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Abstract For a real square-free multivariate polynomial F , we treat the general prob-
lem of finding real solutions of the equation F = 0, provided that the real solution
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set {F = 0}R is compact. We allow that the equation F = 0 may have singular real
solutions. We are going to decide whether this equation has a non-singular real so-
lution and, if this is the case, we exhibit one for each generically smooth connected
component of {F = 0}R. We design a family of elimination algorithms of intrinsic
complexity which solves this problem. In the worst case, the complexity of our al-
gorithms does not exceed the already known extrinsic complexity bound of (nd)O(n)

for the elimination problem under consideration, where n is the number of indetermi-
nates of F and d its (positive) degree. In the case that the real variety defined by F is
smooth, there already exist algorithms of intrinsic complexity that solve our problem.
However, these algorithms cannot be used in case when F = 0 admits F -singular real
solutions.

An elimination algorithm of intrinsic complexity presupposes that the polynomial
F is encoded by an essentially division-free arithmetic circuit of size L (i.e., F can
be evaluated by means of L additions, subtractions and multiplications, using scalars
from a previously fixed real ground field, say Q) and that there is given an invariant
δ(F ) which (roughly speaking) depends only on the geometry of the complex hy-
persurface defined by F . The complexity of the algorithm (measured in terms of the
number of arithmetic operations in Q) is then linear in L and polynomial in n,d and
δ(F ).

In order to find such a geometric invariant δ(F ), we consider suitable incidence
varieties which in fact are algebraic families of dual polar varieties of the complex
hypersurface defined by F . The generic dual polar varieties of these incidence vari-
eties are called bipolar varieties of the equation F = 0. The maximal degree of these
bipolar varieties then becomes the essential ingredient of our invariant δ(F ).

Keywords Real polynomial equation solving · Intrinsic complexity · Singularities ·
Polar and bipolar varieties · Degree of varieties

Mathematics Subject Classification (2010) 14P05 · 14B05 · 14B07 · 68W30

1 Introduction

Let Q, R and C be the fields of rational, real and complex numbers, respectively,
let X := (X1, . . . ,Xn) be a vector of indeterminates over C and let F1, . . . ,Fp be
a regular sequence of polynomials in Q[X] defining a closed, Q-definable subvari-
ety S of the n-dimensional complex affine space An := Cn. Thus S is a non-empty
equidimensional affine variety of dimension n − p, i.e., each irreducible component
of S is of dimension n − p. Put otherwise, S is a closed subvariety of An of pure
codimension p (in An).

Let An
R

:= Rn be the n-dimensional real affine space. We denote by SR := S ∩ An
R

the real trace of the complex variety S. Moreover, we denote by Pn the n-dimensional
complex projective space and by Pn

R
its real counterpart. We shall also use the fol-

lowing notation:

{F1 = 0, . . . ,Fp = 0} := S and {F1 = 0, . . . ,Fp = 0}R := SR.
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We call the regular sequence F1, . . . ,Fp reduced if the ideal (F1, . . . ,Fp) generated
in Q[X] is the ideal of definition of the affine variety S, i.e., if (F1, . . . ,Fp) is radical.
We call F1, . . . ,Fp strongly reduced if for any index 1 ≤ k ≤ p the ideal (F1, . . . ,Fk)

is radical. Thus, a strongly reduced regular sequence is always reduced.
A point x of An is called (F1, . . . ,Fp)-regular if the Jacobian J (F1, . . . ,Fp) :=

[ ∂Fj

∂Xk
] 1≤j≤p

1≤k≤n

has maximal rank p at x. Observe that for each reduced regular sequence

F1, . . . ,Fp defining the variety S, the locus of (F1, . . . ,Fp)-regular points of S is
the same. In this case we call an (F1, . . . ,Fp)-regular point of S simply regular (or
smooth) or we say that S is regular (or smooth) at x. The set Sreg of regular points
of S is called the regular locus, whereas Ssing := S \ Sreg is called the singular lo-
cus of S. Notice that Sreg is a non-empty open and Ssing a proper closed subvariety
of S.

We say that a connected component C of SR is generically smooth if C contains a
regular point.

We suppose now that there are given natural numbers d,L and � and an essentially
division-free arithmetic circuit σ in Q[X] with p output nodes such that the following
conditions are satisfied.

