)

x − {1 + s c mB(z)}(z {1 + s c mB(z)} + (c − 1) s)
. (5.32)

Let αm = 1+s c mB(z) and βm = {1+s c mB(z)}(z {1+s c mB(z)}+(c−1) s), so that β = α2
m z+αm s(c−1).

Equation (5.32) can hence be rewritten as

mB(z) = αm

∫
dFA(x)

x − βm
. (5.33)

Using the definition of the Stieltjes transform in (2.1), we can express mB(z) in (5.33) in terms of mA(z) as

mB(z) = αm mA(βm)

= αm mA(α2
m z + αm(c − 1)s).

(5.34)

Equation (5.34) can, equivalently, be rewritten as

mA(α2
m z + αm(c − 1)s) =

1

αm
mB(z). (5.35)

Equation (5.35) can be expressed as an operational law on the bivariate polynomial Lmz as

LB
mz(m, z) = LA

mz(m/αm, α2 z + αm s(c − 1)). (5.36)

This proves that BN
a.s.7−→B ∈ Malg.
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5.5 Sums and products

Proposition 5.22. Let AN
p7−→A and BN

p7−→B be N × N symmetric/Hermitian random matrices. Let
QN be a Haar distributed unitary/orthogonal matrix independent of AN and BN . Then CN = AN +

QNBNQ′
N

p7−→C. The associated distribution function FC is the unique distribution function whose R
transform satisfies

rC(g) = rA(g) + rB(g). (5.37)

Proof. This result was obtained by Voiculescu in [34].

We can reformulate Proposition 5.22 to obtain the following result on algebraic random matrices.

Theorem 5.23. Assume that AN , BN and QN satisfy the hypothesis of Proposition 5.22. Then,

CN = AN + QNBNQ
′

N
p7−→C ∈ Malg

Proof. Equation (5.37) can be expressed as an operational law on the bivariate polynomials LA
rg and LB

rg as

LC
rg = LA

rg ⊞r LB
rg (5.38)

If Lmz exists then so does Lrg and vice-versa. This proves that CN
p7−→C ∈ Malg.

Proposition 5.24. Let AN
p7−→A and BN

p7−→B be N × N symmetric/Hermitian random matrices. Let
QN be a Haar distributed unitary/orthogonal matrix independent of AN and BN . Then CN = AN ×
QNBNQ

′

N

p7−→C where CN is defined only if CN has real eigenvalues for every sequence AN and BN . The
associated distribution function FC is the unique distribution function whose S transform satisfies

sC(y) = sA(y)sB(y). (5.39)

Proof. This result was obtained by Voiculescu in [35, 36].

We can reformulate Proposition 5.24 to obtain the following result on algebraic random matrices.

Theorem 5.25. Assume that AN , and BN satisfy the hypothesis of Proposition 5.24. Then

CN = AN × QNBNQ
′

N
p7−→C ∈ Malg .

Proof. Equation (5.39) can be expressed as an operational law on the bivariate polynomials LA
sy and LB

sy

as

LC
sy = LA

sy ⊠s LB
sy (5.40)

If Lmz exists then so does Lsy and vice versa. This proves that BN
p7−→B ∈ Malg.

Definition 5.26 (Orthogonally/Unitarily invariant random matrix). If the joint distribution of the elements
of a random matrix AN is invariant under orthogonal/unitary transformations, it is referred to as an or-
thogonally/unitarily invariant random matrix.
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If AN (or BN ) or both are an orthogonally/unitarily invariant sequences of random matrices then Theorems
5.23 and 5.25 can be stated more simply.

Corollary 5.27. Let AN
p7−→A ∈ Malg and BN → B

p7−→Malg be a orthogonally/unitarily invariant random
matrix independent of AN . Then,

1. CN = AN + BN
p7−→C ∈ Malg

2. CN = AN × BN
p7−→C ∈ Malg

Here multiplication is defined only if CN has real eigenvalues for every sequence AN and BN .

When both the limiting eigenvalue distributions of AN and BN have compact support, it is possible to
strengthen the mode of convergence in Theorems 5.23 and 5.25 to almost surely [15]. We suspect that al-
most sure convergence must hold when the distributions are not compactly supported; this remains an open
problem.

6. Operational laws on bivariate polynomials

The key idea behind the definition of algebraic random matrices in Section 5. was that when the limiting
eigenvalue distribution of a random matrix can be encoded by a bivariate polynomial, then for the broad class
of random matrix operations identified in Section 5., algebraicity of the eigenvalue distribution is preserved
under the transformation.

These operational laws, the associated random matrix transformation and the symbolic Matlab code
for the operational law are summarized in Tables 7-9. The remainder of this chapter discusses techniques for
extracting the density function from the polynomial and the special structure in the moments that allows
them to be efficiently enumerated using symbolic methods.
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syms m z

LmzB = irreducLuv(temp_pol,m,z);

function LmzB = AgramG(LmzA,c,s)

MATLAB code

Deterministic Transformations

syms m z

‘‘Translate’’

‘‘Scale’’

‘‘Invert’’

‘‘Mobius’’

‘‘Augmentation ’’

Stochastic Transformations

temp_pol = subs(temp_pol,z,z1/alpha);

‘‘Add

‘‘Multiply
Wishart’’

syms m z

syms m z z1

Atomic Wishart ’’

LmzB = irreducLuv(temp_pol,m,z);

syms m z

Transpose’’

‘‘Projection/

Operation

function LmzB = AtimesWish(LmzA,c)

function LmzB = mobiusA(LmzA,p,q,r,s)

LmzB = irreducLuv(temp_pol,m,z);
temp_pol = subs(temp_pol,m,((m/beta)-r)/(s-r*alpha));
temp_pol = subs(LmzA,z,-alpha);
alpha = ((q-s*z)/(p-r*z);beta=1/(p-r*z);

LmzB = mobiusA(LmzA,0,1,1,0);
function LmzB = invA(LmzA)

