Skip to main content

Advertisement

Log in

The Polynomial Method for Random Matrices

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We define a class of “algebraic” random matrices. These are random matrices for which the Stieltjes transform of the limiting eigenvalue distribution function is algebraic, i.e., it satisfies a (bivariate) polynomial equation. The Wigner and Wishart matrices whose limiting eigenvalue distributions are given by the semicircle law and the Marčenko–Pastur law are special cases.

Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of the limiting eigenvalue density function. The limiting moments of algebraic random matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently enumerated in closed form.

In this article, we develop the mathematics of the polynomial method which allows us to describe the class of algebraic matrices by its generators and map the constructive approach we employ when proving algebraicity into a software implementation that is available for download in the form of the RMTool random matrix “calculator” package. Our characterization of the closure of algebraic probability distributions under free additive and multiplicative convolution operations allows us to simultaneously establish a framework for computational (noncommutative) “free probability” theory. We hope that the tools developed allow researchers to finally harness the power of infinite random matrix theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (Hafner, New York, 1965). Translated by N. Kemmer.

    MATH  Google Scholar 

  2. A.G. Akritas, Sylvester’s forgotten form of the resultant, Fibonacci Quart. 31, 325–332 (1993).

    MATH  MathSciNet  Google Scholar 

  3. G. Anderson, O. Zeitouni, A law of large numbers for finite-range dependent random matrices, Preprint, September 2006. http://arxiv.org/abs/math/0609364.

  4. Z.D. Bai, J.W. Silverstein, On the empirical distribution of eigenvalues of a class of large dimensional random matrices, J. Multi. Anal. 54, 175–192 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. F. Bergeron, C. Reutenauer, Combinatorial resolution of systems of differential equations. III. A special class of differentially algebraic series, Eur. J. Comb. 11, 501–512 (1990).

    MATH  MathSciNet  Google Scholar 

  6. P. Biane, Free probability for probabilists, in Quantum Probability Communications, vol. XI, Grenoble, 1998 (World Scientific, River Edge, 2003), pp. 55–71.

    Google Scholar 

  7. P. Billingsley, Convergence of Probability Measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edn. (Wiley, New York, 1999).

    MATH  Google Scholar 

  8. B. Collins, Product of random projections, Jacobi ensembles and universality problems arising from free probability, Probab. Theory Related Fields 133, 315–344 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory 95, 388–475 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  10. P. Deift, T. Kriecherbauer, K.T.-R. McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Commun. Pure Appl. Math. 52, 1335–1425 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  11. P.A. Deift, Orthogonal Polynomials and Random Matrices: A Riemann–Hilbert Approach. Courant Lecture Notes in Mathematics, vol. 3 (New York University Courant Institute of Mathematical Sciences, New York, 1999).

    Google Scholar 

  12. W.B. Dozier, J.W. Silverstein, On the empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices (2004). http://www4.ncsu.edu/~jack/infnoise.pdf.

  13. I. Dumitriu, E. Rassart, Path counting and random matrix theory, Electron. J. Comb. 7, R-43 (2003).

    MathSciNet  Google Scholar 

  14. P. Flajolet, R. Sedgewick, Analytic combinatorics: functional equations, rational and algebraic functions, Research Report 4103, INRIA (2001). http://algo.inria.fr/flajolet/Publications/FlSe01.pdf.

  15. F. Hiai, D. Pet, The Semicircle Law, Free Random Variables and Entropy, vol. 77 (American Mathematical Society, Providence, 2000).

    Google Scholar 

  16. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis (Cambridge University Press, Cambridge, 1991).

    MATH  Google Scholar 

  17. A. Kuijlaars, K.T.-R. McLaughlin, Generic behavior of the density of states in random matrix theory and equilibrium problems in the presence of real analytic external fields, Commun. Pure Appl. Math. 53, 736–785 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  18. V.A. Marčenko, L.A. Pastur, Distribution of eigenvalues in certain sets of random matrices, Mat. Sb. (N.S.) 72(114), 507–536 (1967).

    MathSciNet  Google Scholar 

  19. B.D. McKay, The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40, 203–216 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  20. R.R. Nadakuditi, Applied Stochastic Eigen-Analysis, PhD thesis, Department of Electrical Engineering and Computer Science. Massachusetts Institute of Technology, February 2007.

  21. A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series (Cambridge University Press, New York, 2006).

    MATH  Google Scholar 

  22. N.R. Rao, RMTool: a random matrix and free probability calculator in MATLAB. http://www.mit.edu/~raj/rmtool/.

  23. N.R. Rao, A. Edelman, The polynomial method for the eigenvectors of random matrices, Preprint.

  24. B. Salvy, P. Zimmermann, Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable, ACM Trans. Math. Softw. 20, 163–177 (1994).

    Article  MATH  Google Scholar 

  25. J.W. Silverstein, The limiting eigenvalue distribution of a multivariate F matrix, SIAM J. Math. Anal. 16, 641–646 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  26. J.W. Silverstein, Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices, J. Multivar. Anal. 55(2), 331–339 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  27. J.W. Silverstein, S.-I. Choi, Analysis of the limiting spectral distribution of large-dimensional random matrices, J. Multivar. Anal. 54, 295–309 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  28. R. Speicher, Free probability theory and non-crossing partitions, Sém. Lothar. Comb. 39, Art. B39c (1997) (electronic).

    MathSciNet  Google Scholar 

  29. R. Speicher, Free probability theory and random matrices, In Asymptotic Combinatorics with Applications to Mathematical Physics, St. Petersburg, 2001. Lecture Notes in Mathematics, vol. 1815, pp. 53–73 (Springer, Berlin, 2003).

    Chapter  Google Scholar 

  30. R.P. Stanley, Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62 (Cambridge University Press, Cambridge, 1999). With a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.

    Google Scholar 

  31. B. Sturmfels, Introduction to resultants, in Applications of Computational Algebraic Geometry, San Diego, CA, 1997. Proceedings of Symposia in Applied Mathematics, vol. 53 (American Mathematical Society, Providence, 1998), pp. 25–39.

    Google Scholar 

  32. A.M. Tulino, S. Verdú, Random matrices and wireless communications, Found. Trends Commun. Inf. Theory 1 (2004).

  33. D. Voiculescu, Symmetries of some reduced free product C *-algebras, in Operator Algebras and Their Connections with Topology and Ergodic Theory, Buşteni, 1983. Lecture Notes in Mathematics, vol. 1132 (Springer, Berlin, 1985), pp. 556–588.

    Chapter  Google Scholar 

  34. D. Voiculescu, Addition of certain noncommuting random variables, J. Funct. Anal. 66, 323–346 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Voiculescu, Multiplication of certain noncommuting random variables, J. Oper. Theory 18, 223–235 (1987).

    MATH  MathSciNet  Google Scholar 

  36. D. Voiculescu, Limit laws for random matrices and free products, Invent. Math. 104, 201–220 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  37. D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables. CRM Monograph Series, vol. 1 (American Mathematical Society, Providence, 1992).

    MATH  Google Scholar 

  38. E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math. 62, 548–564 (1955).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Raj Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, N.R., Edelman, A. The Polynomial Method for Random Matrices. Found Comput Math 8, 649–702 (2008). https://doi.org/10.1007/s10208-007-9013-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-007-9013-x

Keywords