– The degrees degF1, . . . ,degFp of the polynomials F1, . . . ,Fp are bounded by d .
– The p output nodes of the arithmetic circuit σ represent the polynomials

F1, . . . ,Fp by evaluation.
– The size and the non-scalar depth of the arithmetic circuit σ are bounded by L

and �, respectively.

For the terminology and basic facts concerning arithmetic circuits we refer to
[13, 15, 23].

The fundamental algorithmic elimination problem which motivates the outcome
of the present paper is the search for an invariant and a non-uniform deterministic or
uniform probabilistic algorithm Π satisfying the following specification.

(i) The invariant is a function which assigns to F1, . . . ,Fp a positive integer value
δ := δ(F1, . . . ,Fp) of asymptotic order not exceeding (nd)O(n), called the de-
gree of the real interpretation of the equation system F1 = 0, . . . ,Fp = 0. The
value δ(F1, . . . ,Fp) depends rather on the resulting variety S and its geometry
than on the defining polynomials F1, . . . ,Fp themselves.

(ii) The algorithm Π decides on input σ whether the variety S contains a regular
real point and, if it is the case, produces for each generically regular connected
component of S a suitably encoded real algebraic sample point.

(iii) In order to achieve this goal, the algorithm Π performs on input σ a com-
putation in Q with L(nd)O(1)δO(1) arithmetic operations (additions, subtrac-
tions, multiplications and divisions) which become organized in non-scalar
depth O(n(� + lognd) log δ) with respect to the parameters of the arithmetic
circuit σ .

The formulation of this problem is somewhat imprecise, because of the require-
ment (i) that the value δ(F1, . . . ,Fp) depends “rather on the resulting variety S and
its geometry than on the defining polynomials F1, . . . ,Fp themselves”. This is due
to the fact that in case that SR is smooth and F1, . . . ,Fp is strongly reduced, it is
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possible to exhibit an algorithm that fulfills conditions (ii) and (iii) and that contains
a preprocessing which reduces F1, . . . ,Fp to a single (elimination) polynomial P

such that P depends only on S and has, in particular, the same degree as S. The re-
maining part of the algorithm is its main subroutine, which depends only on S (see
[4, 5, 50, 51]).

In view of [15, 23] it seems unlikely that the dependence of the degree of the
real interpretation of F1 = 0, . . . ,Fp = 0 on the given equations can be completely
reduced to an exclusive dependence on S. However, the quantity δ(F1, . . . ,Fp)

depends only through F1, . . . ,Fp on the input circuit σ . We therefore consider
δ(F1, . . . ,Fp) as an intrinsic complexity parameter measuring the size of the input σ .
The quantities n,d , L and � are considered as extrinsic parameters measuring the size
of σ .

In these terms we may say that we search for algorithms Π of intrinsic complexity
which solve the algorithmic elimination problem expressed by requirement (ii). Since
the complexity L(nd)O(1)δO(1) is polynomial in all parameters, including the intrin-
sic parameter δ := δ(F1, . . . ,Fp), we say that the algorithm Π is pseudo-polynomial.
As already mentioned, in the case that SR is smooth and F1, . . . ,Fp is a strongly
reduced regular sequence, there already exist algorithms which fit in this pattern, i.e.,
which have pseudo-polynomial intrinsic complexity.

An important issue is the requirement of (i) that the asymptotic order of
δ(F1, . . . ,Fp) does not exceed the extrinsic bound (nd)O(n). This implies that any
algorithm Π that satisfies the specification (i), (ii), and (iii) has a worst case com-
plexity that meets the already known extrinsic bound of (nd)O(n) for the elimination
problem under consideration (compare the original papers [9, 14, 29, 32–34, 47, 48]
and the comprehensive book [10]).

Algorithms of intrinsic complexity for elimination problems over the complex
numbers (or more generally, over arbitrary algebraically closed fields) were first in-
troduced in [24–27] (see also [35] and the survey [38]). Decisive progress in the
direction of computer implementations was made in [28] (see also [36]). This led to
the development of the software package “Kronecker” by G. Lecerf [42]. The main
procedure of the “Kronecker” software package solves over the complex numbers
the multivariate circuit represented polynomial equation systems by a reusable and
portable algorithm of intrinsic (bit-) complexity character. This algorithm supports
type polymorphism and runs in an exact computer algebra as well as in a numeric
environment. In the sequel we shall refer to the underlying theoretical procedure as
the “Kronecker algorithm” (see Sect. 4).