LmzB = mobiusA(LmzA,1,alpha,0,1);
function LmzB = shiftA(LmzA,alpha)

function LmzB = scaleA(LmzA)
LmzB = mobiusA(LmzA,alpha,0,0,1);
function LmzB = projectA(LmzA,c,alpha)

mb = (1-(1/c))*(1/(alpha-z))+m/c;
temp_pol = subs(LmzA,m,mb);
LmzB = irreducLuv(temp_pol,m,z);

function LmzB = augmentA(LmzA,c,alpha)

function LmzB = AplusWish(LmzA,c,p,lambda)

alpha = z-c*sum(p.*(lambda./(1+lambda*m)));
temp_pol = subs(LmzA,z,z-alpha);
LmzB = irreducLuv(temp_pol,m,z);

temp_pol = subs(temp_pol,z1,z); % Replace dummy variable

alpha = (1-c-c*z1*m); temp_pol = subs(LmzA,m,m*alpha);

syms m z
mb = (1-(1/c))*(1/(alpha-z))+m/c;
temp_pol = subs(LmzA,m,mb);
LmzB = irreducLuv(temp_pol,m,z);

temp_pol = subs(subs(LmzA,m,m/alpha),z,beta);
alpha = (1+s*c*m); beta = alpha*(z*alpha+s*(c-1));‘‘Grammian’’×

with
∑

i pi = 1.

LB
mz

(m, z)

LA
mz(m, z − α)

where αm = c
∑d

i=1
pi λi

1+λi m ,

LA
mz

(m, z − αm),

LA
mz

(
(1 − 1

c
)

1

α − z
+

m

c
, z

)

where αm,z = (1 − c − c z m).

LA
mz

(
αm,z m,

z

αm,z

)
,

LA
mz

(
α m, z

α

)

and βz = 1/(p − r z).

where αz = (q − s z)/(p− r z),

LA
mz

(
−z − z2 m, 1

z

)

LA
mz

(
m − βz r

βz s − βz r αz
,−αz

)
,

A−1

pA+q I

r A+s I

A + α I

αA

[
A 0
0 αI

] Size of A

Size of B
→ c > 1

Size of A

Size of B
→ c < 1

B

A + G
′

TG

A× W(c)

LA
mz

(
m

αm
, α2

m z + αm s(c − 1)

)
,

where αm = 1 + s c m.

(A1/2 +
√

sG)

(A1/2 +
√

sG)′

A =

[
B 0
0 αI

]
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(a) LA
mz 7−→ LB

mz for A 7−→ B = A2.

Operational Law Matlab Code

LA
mz

ւ ց
LA

mz(2m
√

z,
√

z) LA
mz(−2m

√
z,−√

z)
ց ւ

⊞m

↓
LB

mz

function LmzB = squareA(LmzA)

syms m z

Lmz1 = subs(LmzA,z,sqrt(z));

Lmz1 = subs(Lmz1,m,2*m*sqrt(z));

Lmz2 = subs(LmzA,z,-sqrt(z));

Lmz2 = subs(Lmz2,m,-2*m*sqrt(z));

LmzB = L1plusL2(Lmz1,Lmz2,m);

LmzB = irreducLuv(LmzB,m,z);

(b) LA
mz, L

A
mz 7−→ LC

mz for A, B 7−→ C = diag(A, B) where Size of A/ Size of C → c.

Operational Law Matlab Code

LA
mz LB

mz

↓ ↓
LA

mz(
m
c , z) LB

mz(
m

1−c , z)

ց ւ
⊞m

↓
LC

mz

function LmzC = AblockB(LmzA,LmzB,c)

syms m z mu

LmzA1 = subs(LmzA,m,m/c);

LmzB1 = subs(LmzB,m,m/(1-c));

LmzC = L1plusL2(LmzA1,LmzB1,m);

LmzC = irreducLuv(LmzC,m,z);

Table 8: Operational laws on the bivariate polynomial encodings for some deterministic random matrix
transformations. The operations ⊞u and ⊠u are defined in Table 5.
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(a) LA
mz, L

B
mz 7−→ LC

mz for A, B 7−→ C = A + QBQ
′

.

Operational Law Matlab Code
LA

mz LB
mz

↓ ↓
LA

rg LB
rg

ց ւ
⊞r

↓
LC

rg

↓
LC

mz

function LmzC = AplusB(LmzA,LmzB)

syms m z r g

LrgA = Lmz2Lrg(LmzA);

LrgB = Lmz2Lrg(LmzB);

LrgC = L1plusL2(LrgA,LrgB,r);

LmzC = Lrg2Lmz(LrgC);

(b) LA
mz, L

B
mz 7−→ LC

mz for A, B 7−→ C = A× QBQ
′

.

Operational Law Matlab Code
LA

mz LB
mz

↓ ↓
LA

sy LB
sy

ց ւ
⊠s

↓
LC

sy

↓
LC

mz

function LmzC = AtimesB(LmzA,LmzB)

syms m z s y

LsyA = Lmz2Lsy(LmzA);

LsyB = Lmz2Lsy(LmzB);

LsyC = L1timesL2(LsyA,LsyB,s);

LmzC = Lsy2Lmz(LsyC);

Table 9: Operational laws on the bivariate polynomial encodings for some canonical random matrix trans-
formations. The operations ⊞u and ⊠u are defined in Table 5.
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7. Interpreting the solution curves of polynomial equations

Consider a bivariate polynomial Lmz. Let Dm be the degree of Lmz(m, z) with respect to m and lk(z), for
k = 0, . . . , Dm, be polynomials in z that are the coefficients of mk. For every z along the real axis, there are
at most Dm solutions to the polynomial equation Lmz(m, z) = 0. The solutions of the bivariate polynomial
equation Lmz = 0 define a locus of points (m, z) in C × C referred to as a complex algebraic curve. Since
the limiting density is over R, we may focus on real values of z.

For almost every z ∈ R, there will be Dm values of m. The exception consists of the singularities of
Lmz(m, z). A singularity occurs at z = z0 if:

• There is a reduction in the degree of m at z0 so that there are less than Dm roots for z = z0. This
occurs when lDm

(z0) = 0. Poles of Lmz(m, z) occur if some of the m-solutions blow up to infinity.

• There are multiple roots of Lmz at z0 so that some of the values of m coalesce.