The Kronecker software package contains various extensions of its main proce-
dure to other, more ambitious elimination tasks in (complex) algebraic geometry and
commutative algebra (see [19, 40, 41] for the theoretical aspects of this extension and
[20] for a streamlined presentation of the underlying mathematics).

In the context of wavelet constructions, the Kronecker algorithm and software has
been adapted to the real case in [43, 44] for the computation of real solutions of
polynomial equation systems.

We now come back to the initial real elimination problem. In [2] we solved this
problem first for a smooth and compact real hypersurface given by a square-free equa-
tion. For an arbitrary strongly reduced regular sequence F1, . . . ,Fp ∈ Q[X] defining
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a complex affine variety S with smooth and compact real trace SR, we solved the
problem in [3]. Finally, the problem was tackled in [4, 5, 50, 51] under the single
assumption that SR is smooth.

In all these cases the intrinsic invariant which essentially determines the complex-
ity of the algorithm is a combination of the degree of the original equation system
F1 = 0, . . . ,Fp = 0 with the maximal degree of the generic polar varieties of suitable
type, namely classic or dual, of the complex variety S (see [25, 27] for the notion of
system degree and [4, 5, 8] for motivations, definitions and basic properties of classic
and dual polar varieties).

The introduction of the (at this moment) new notion of dual polar variety became
necessary in order to settle the case when SR is unbounded. In this situation some
of the generic classic polar varieties of S may have an empty intersection with SR.
This makes classic polar varieties inappropriate for algorithmic applications if SR is
unbounded.

The dual polar varieties are the complex counterpart of Lagrange multipliers. In
[4, 5] we introduced the notion of a generalized polar variety of S associated with
a given embedding of S into the projective space Pn and a given non-degenerate
hyperquadric of Pn. These generalized polar varieties form an algebraic family which
connects the classic with the dual polar varieties of S.

In case that SR is smooth, but possibly unbounded, the fundamental issue for our
algorithmic method is the fact that the dual polar varieties of S cut each connected
component of SR (compare [8], and Theorem 1 below for the case that SR is singu-
lar).

The generic (classic or dual) polar varieties of S, and therefore also their degrees,
depend only on S and not on the particular equations which define S. Thus, if the
real traces of the generic polar varieties of S are all non-empty, their maximal degree
becomes a candidate for an intrinsic invariant which rules over the complexity of an
algorithm which satisfies requirement (ii) above. This was the strategy followed in
[4, 5], which led to a solution of our algorithmic elimination problem in case that SR

is smooth, but possibly unbounded.
In Theorem 14 of Sect. 4 we shall present a discrete family of algorithms which

solves our problem in the particular case of a compact real hypersurface containing
smooth points and possibly also singularities.

So we start with a square-free polynomial F ∈ Q[X] of positive degree d and with
an essentially division-free arithmetic circuit σ in Q[X] of size L and non-scalar
depth �, such that σ has a single output node representing F . Let S := {F = 0}, and
suppose that SR is compact.

We ask for an invariant δ := δ(F ) of asymptotic order not exceeding (nd)O(n),
called the degree of the real interpretation of the equation F = 0, and for an algorithm
Π satisfying for p := 1 the above specification.

Observe that the invariant δ(F ) depends only on the complex hypersurface S,
since F is supposed to be square-free. In this sense we consider as automatically
satisfied the informal requirement above, namely that δ(F ) depends rather on S than
on the defining polynomial F itself.

The methods developed in [2–5, 50, 51] for the case that SR is smooth (but not
necessarily compact) cannot be applied directly when SR is singular. This becomes
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clear on observing that in the singular case some of the generic polar varieties of S

may have empty real traces, even if SR is compact.
Nevertheless, Corollary 1 of [8] asserts the existence of generic dual polar varieties

which cut SR in smooth points in case that (Sreg)R is non-empty.
Using suitable algebraic families of dual polar varieties of the complex hypersur-

face S we shall find a way out of this dilemma. We realize these algebraic families
by means of equidimensional and smooth complex incidence varieties which we call
polar incidence varieties of the equation F = 0.

It turns out that the degrees of the generic dual polar varieties of the polar incidence
varieties of the equation F = 0, called bipolar varieties of the equation F = 0, furnish
appropriate invariants for the design of discrete families of procedures which solve on
input σ our algorithmic elimination problem for the compact real hypersurface SR.

The degrees of the polar varieties of the most general type of polar incidence
variety of the equation F = 0 remain invariant under unitary linear transformations
of the indeterminates X1, . . . ,Xn. In this sense they are intrinsic invariants of the
equation F = 0.

One may ask, in case (Sreg)R �= ∅, what the generic dual polar varieties are that
contain smooth points of SR. We deduce from [8], Corollary 1 that such generic
polar varieties always exist. If we would be able to exhibit explicit equations for such
generic dual varieties, then we could also find real solutions of the equation F = 0 in
the same way as in the case that SR is smooth.

This leads us to the question of how we could find efficiently (rational or alge-
braic) witness points for strict polynomial inequalities (see end of Sects. 4 and 6 for
motivations and a partial answer).

For the search of generic dual polar varieties which cut SR in smooth points, we
have to investigate how dual polar varieties vary with their parameters. This is done
in Theorem 8.

In Sect. 5 we introduce a unified view of the algorithms developed in Sect. 4 for
the case that SR is possibly singular, and of the algorithms of [2, 4, 5, 50, 51] for the
case that SR is smooth. All these algorithms become interpreted as walks in suitable
graphs. Theorem 17 reflects Theorem 14 in this context. The complex Kronecker
algorithm turns out to be a substantial ingredient of our procedures.

We might also consider an avatar of polar incidence varieties based on the pattern
of classic polar varieties. The advantage of this construction would be that we get rid
of the compactness assumption on SR for our point finding algorithms.

However, if SR contains smooth and singular points, the higher dimensional clas-
sic generic polar varieties may all become empty, even if SR is compact. This makes
a statement like Theorem 8 senseless in the classic setting. Hence the geometrical
structure of the polar incidence varieties based on the dual pattern is richer than that
of their classic counterpart. For this reason, there is still room for future complexity
improvements in the dual case, but not in the classic one.

A local version of the complexity statements of Sect. 5 in terms of classic polar
varieties is contained in [6] and [7], with a substantially different treatment of the
corresponding polar incidence variety of F = 0.

For another approach, relying on the so-called “critical point method”, to find roots
in singular real hypersurfaces we refer to [1] and [49].
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The reader only interested in the algorithms and their correctness proofs, namely
Theorems 14, 17 and 19, may restrict his attention to Propositions 5 and 12 and the
estimates of the degrees of distinct types of bipolar variety in Sect. 4.2. The rest of
the mathematical results of this paper illustrate the relevance of the general concept
of the bipolar variety for algorithmic applications.

We shall make extensive use of the general concept of polar varieties. The modern
notion of classic polar varieties was introduced in the 1930s by F. Severi [53, 54] and
J.A. Todd [60, 61], while the intimately related notion of a reciprocal curve goes back
to the work of J.-V. Poncelet in the period of 1813–1829.

As pointed out by Severi and Todd, generic polar varieties have to be understood
as being organized in certain equivalence classes, which embody relevant geometric
properties of the underlying algebraic variety S. This view led to the consideration of
the rational equivalence classes of generic classic polar varieties.

Around 1975 a renewal of the theory of classic polar varieties took place with
essential contributions due to R. Piene [46] (global theory), B. Teissier, D.T. Lê
[39, 58], J.P. Henry and M. Merle [37], A. Dubson [18], Chap. IV (local theory),
J. P. Brasselet and others (the list is not exhaustive; see [46, 59] and [12] for a his-
torical account and references). The idea was to use rational equivalence classes
of generic classic polar varieties as a tool which allows one to establish numerical
formulas in order to classify singular varieties by their intrinsic geometric charac-
ter [46].

On the other hand, first classic and then dual polar varieties around 12 years ago
became a fundamental tool for the design of efficient computer procedures of intrin-
sic complexity which solve suitable instances of our algorithmic elimination problem
[2–5]. The use of polar varieties in the present paper is based on certain geometric
facts which are developed in [8]. Of particular relevance is a relative estimate of the
degree for polar varieties, namely [8], Theorem 3, which allows us to compare the
intrinsic complexities of distinct algorithms.