The singularities constitute the so-called exceptional set of Lmz(m, z). Singularity analysis, in the context
of algebraic functions, is a well studied problem [14] from which we know that the singularities of LA

mz(m, z)
are constrained to be branch points.

A branch of the algebraic curve Lmz(m, z) = 0 is the choice of a locally analytic function mj(z) defined
outside the exceptional set of LA

mz(m, z) together with a connected region of the C × R plane throughout
which this particular choice mj(z) is analytic. These properties of singularities and branches of algebraic
curve are helpful in determining the atomic and non-atomic component of the encoded probability density
from Lmz. We note that, as yet, we do not have a fully automated algorithm for extracting the limiting
density function from the bivariate polynomial. Development of efficient computational algorithms that
exploit the algebraic properties of the solution curve would be of great benefit to the community.

7.1 The atomic component

If there are any atomic components in the limiting density function, they will necessarily manifest them-
selves as poles of Lmz(m, z). This follows from the definition of the Stieltjes transform in (2.1). As mentioned
in the discussion on the singularities of algebraic curves, the poles are located at the roots of lDm

(z). These
may be computed in Maple using the sequence of commands:

> Dm := degree(LmzA,m);

> lDmz := coeff(LmzA,m,Dm);

> poles := solve(lDmz=0,z);

We can then compute the Puiseux expansion about each of the poles at z = z0. This can be computed
in Maple using the algcurves package as:

> with(algcurves):

> puiseux(Lmz,z=pole,m,1);

For the pole at z = z0, we inspect the Puiseux expansions for branches with leading term 1/(z0 − z).
An atomic component in the limiting spectrum occurs if and only if the coefficient of such a branch is non-
negative and not greater than one. This constraint ensures that the branch is associated with the Stieltjes
transform of a valid probability distribution function.

Of course, as is often the case with algebraic curves, pathological cases can be easily constructed. For
example, more than one branch of the Puiseux expansion might correspond to a candidate atomic compo-
nent, i.e., the coefficients are non-negative and not greater than one. In our experimentation, whenever
this has happened it has been possible to eliminate the spurious branch by matrix theoretic arguments.
Demonstrating this rigorously using analytical arguments remains an open problem.

Sometimes it is possible to encounter a double pole at z = z0 corresponding to two admissible weights.
In such cases, empirical evidence suggests that the branch with the largest coefficient (less than one) is the
“right” Puiseux expansion though we have no theoretical justification for this choice.
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7.2 The non-atomic component

The probability density function can be recovered from the Stieltjes transform by applying the inversion
formula in (2.4). Since the Stieltjes transform is encoded in the bivariate polynomial Lmz, we accomplish
this by first computing all Dm roots along z ∈ R (except at poles or singularities). There will be Dm roots
of which one solution curve will be the “correct” solution , i.e., the non-atomic component of the desired
density function is the imaginary part of the correct solution normalized by π. In Matlab , the Dm roots
can be computed using the sequence of commands:

Lmz_roots = [];

x_range = [x_start:x_step:x_end];

for x = x_range

Lmz_roots_unnorm = roots(sym2poly(subs(Lmz,z,x)));

Lmz_roots = [Lmz_roots;

real(Lmz_roots_unnorm) + i*imag(Lmz_roots_unnorm)/pi];

end

The density of the limiting eigenvalue distribution function can be, generically, be expressed in closed
form when Dm = 2. When using root-finding algorithms, for Dm = 2, 3, the correct solution can often be
easily identified; the imaginary branch will always appear with its complex conjugate. The density is just
the scaled (by 1/π) positive imaginary component.

When Dm ≥ 4, except when Lmz is bi-quadratic for Dm = 4, there is no choice but to manually isolate

the correct solution among the numerically computed Dm roots of the polynomial L
(
mzm, z) at each z = z0.

The class of algebraic random matrices whose eigenvalue density function can be expressed in closed form is
thus a much smaller subset of the class of algebraic random matrices. When the underlying density function
is compactly supported, the boundary points will be singularities of the algebraic curve.

In particular, when the probability density function is compactly supported and the boundary points
are not poles, they occur at points where some values of m coalesce. These points are the roots of the
discriminant of Lmz, computed in Maple as:

> PossibleBoundaryPoints = solve(discrim(Lmz,m),z);

We suspect that “nearly all” algebraic random matrices with compactly supported eigenvalue distribution
will exhibit a square root type behavior near boundary points at which there are no poles. In the generic case,
this will occur whenever the boundary points correspond to locations where two branches of the algebraic
curve coalesce.

For a class of random matrices that includes a subclass of algebraic random matrices, this has been
established in [27]. This endpoint behavior has also been observed orthogonally/unitarily invariant random
matrices whose distribution has the element-wise joint density function of the form

f(A) = CN exp (−NTrV (A)) dA

where V is an even degree polynomial with positive leading coefficient and dA is the Lebesgue measure
on N × N symmetric/Hermitian matrices. In [9], it is shown that these random matrices have a limiting
mean eigenvalue density in the N → ∞ limit that is algebraic and compactly supported. The behavior at
the endpoint typically vanishes like a square root, though higher order vanishing at endpoints is possible
and a full classification is made in [10]. In [17] it is shown that square root vanishing is generic. A similar
classification for the general class of algebraic random matrices remains an open problem. This problem is of
interest because of the intimate connection between the endpoint behavior and the Tracy-Widom distribution.
Specifically, we conjecture that “nearly all” algebraic random matrices with compactly supported eigenvalue
distribution whose density function vanishes as the square root at the endpoints will, with appropriate
re-centering and rescaling, exhibit Tracy-Widom fluctuations.

Whether the encoded distribution is compactly supported or not, the −1/z behavior of the real part of
Stieltjes transform (the principal value) as z → ±∞ helps isolate the correct solution. In our experience,
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while multiple solution curves might exhibit this behavior, invariably only one solution will have an imagi-
nary branch that, when normalized, will correspond to a valid probability density. Why this always appears
to be the case for the operational laws described is a bit of a mystery to us.