2 Preliminaries About Polar Varieties

Let the notation be as in the Introduction. Unless stated otherwise, we suppose
throughout this section that F1, . . . ,Fp ∈ Q[X] is a reduced regular sequence defin-
ing a (non-empty) subvariety S of An of pure codimension p.

Let 1 ≤ i ≤ n − p and let a := [ak,l] 1≤k≤n−p−i+1
0≤l≤n

be a complex matrix, and

suppose that a∗ := [ak,l] 1≤k≤n−p−i+1
1≤l≤n

has maximal rank n − p − i + 1. In case

(a1,0, . . . , an−p−i+1,0) = 0 we denote by K(a) := Kn−p−i (a) and in case (a1,0, . . . ,

an−p−i+1,0) �= 0 by K(a) := K
n−p−i

(a) the (n − p − i)-dimensional linear subvari-
eties of the projective space Pn which for 1 ≤ k ≤ n − p − i + 1 are spanned by the
points (ak,0 : ak,1 : · · · : ak,n).

The classic and the dual ith polar varieties of S associated with the linear varieties
K(a) and K(a) are defined as the closures of the loci of the regular points of S where
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all (n − i + 1)-minors of the polynomial ((n − i + 1) × n) matrix

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
∂X1

· · · ∂F1
∂Xn

...
...

...

∂Fp

∂X1
· · · ∂Fp

∂Xn

a1,1 − a1,0X1 · · · a1,n − a1,0Xn

...
...

...

an−p−i+1,1 − an−p−i+1,0X1 · · · an−p−i+1,n − an−p−i+1,0Xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vanish. We denote these polar varieties by

WK(a)(S) := WKn−p−i (a)(S) and WK(a)(S) := W
K

n−p−i
(a)

(S),

respectively. They are of expected pure codimension i in S and do not depend on the
particular choice of the reduced regular sequence defining S. In the sequel we shall
restrict our attention to the concept of dual polar varieties only.

If a is a real ((n − p − i + 1) × (n + 1)) matrix, we denote by

WK(a)(SR) := W
K

n−p−i
(a)

(SR) := WK(a)(S) ∩ An
R

the real trace of WK(a)(S).
Observe that this definition of dual polar varieties may be extended to the case

that there is given a Zariski open and dense subset O of An such that the equations
F1 = 0, . . . ,Fp = 0 intersect transversally at any of their common solutions in O and
that S is now the locally closed subvariety of An given by

S := {F1 = 0, . . . ,Fp = 0} ∩ O,

which is supposed to be non-empty.
In Sect. 4 we shall need this extended definition of polar varieties in order to

establish the notion of a bipolar variety of a given hypersurface. For the moment
let us suppose again that S is the closed subvariety of An defined by the reduced
regular sequence F1, . . . ,Fp . In [4] and [5] we have introduced the notion of dual
polar varieties of S (and SR) and motivated by geometric arguments the calculatory
definition of these objects. Moreover, we have shown that, for a complex matrix a =
[ak,l] 1≤k≤n−p−i+1

0≤l≤n

with a∗ := [ak,l] 1≤k≤n−p−i+1
1≤l≤n

generic, the dual polar variety WK(a)(S)

is either empty or of pure codimension i in S. Further, we proved that WK(a)(S) is
normal and Cohen–Macaulay (but non necessarily smooth) at any of its (F1, . . . ,Fp)-
regular points (see [8], Corollary 2 and Sect. 3.1). This motivates the consideration
of the so-called generic dual polar varieties WK(a)(S), associated with a complex
((n − p − i + 1) × (n + 1)) matrix a with a∗ generic, as an invariant of the complex
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variety S (independently of the given equation system F1 = 0, . . . ,Fp = 0). However,
when this matrix a is real, we cannot consider WK(a)(SR) as an invariant of the
real variety SR, since for a suitable real ((n − p − i + 1) × (n + 1)) matrix a with
a∗ generic, this polar variety may turn out to be empty, whereas for another real
matrix of this kind it may contain points (see [8], Theorem 1 and Corollary 1 and
Theorem 8 and Corollary 9 below). For our use of the word “generic” we refer to [8],
Definition 1.

In case that SR is smooth and a is a real ((n − p − i + 1) × (n + 1)) matrix
with full rank submatrix a∗, the real dual polar variety WK(a)(SR) contains always
a point of each connected component of SR. We are now going to state and prove a
technical result about affine linear sections of dual polar varieties. This will be needed
in Sects. 4 and 5.

Let X := (X1, . . . ,Xn−1) and let O be a Zariski open and dense subset of An and,
let c ∈ A1 be a complex number such that the equations F1(X) = 0, . . . ,Fp(X) = 0
and the equations F1(X, c) = 0, . . . ,Fp(X, c) = 0 intersect transversally at any of
their common zeros that belong to O or to Oc := {x ∈ An−1 | (x, c) ∈ O}, re-
spectively. Denote by μc : An−1 → An the embedding of affine spaces defined for
x ∈ An−1 by μc(x) := (x, c).

We compare now the dual polar varieties of

S := {
F1(X) = 0, . . . ,Fp(X) = 0

} ∩ O

and

Sc := {
F1

(
X,c

) = 0, . . . ,Fp

(
X,c

) = 0
} ∩ Oc.

Observe that S and Sc are (locally closed) subvarieties of An and An−1 which we
suppose to be non-empty.

Let 1 ≤ i < n − p and let a = [ak,l] 1≤k≤n−p−i
0≤l≤n

be a complex matrix such that

[ak,l] 1≤k≤n−p−i
1≤l≤n

has maximal rank n − p − i.

Lemma 1 Let notation be as above; further let a′ := [ak,l] 1≤k≤n−p−i
0≤l≤n−1

and a′′ :=
[ a

0 ··· 0 1

]
. Then, in case (a1,0, . . . , an−p−i,0) �= 0, the affine linear map μc : An−1 →

An induces an isomorphism between the dual polar variety W
K

n−p−i
(a′)(Sc) and the

closed variety W
K

n−p−i
(a′′)(S) ∩ {Xn − c = 0}.

Proof Deleting in the matrices a′ and a′′ the columns number 0, we obtain full
rank matrices. Therefore the dual polar varieties W

K
n−p−i

(a′)(Sc) and W
K

n−p−i
(a′′)(S)

are well defined. It suffices to show that μc induces an isomorphism between
W

K
n−p−i

(a′)(Sc)∩Oc and W
K

n−p−i
(a′′)(S)∩{Xn −c = 0}∩O . From our assumptions,

we deduce that the mapping μc identifies Sc with S ∩ {Xn − c = 0} and that for each
x ∈ Sc the point x is (F1(X, c), . . . ,Fp(X, c))-regular and the point μc(x) = (x, c)

is (F1, . . . ,Fp)-regular. Let x be an arbitrary element of Sc. Then all (n − i)-minors
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of the polynomial ((n − i) × (n − 1)) matrix

L :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F1
∂X1

(X, c) · · · ∂F1
∂Xn−1

(X, c)

...
...

...

∂Fp

∂X1
(X, c) · · · ∂Fp

∂Xn−1
(X, c)

a1,1 − a1,0X1 · · · a1,n−1 − a1,0Xn−1

...
...

...

an−p−i,1 − an−p−i,0X1 · · · an−p−i,n−1 − an−p−i,0Xn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vanish at x if and only if all (n − i + 1)-minors of the polynomial ((n − i + 1) × n)

matrix, obtained from L by adding the row (0, . . . ,0,1), vanish at μc(x). This
implies that x belongs to W

K
n−p−i+1

(a′)(Sc) ∩ Oc if and only if μc(x) belongs to

W
K

n−p−i
(a′′)(S) ∩ {Xn − c = 0} ∩ O . �

3 Polar Incidence Varieties

3.1 Basic Incidence Varieties

Let d,n and i be natural numbers, 1 ≤ i ≤ n − 1, let X := (X1, . . . ,Xn), Ω :=
(Ω1, . . . ,Ωn−i ) be row vectors, and let A := [Ak,l] 1≤k≤n−i

0≤l≤n
be a matrix of inde-

terminates over C. Furthermore, let Λ be a single indeterminate over C and F ∈
R[X1, . . . ,Xn] an n-variate polynomial over R of positive degree degF = d . The
polynomial F will be fixed for the rest of this paper.