Example: Consider the Marčenko-Pastur density encoded by Lmz given in Table 1(b). The Puiseux ex-
pansion about the pole at z = 0 (the only pole!), has coefficient (1 − 1/c) which corresponds to an atom
only when c > 1 (as expected using a matrix theoretic argument). Finally, the branch points at (1 ±√

c)2

correspond to boundary points of the compactly supported probability density. Figure 4 plots the real and
imaginary parts of the algebraic curve for c = 2.

8. Enumerating the moments and free cumulants

In principle, the moments generating function can be extracted from Lµz by a Puiseux expansion of the
algebraic function µ(z) about z = 0. When the moments of an algebraic probability distribution exist, there
is additional structure in the moments and free cumulants that allows us to enumerate them efficiently. For
an algebraic probability distribution, we conjecture that the moments of all order exist if and only if the
distribution is compactly supported.

Definition 8.1 (Rational generating function). Let R[[x]] denote the ring of formal power series (or gener-
ating functions) in x with real coefficients. A formal power series (or generating function) v ∈ R[[u]] is said
to be rational if there exist polynomials in u, P (u) and Q(u), Q(0) 6= 0 such that

v(u) =
P (u)

Q(u)
.

Definition 8.2 (Algebraic generating function). Let R[[x]] denote the ring of formal power series (or gen-
erating functions) in x with real coefficients. A formal power series (or generating function) v ∈ R[[u]] is
said to be algebraic if there exist polynomials in u, P0(u), . . . , PDu

(u), not all identically zero, such that

P0(u) + P1(u)v + . . . + PDv
(u)vDv = 0.

The degree of v is said to be Dv.

Definition 8.3 (D-finite generating function). Let v ∈ R[[u]]. If there exist polynomials p0(u), . . . , pd(u),
such that

pd(u)v(d) + pd−1(u)v(d−1) + . . . + p1(u)v(1) + p0(u) = 0, (8.1)

where v(j) = djv/duj. Then we say that v is a D-finite (short for differentiably finite) generating function
(or power series). The generating function, v(u), is also referred to as a holonomic function.

Definition 8.4 (P-recursive coefficients). Let an for n ≥ 0 denote the coefficients of a D-finite series v. If
there exist polynomials P0, . . . , Pe ∈ R[n] with Pe 6= 0, such that

Pe(n)an+e + Pe−1(n)an+e−1 + . . . + P0(n)an = 0,

for all n ∈ N, then the coefficients an are said to be P-recursive (short for polynomially recursive).

Proposition 8.5. Let v ∈ R[[u]] be an algebraic power series of degree Dv. Then v is D-finite and satisfies
an equation (8.1) of order Dv.

Proof. A proof appears in Stanley [30, pp.187].

The structure of the limiting moments and free cumulants associated with algebraic densities is described
next.
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(b) Imaginary component normalized by π. The positive component corresponds to the encoded probability
density function.

Figure 4: The real and imaginary components of the algebraic curve defined by the equation Lmz(m, z) = 0,
where Lmz ≡ czm2 − (1 − c − z)m + 1, which encodes the Marčenko-Pastur density. The curve is
plotted for c = 2. The −1/z behavior of the real part of the “correct solution” as z → ∞ is the
generic behavior exhibited by the real part of the Stieltjes transform of a valid probability density
function.
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Theorem 8.6. If fA ∈ Palg, and the moments exist, then the moment and free cumulant generating functions
are algebraic power series. Moreover, both generating functions are D-finite and the coefficients are P-
recursive.

Proof. If fA ∈ Palg, then LA
mz exists. Hence LA

µz and LA
rg exist, so that µA(z) and rA(g) are algebraic power

series. By Theorem 8.5 they are D-finite; the moments and free cumulants are hence P-recursive.

There are powerful symbolic tools available for enumerating the coefficients of algebraic power series.
The Maple based package gfun is one such example [24]. From the bivariate polynomial Lµz, we can obtain
the series expansion up to degree expansion degree by using the commands:

> with(gfun):

> MomentSeries = algeqtoseries(Lmyuz,z,myu,expansion_degree,’pos_slopes’);

The option pos slopes computes only those branches tending to zero. Similarly, the free cumulants can
be enumerated from Lrg using the commands:

> with(gfun):

> FreeCumulantSeries = algeqtoseries(Lrg,g,r,expansion_degree,’pos_slopes’);

For computing expansions to a large order, it is best to work with the recurrence relation. For an algebraic
power series v(u), the first number of terms coefficients can be computed from Luv using the sequence of
commands:

> with(gfun):

> deq := algeqtodiffeq(Luv,v(u));

> rec := diffeqtorec(deq,v(u),a(n));

> p_generator := rectoproc(rec,a(n),list):

> p_generator(number_of_terms);

Example: Consider the Marčenko-Pastur density encoded by the bivariate polynomials listed in Table 1(b).
Using the above sequence of commands, we can enumerate the first five terms of its moment generating
function as

µ(z) = 1 + z + (c + 1) z2 +
`

3 c + c2 + 1
´

z3 +
`

6 c2 + c3 + 6 c + 1
´

z4 + O
`

z5
´

.

The moment generating function is a D-Finite power series and satisfies the second order differential equation

−z + zc − 1 + (−z − zc + 1) µ (z) +
`

z3c2 − 2 z2c − 2 z3c + z − 2 z2 + z3
´ d

dz
µ (z) = 0,

with initial condition µ(0) = 1. The moments Mn = a(n) themselves are P-recursive satisfying the finite
depth recursion

`

−2 c + c2 + 1
´

na (n) + ((−2 − 2 c)n − 3 c − 3) a (n + 1) + (3 + n) a (n + 2) = 0

with the initial conditions a (0) = 1 and a (1) = 1. The free cumulants can be analogously computed.
What we find rather remarkable is that for algebraic random matrices, it is often possible to enumerate

the moments in closed form even when the limiting density function cannot. The linear recurrence satisfied
by the moments may be used to analyze their asymptotic growth.