Let J (F ) := ( ∂F
∂X1

, . . . , ∂F
∂Xn

) be the gradient (i.e., the Jacobian) of F . For the sake
of simplicity of the exposition we shall from now on assume that F is reduced (i.e.,
square-free). Thus J (F ) does not vanish identically on any irreducible component of
the complex hypersurface {F = 0}.

For a complex ((n − i) × (n + 1)) matrix a := [ak,l] 1≤k≤n−i
0≤l≤n

and a point x =
(x1, . . . , xn) ∈ An we write A0 := (A1,0, . . . ,An−i,0), a0 := (a1,0, . . . , an−i,0), A∗ :=
[Ak,l] 1≤k≤n−i

1≤l≤n
and, as above, a∗ := [ak,l] 1≤k≤n−i

1≤l≤n
. Furthermore, we denote by A(X) and

a(x) the ((n − i) × n) matrices [Ak,l − Ak,0Xl] 1≤k≤n−i
1≤l≤n

and [ak,l − ak,0xl] 1≤k≤n−i
1≤l≤n

.

Thus, specializing the ((n − i) × (n + 1)) matrix A to a and the row vector X

to x, we obtain a0, a∗, and a(x) as specializations of A0,A∗ and A(X), respectively.
We indicate the rank of a matrix, e.g. of a, by rk(a). As usual we denote by aT the
transposed matrix of a.

For (λ,ω1, . . . ,ωn−i ) ∈ An−i+1 \ {0} and ω := (ω1, . . . ,ωn−i ) we shall write
(λ : ω) := (λ : ω1 : · · · : ωn−i ) for the corresponding point of Pn−i .

We are now going to introduce three families of incidence varieties which we shall
call polar. In order to define the first one we consider the ambient space

Mi := An × A(n−i)×(n+1) × Pn−i
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containing the R-definable locally closed incidence variety

Ei := {(
x, a, (λ : ω)

) ∈ Mi |F(x) = 0, rka∗ = rka(x) = n − i,

a0ω
T �= 0, J (F )(x)Tλ + a(x)TωT = 0

}
.

Let (x, a, (λ : ω)) be an arbitrary point of Ei . From a0ω
T �= 0 and rka(x) = n − i

we deduce first ω �= 0 and then J (F )(x) �= 0 and λ �= 0.

Observation 2 Let x be a point of An satisfying the conditions F(x) = 0 and
J (F )(x) �= 0. Then there exists a point (a, (λ : ω)) of A(n−i)×(n+1) × Pn−i such that
(x, a, (λ : ω)) belongs to Ei and in particular, that Ei is non-empty. If x is a real
point, then (a, (λ : ω)) may be chosen real.

Proof Since we have by assumption J (F )(x) �= 0 we may choose a complex number
γ ∈ C \ {0} with γ x −J (F )(x) �= 0. Therefore, there exists a complex ((n− i − 1)×
(n − 1)) matrix b such that the matrices

a∗ :=
[

γ x − J (F )(x)

b

]
and

[−J (F )(x)

b

]

have maximal rank n−i. Let a0 ∈ An−i with a0 := (γ,0, . . . ,0), a := [aT
0 , a∗], λ := 1

and ω ∈ An−i with ω := (1,0, . . . ,0). One now easily verifies that the point (x, a,

(λ : ω)) belongs to Ei . In particular, if x is a real point, then γ and b, and hence also
a and (λ : ω), may be chosen real. �

Proposition 3 Let Di be the closed subvariety of Mi defined by the condition rkA∗ <

n − i or rkA(X) < n − i or A0 · ΩT = 0. Then the polynomial equations

F(X) = 0,
∂F

∂Xl

Λ +
∑

1≤k≤n−i

(Ak,l − Ak,0Xl)Ωk = 0, 1 ≤ l ≤ n, (1)

intersect transversally at any of their common solutions in Mi \ Di . Moreover, Ei is
exactly the set of solutions of the polynomial equation system (1) outside of the lo-
cus Di .

The set Ei , interpreted as incidence variety between An and A(n−i)×(n+1) × Pn−i ,
dominates the locus of all regular points of the complex hypersurface {F = 0}.

In particular, Ei is an equidimensional algebraic variety which is empty or smooth
and of dimension (n − i)(n + 2) − 1. The real variety E

(i)
R

:= (Ei)R is non-empty if
and only if the hypersurface {F = 0} contains a regular real point.