When using the sequence of commands described, sometimes more than one solution might emerge. In
such cases, we have often found that one can identify the correct solution by checking for the positivity of
even moments or the condition µ(0) = 1. More sophisticated arguments might be needed for pathological
cases. It might involve verifying, using techniques such as those in [1], that the coefficients enumerated
correspond to the moments a valid distribution function.
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9. Computational free probability

9.1 Moments of random matrices and asymptotic freeness

Assume we know the eigenvalue distribution of two matrices A and B. In general, using that information
alone, we cannot say much about the the eigenvalue distribution of the sum A + B of the matrices since
eigenvalues of the sum of the matrices depend on the eigenvalues of A and the eigenvalues of B, and also
on the relation between the eigenspaces of A and of B. However, if we pose this question in the context of
N × N -random matrices, then in many situations the answer becomes deterministic in the limit N → ∞.
Free probability provides the analytical framework for characterizing this limiting behavior.

Definition 9.1. Let A = (AN )N∈N be a sequence of N × N -random matrices. We say that A has a limit
eigenvalue distribution if the limit of all moments

αn := lim
N→∞

E[tr(An
N )] (n ∈ N)

exists, where E denotes the expectation and tr the normalized trace.

Using the language of limit eigenvalue distribution as in Definition 9.1, our question becomes: Given
two random matrix ensembles of N × N -random matrices, A = (AN )N∈N and B = (BN )N∈N, with limit
eigenvalue distribution, does their sum C = (CN )N∈N, with CN = AN + BN , have a limit eigenvalue
distribution, and furthermore, can we calculate the limit moments αC

n of C out of the limit moments (αA

k )k≥1

of A and the limit moments (αB
k )k≥1 of B in a deterministic way. It turns out that this is the case if the

two ensembles are in generic position, and then the rule for calculating the limit moments of C are given by
Voiculescu’s concept of “freeness.”

Theorem 9.2 (Voiculescu [36]). Let A and B be two random matrix ensembles of N ×N -random matrices,
A = (AN )N∈N and B = (BN )N∈N, each of them with a limit eigenvalue distribution. Assume that A and
B are independent (i.e., for each N ∈ N, all entries of AN are independent from all entries of BN ), and
that at least one of them is unitarily invariant (i.e., for each N , the joint distribution of the entries does
not change if we conjugate the random matrix with an arbitrary unitary N ×N matrix). Then A and B are
asymptotically free in the sense of the following definition.

Definition 9.3 (Voiculescu [33]). Two random matrix ensembles A = (AN )N∈N and B = (BN )N∈N with
limit eigenvalue distributions are asymptotically free if we have for all p ≥ 1 and all n(1), m(1), . . . , n(p),
m(p) ≥ 1 that

lim
N→∞

E
[
tr
{
(A

n(1)
N − αA

n(1)1) · (B
m(1)
N − αB

m(1)1) · · · (An(p) − αA
n(p)1) · (Bm(p) − αB

m(p)1)
}]

= 0

In essence, asymptotic freeness is actually a rule which allows to calculate all mixed moments in A and
B, i.e., all expressions of the form

lim
N→∞

E[tr(An(1)Bm(1)An(2)Bm(2) · · ·An(p)Bm(p))]

out of the limit moments of A and the limit moments of B. In particular, this means that all limit moments
of A + B (which are sums of mixed moments) exist, thus A + B has a limit distribution, and are actually
determined in terms of the limit moments of A and the limit moments of B. For more on free probability,
including extensions to the setting where the moments do not exist, we refer the reader to [6, 15, 21, 37].

We now clarify the connection between the operational law of a subclass of algebraic random matrices
and the convolution operations of free probability. This will bring into sharp focus how the polynomial
method constitutes a framework for computational free probability theory.
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Free additive convolution fA+B = fA ⊞ fB LA+B
rg = LA

rg ⊞r LB
rg

Free multiplicative convolution fA×B = fA ⊠ fB LA×B
sy = LA

sy ⊠s LB
sy

Table 10: Implicit representation of the free convolution of two algebraic probability densities.

Proposition 9.4. Let AN
p7−→A and BN

p7−→B be two asymptotically free random matrix sequences as in

Definition 9.1. Then AN + BN
p7−→A + B and AN × BN

p7−→AB (where the product is defined whenever
AN × BN has real eigenvalues for every AN and BN ) with the corresponding limit eigenvalue density
functions, fA+B and fAB given by

fA+B = fA ⊞ fB (9.1a)

fAB = fA ⊠ fB (9.1b)

where ⊞ denotes free additive convolution and ⊠ denotes free multiplicative convolution. These convolution
operations can be expressed in terms of the R and S transforms as described in Propositions 5.22 and 5.24
respectively.

Proof. This result appears for density functions with compact support in [34,35]. It was later strengthened
to the case of density functions with unbounded support. See [15] for additional details and references.

In Theorems 5.23 and 5.25 we, in effect, showed that the free convolution of algebraic densities produces
an algebraic density. This stated succinctly next.

Corollary 9.5. Algebraic probability distributions form a semi-group under free additive convolution.

Corollary 9.6. Algebraic distributions with positive semi-definite support form a semi-group under free
multiplicative convolution.

This establishes a framework for computational free probability theory by identifying the class of distri-
butions for which the free convolution operations produce a “computable” distribution.

9.2 Implicitly encoding the free convolution computations

The computational framework established relies on being able to implicitly encode free convolution com-
putations as a resultant computation on appropriate bivariate polynomials as in Table 10. This leads to the
obvious question: Are there other more effective ways to implicitly encode free convolution computations?
The answer to this rhetorical question will bring into sharp focus the reason why the bivariate polynomial
encoding at the heart of the polynomial method is indispensable for any symbolic computational implemen-
tation of free convolution. First, we answer the analogous question about the most effective encoding for
classical convolution computations.

Recall that classical convolution can be expressed in terms of the Laplace transform of the distribu-
tion function. In what follows, we assume that the distributions have finite moments1. Hence the Laplace
transform can be written as a formal exponential moment generating function. Classical additive and mul-
tiplicative convolution of two distributions produces a distribution whose exponential moment generating
function equals the series (or Cauchy) product and the coefficient-wise (or Hadamard) product of the in-
dividual exponential moment generating functions, respectively. Often, however, the Laplace transform of

1In the general case, tools from complex analysis can be used to extend the argument.
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either or both the individual distributions being convolved cannot be written in closed form. The next
best thing to do then is to find an implicit way to encode the Laplace transform and to do the convolution
computations via this representation.

When this point of view is adopted, the task of identifying candidate encodings is reduced to finding the
class of representations of the exponential generating function that remains closed under the Cauchy and
Hadamard product. Clearly, rational generating functions (see Definition 8.1) satisfy this requirement. It
is shown in Theorem 6.4.12 [30, pp.194], that D-finite generating functions (see Definition 8.3) satisfy this
requirement as well.

Proposition 8.5 establishes that all algebraic generating functions (see Definition 8.2) and by extension,
rational generating functions, are also D-finite. However, not all D-finite generating functions are algebraic
(see Exercise 6.1 [30, pp. 217] for a counter-example) so that algebraic generating functions do not satisfy
the closure requirement. Furthermore, from Proposition 6.4.3 and Theorem 6.4.12 in [30], if the ordinary
generating function is D-finite then so is the exponential generating function and vice versa. Thus D-finite
generating functions are the largest class of generating functions for which classical convolution computations
can be performed via an implicit representation.

In the context of developing a computational framework based on the chosen implicit representation, it
is important to consider computability and algorithmic efficiency issues. The class of D-finite functions is
well-suited in that regard as well [24] so that we regard it as the most effective class of representations in
which the classical convolution computations may be performed implicitly.

However, this class is inadequate for performing free convolution computations implicitly. This is a
consequence of the prominent role occupied in this theory by ordinary generating functions. Specifically,
the ordinary formal R and S power series, are obtained from the ordinary moment generating function by
functional inversion (or reversion), and are the key ingredients of free additive and multiplicative convolution
(see Propositions 9.4, 5.22 and 5.24). The task of identifying candidate encodings is thus reduced to finding
the class of representations of the ordinary moment generating function that remains closed under addition,
the Cauchy product, and reversion. D-finite functions only satisfy the first two conditions and are hence
unsuitable representations.

Algebraic functions do, however, satisfy all three conditions. The algorithmic efficiency of computing the
resultant (see Section 4.2) justifies our labelling of the bivariate polynomial encoding as the most effective
way of implicitly encoding free convolution computations. The candidacy of constructibly D-finite generating
functions [5], which do not contain the class of D-finite functions but do contain the class of algebraic
functions, merits further investigation since they are closed under reversion, addition and multiplication.
Identifying classes of representations of generating functions for which both the classical and free convolution
computations can be performed implicitly and effectively remains an important open problem.

10. Applications

We illustrate the use of the computational techniques developed in Section 6. with some examples.
Documented MATLAB implementation of the polynomial method is available via the RMTool package [22]
from http://www.mit.edu/~raj/rmtool/; the examples considered in this article, along with many more,
appear there and in [20].

10.1 The Jacobi random matrix

The Jacobi matrix ensemble is defined in terms of two independent Wishart matrices W1(c1) and W2(c2)
as J = (I + W2(c2)W

−1
1 (c1))

−1. The subscripts are not to be confused for the size of the matrices. Listing
the computational steps needed to generate a realization of this ensemble, as in Table 11, is the easiest way
to identify the sequence of random matrix operations needed to obtain LJ

mz.
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Transformation Numerical MATLAB code Symbolic MATLAB code

Initialization
% Pick n, c1, c2
N1=n/c1; N2=n/c2;

% Define symbolic variables
syms m c z;

A1 = I A1 = eye(n,n); Lmz1 = m*(1-z)-1;

A2 = W1(c1) × A1

G1 = randn(n,N1)/sqrt(N1);
W1 = G1*G1’;
A2 = W1*A1;

Lmz2 = AtimesWish(Lmz1,c1);

A3 = A
−1
2 A3 = inv(A2); Lmz3 = invA(Lmz2);

A4 = W2(c2) × A3

G2 = randn(n,N2)/sqrt(N2);
W2 = G2*G2’;
A4 = W2*A3;

Lmz4 = AtimesWish(Lmz3,c2);

A5 = A4 + I A5 = A4+I; Lmz5 = shiftA(Lmz4,1);

A6 = A
−1
5 A6 = inv(A5); Lmz6 = invA(Lmz5);

Table 11: Sequence of MATLAB commands for sampling the Jacobi ensemble. The functions used to gen-
erate the corresponding bivariate polynomials symbolically are listed in Table 7

.

We first start off with A1 = I. The bivariate polynomial that encodes the Stieltjes transform of its eigenvalue
distribution function is given by

L1
mz(m, z) = (1 − z)m − 1. (10.1)

For A2 = W1(c1) × A1, we can use (5.30) to obtain the bivariate polynomial

L2
mz(m, z) = z c1 m2 − (−c1 − z + 1) m + 1. (10.2)

For A3 = A−1
2 , from (5.6), we obtain the bivariate polynomial

L3
mz(m, z) = z2c1m

2 + (c1 z + z − 1) m + 1. (10.3)

For A4 = W2(c2) × A3. We can use (5.30) to obtain the bivariate polynomial

L4
mz(m, z) =

`

c1 z2 + c2 z
´

m2 + (c1 z + z − 1 + c2) m + 1. (10.4)

For A5 = A4 + I, from (5.6), we obtain the bivariate polynomial

L5
mz(m, z) =

`

(z − 1)2 c1 + c2 (z − 1)
´

m2 + (c1 (z − 1) + z − 2 + c2)m + 1. (10.5)

Finally, for J = A6 = A−1
5 , from (5.6), we obtain the required bivariate polynomial

LJ
mz(m, z) ≡ L6

mz(m,z) =
`

c1 z + z3c1 − 2 c1 z2 − c2 z3 + c2 z2´

m2

+
`

−1 + 2 z + c1 − 3 c1 z + 2 c1 z2 + c2 z − 2 c2 z2
´

m − c2 z − c1 + 2 + c1 z. (10.6)

Using matrix theoretic arguments, it is clear that the random matrix ensembles A3, . . .A6 are defined only
when c1 < 1. There will be an atomic mass of weight (1 − 1/c2) at 1 whenever c2 > 1. The non-atomic
component of the distribution will have a region of support S∩ = (a−, a+). The limiting density function
for each of these ensembles can be expressed as

fAi
(x) =

√
(x − a−)(a+ − x)

2 π l2(x)
for a− < x < a+, (10.7)

for i = 2, . . . , 6, where a−, a+ , where the polynomials l2(x) are listed in Table 12. The moments for
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l2(x) a±

A2 x c1 (1 ±√
c1)2

A3 x2 c1
1

(1 ∓√
c1)2

A4 c1x2 + c2x
1 + c1 + c2 − c1c2 ± 2

√
c1 + c2 − c1c2

(1 − c1)2

A5 c1(x − 1)2 + c2(x − 1)
c21 − c1 + 2 + c2 − c1c2 ± 2

√
c1 + c2 − c1c2

(1 − c1)2

A6
`

c1 x + x3c1 − 2 c1 x2 − c2 x3 + c2 x2
´ (1 − c1)2

c21 − c1 + 2 + c2 − c1c2 ∓ 2
√

c1 + c2 − c1c2

Table 12: Parameters for determining the limiting eigenvalue density function using (10.7).
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Figure 5: The limiting density (solid line), fA6
(x), given by (10.7) with c1 = 0.1 and c2 = 0.625 is compared

with the normalized histogram of the eigenvalues of a Jacobi matrix generated using the code in
Table 11 over 4000 Monte-Carlo trials with n = 100, N1 = n/c1 = 1000 and N2 = n/c2 = 160.

the general case when c1 6= c2 can be enumerated using the techniques described; they will be quite messy.
Instead, consider the special case when c1 = c2 = c. Using the tools described, the first four terms of the
moment series, µ(z) = µJ(z), can be computed directly from LJ

µz as

µ(z) =
1

2
+

„

1

8
c +

1

4

«

z +

„

3

16
c +

1

8

«

z2 +

„

1

32
c2 +

3

16
c −

1

128
c3 +

1

16

«

z3

+

„

−
5

256
c3 +

5

64
c2 +

5

32
c +

1

32

«

z4 + O
`

z5
´

.

The moment generating function satisfies the differential equation

−3 z + 2 + zc +
`

−6 z2 + z3 + 10 z + z3c2 − 2 z3c − 4
´

µ (z)

+
`

z4 − 5 z3 − 2 z4c + 8 z2 + z4c2 + 2 z3c − 4 z − z3c2´ d

dz
µ (z) = 0,

with the initial condition µ(0) = 1. The moments a(n) = Mn themselves are P-recursive and obtained by



The polynomial method 41

the recursion

`

−2 c + c2 + 1 +
`

−2 c + c2 + 1
´

n
´

a (n) +
``

−5 + 2 c − c2
´

n − 11 + 2 c − c2
´

a (n + 1)

+ (26 + 8n) a (n + 2) + (−16 − 4n) a (n + 3) = 0,

with the initial conditions a(0) = 1/2, a(1) = 1/8 c+1/4, and a(2) = 3/16 c+1/8. We can similarly compute
the recursion for the free cumulants, a(n) = Kn+1, as

nc2a (n) + (12 + 4n) a (n + 2) = 0,

with the initial conditions a(0) = 1/2, and a(1) = 1/8 c.

10.2 Random compression of a matrix

Theorem 10.1. Let AN 7→ A ∈ Palg. Let QN be an N × N Haar unitary/orthogonal random matrix

independent of AN . Let Bn be the upper n × n block of QNANQ
′

N . Then

Bn 7→ B ∈ Palg

as n/N → c for n, N → ∞.

Proof. Let PN be an N × N projection matrix

PN ≡ QN

[
In

0N−n

]
Q

′

N .

By definition, PN is an atomic matrix so that PN → P ∈ Malg as n/N → c for n, N → ∞. Let B̃N =

PN ×AN . By Corollary 5.27, B̃N → B̃ ∈ Malg. Finally, from Theorem 5.11, we have that Bn → B ∈ Malg.

The proof above provides a recipe for computing the bivariate polynomial LB
mz explicitly as a function of

LA
mz and the compression factor c. For this particular application, however, one can use first principles [29]

to directly obtain the relationship
rB(g) = rA(c g),

expressed in terms of the R transform. This translates into the operational law

LB
rg(r, g) = LA

rg(r, c g). (10.8)

Example: Consider the atomic matrix AN half of whose eigenvalues are equal to one while the remainder
are equal to zero. Its eigenvalue distribution function is given by (3.6). From the bivariate polynomial, LA

rg

in Table 1(a) and (10.8) it can be show that the limiting eigenvalue distribution function of Bn, constructed
from AN as in Theorem 10.1, is encoded by the polynomial

LB
mz =

`

−2 cz2 + 2 cz
´

m2 − (−2 c + 4 cz + 1 − 2 z) m − 2 c + 2,

where c is the limiting compression factor. Poles occur at z = 0 and z = 1. The leading terms of the Puiseux
expansion of the two branches about the poles at z = z0 are

„

z − z0

−2 c + 4 c2
+

1 − 2 c

2c

«

1

z − z0
,

2 c − 2

−1 + 2 c

ff

.
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Figure 6: The limiting eigenvalue density function (solid line) of the top 0.4N × 0.4N block of a randomly
rotated matrix is compared with the experimental histogram collected over 4000 trials with N =
200. Half of the eigenvalues of the original matrix were equal to one while the remainder were
equal to zero.

It can be easily seen that when c > 1/2, the Puiseux expansion about the poles z = z0 will correspond to an
atom of weight w0 = (2c − 1)/2c. Thus the limiting eigenvalue distribution function has density

fB(x) = max

„

2c − 1

2c
, 0

«

δ(x) +
1

π

p

(x − a−)(a+ − x)

2xc − 2 cx2
I[a−,a+] + max

„

2c − 1

2c
, 0

«

δ(x − 1), (10.9)

where a± = 1/2 ±
√
−c2 + c. Figure 10.2 compares the theoretical prediction in (10.9) with a Monte-Carlo

experiment for c = 0.4. From the associated bivariate polynomial

LB
µz ≡ (−2 c + 2 cz)µ2 + (z − 2 − 2 cz + 4 c)µ − 2 c + 2,

we obtain two series expansions whose branches tend to zero. The first four terms of the series are given by

1 +
1

2
z +

1 + c

4
z2 +

3 + c

8
z3 + O

`

z4´

, (10.10)

and,
c − 1

c
+

c − 1

2c
z −

(c − 1) (−2 + c)

4c
z2 −

(c − 1) (3 c − 4)

8c
z3 + O

`

z4
´

, (10.11)

respectively. Since c ≤ 1, the series expansion in (10.11) can be eliminated since µ(0) :=
∫

dFB(x) = 1.
Thus the coefficients of the series in (10.10) are the correct moments of the limiting eigenvalue distribution.
A recursion for the moments can be readily derived using the techniques developed earlier.

10.3 Free additive convolution of equilibrium measures

Equilibrium measures are a fascinating topic within random matrix theory. They arise in the context of
research that examines why very general random models for random matrices exhibit universal behavior in
the large matrix limit. Suppose we are given a potential V (x) then we consider a sequence of Hermitian,
unitarily invariant random matrices AN , the joint distribution of whose elements is of the form

P (AN ) ∝ exp (−N Tr V (AN )) dAN ,
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Figure 7: Additive convolution of equilibrium measures corresponding to potentials V1(x) and V2(x).

where dAN =
∏

i≤j(dAN )ij . The equilibrium measure, when it exists, is the unique probability distribution
function that minimizes the logarithmic energy (see [11] for additional details). The resulting equilibrium
measure depends explicitly on the potential V (x) and can be explicitly computed for some potentials. In par-
ticular, for potentials of the form V (x) = t x2m, the Stieltjes transform of the resulting equilibrium measure
is an algebraic function [11, Chp. 6.7, pp. 174-175] so that the equilibrium measure is an algebraic distri-
bution. Hence we can formally investigate the additive convolution of equilibrium measures corresponding
to two different potentials. For V1(x) = x2, the equilibrium measure is the (scaled) semi-circle distribution
encoded by the bivariate polynomial

LA
mz ≡ m2 + 2 m z + 2.

For V2(x) = x4, the equilibrium measure is encoded by the bivariate polynomial

LB
mz ≡ 1/4 m2 + mz3 + z2 + 2/9

√
3.

Since AN and BN are unitarily invariant random matrices, if AN and BN are independent, then the limiting
eigenvalue distribution function of CN = AN + BN can be computed from LA

mz and LB
mz. The limiting

eigenvalue density function fC(x) is the free additive convolution of fA and fB. The Matlab command
LmzC = AplusB(LmzA,LmzB); will produce the bivariate polynomial

LC
mz = −9m4 − 54 m3z +

`

−108 z2 − 36
´

m2 −
`

72 z3 + 72 z
´

m − 72 z2 − 16
√

3.

Figure 10.3 plots the probability density function for the equilibrium measure for the potentials V1(x) = x2

and V2(x) = x4 as well as the free additive convolution of these measures. The interpretation of the resulting
measuring in the context of potential theory is not clear. The matrix CN will no longer be unitarily
invariant so it is pointless to look for a potential V3(x) for which FC is an equilibrium measure. The tools
and techniques developed in this article might prove useful in further explorations.

10.4 Algebraic sample covariance matrices

The (broader) class of algebraic Wishart sample covariance matrices for which this framework applies is
described next.
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Theorem 10.2. Let An
p7−→A ∈ Malg, and BN

p7−→B ∈ Malg be algebraic covariance matrices with Gn,N

denoting an n×N (pure) Gaussian random matrix (see Definition 5.13). Let Xn,N = A
1/2
n Gn,NB

1/2
N . Then

Sn = Xn,NX
′

n,N
p7−→S ∈ Malg,

as n, N → ∞ and cN = n/N → c.

Proof. Let Yn,N ≡ Gn,NB
1/2
N , Tn ≡ Yn,NY′

n,N and T̃N = Y′
n,NYn,N . Thus Sn = An × Tn ≡

A
1/2
n TnA

1/2
n . The matrix Tn, as defined, is invariant under orthogonal/unitary transformations, though

the matrix T̃N is not. Hence, by Corollary 5.27, and since An 7→ A ∈ Malg, Sn 7→ S ∈ Malg whenever
Tn 7→ T ∈ Malg.

From Theorem 5.8, Tn 7→ T ∈ Malg if T̃N 7→ T̃ ∈ Malg. The matrix T̃N = B
1/2
N G′

n,NGn,NB
1/2
N is

clearly algebraic by application of Corollary 5.27 and Theorem 5.6 since BN is algebraic and G′
n,NGn,N is

algebraic and unitarily invariant.

The proof of Theorem 10.2 provides us with a recipe for computing the polynomials that encode the
limiting eigenvalue distribution of S in the far more general situation where the observation vectors are
modelled as samples of a multivariate Gaussian with spatio-temporal correlations. The limiting eigenvalue
distribution of S depends on the limiting (algebraic) eigenvalue distributions of A and B and may be called
using the AtimesWishtimesB function in the RMTool [22] package. See [23] for the relevant code.

10.5 Other applications

There is often a connection between well-known combinatorial numbers and random matrices. For exam-
ple, the even moments of the Wigner matrix are the famous Catalan numbers. Similarly, if WN (c) denotes
the Wishart matrix with parameter c, other combinatorial correspondences can be easily established using
the techniques developed. For instance, the limiting moments of WN (1)− IN are the Riordan numbers, the
large Schröder numbers correspond to the limiting moments of 2WN(0.5) while the small Schröder numbers
are the limiting moments of 4WN(0.125). Combinatorial identities along the lines of those developed in [13]
might result from these correspondences.

11. Some open problems

• If we are given a single realization of an N × N sized algebraic random matrix AN , is it possible to
reliably infer the minimal bivariate polynomial Lmz, i.e., with combined degree Dm + Dz as small as
possible, that encodes its limiting eigenvalue distribution?

• This is closely related to the following problem. Define the set of “admissible” real-valued coefficients
cij for 0 ≤ i ≤ Dm and 0 ≤ j ≤ Dz. Here admissibility implies that (a branch of) a solution m(z)

of the equation LA
mz(m, z) :=

∑Dm

i=0

∑Dz

j=0 ciju
ivj = 0 is globally the Stieltjes transform of a positive

probability distribution.
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