Proof Observe that the succinctly written polynomial equation system J (F )(X)TΛ+
A(X)TΩT = 0 is nothing else than a matrix expression for the system

∂F

∂Xl

Λ +
∑

1≤k≤n−i

(Ak,l − Ak,0Xl)Ωk = 0, 1 ≤ l ≤ n.
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Therefore, any point (x, a, (λ : ω)) ∈ M which does not belong to Di and is a solution
of the preceding polynomial equation system satisfies the condition

ω �= 0, λ �= 0 and J (F )(x) �= 0.

Hence we may suppose without loss of generality that λ := 1. The polynomial equa-
tion system (1) therefore becomes

F(X) = 0,
∂F

∂Xl

(X) +
∑

1≤k≤n−i

(Ak,l − Ak,0Xl)Ωk = 0, 1 ≤ l ≤ n. (2)

The Jacobian of this system is the following ((n + 1) × ((n − i)(n + 2) + n)) matrix:

Li :=
⎡
⎢⎢⎢⎢⎣

∂F
∂X1

· · · ∂F
∂Xn

0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0

Ω1 · · · Ωn−i 0 · · · 0 −X1Ω1 · · · −X1Ωn−i

∗ A(X)T 0
. . . 0

...
...

...

0 · · · 0 · · · Ω1 · · · Ωn−i −XnΩ1 · · · −XnΩn−i

⎤
⎥⎥⎥⎥⎦

.

A point (x, a, (1 : ω)) ∈ Mi which does not belong to Di satisfies the polynomial
equation system (1) if and only if (x, a,ω) ∈ An × A(n−i)×(n+1) × An−i is a solution
of (2). Moreover, in this case we have J (F )(x) �= 0 and ω �= 0. This implies that the
polynomial matrix Li has maximal rank n + 1 at any solution (x, a,ω) of (2) which
satisfies the condition (x, a, (1 : ω)) /∈ Di .

Thus the equations of (1) intersect transversally at any of their common solutions
in Mi \ Di and it is also clear from the definitions that these solutions constitute the
algebraic variety Ei .

Since the polynomial equation system (2) contains n + 1 equations in (n − i) ×
(n+2)+n unknowns we conclude that Ei is empty or equidimensional of dimension
((n − i)(n + 2) + n) − (n + 1) = (n − i)(n + 2) − 1.

If the hypersurface {F = 0} contains a regular real point, then Observation 2
implies that Ei (or E

(i)
R

) is not empty. If Ei (or E
(i)
R

) is non-empty it contains a
(real) point (x, a, (λ : ω)) with F(x) = 0, rka(x) = n − i and (λ : ω) ∈ Pn−i . From
rka(x) = n − i we deduce J (F )(x) �= 0. Therefore, {F = 0} contains a regular real
point. This implies that Ei dominates the locus of all regular points of {F = 0} and
that E

(i)
R

is non-empty if and only if {F = 0} contains a regular real point. �

The final aim of this paper is the development of geometric tools which allow us
to design efficient algorithms that find regular real points of the hypersurface {F = 0}
in case that {F = 0}R is compact. The condition Λ := 1 in (1) and hence the equation
system (2) are not well-suited for this purpose, since in this way we obtain a descrip-
tion of A as a function of X and not the opposite. Therefore, we prefer to fix one of
the entries of Ω and to let Λ be unfixed.
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We are now going to introduce our next family of polar incidence varieties and to
show a result analogous to Proposition 3 about them, namely Proposition 4.

For this purpose we introduce the following mathematical objects and notation.
Let 1 ≤ h ≤ n − i and let B := [Bk,l] 1≤k≤n−i

1≤l≤n
and Θ := (Θ1, . . . ,Θn−i ) be a

((n − i) × n) matrix and a row vector whose entries are new indeterminates Bk,l and
Θk,1 ≤ k ≤ n− i,1 ≤ l ≤ n. We write B(h) for the ((n− i)× (n+ 1)) matrix defined
by (B(h))0 := (δk,h)1≤k≤n−i and B

(h)∗ := B , where δk,h denotes the Kronecker sym-
bol given by δk,k = 1 and δk,h = 0 for k �= h. Similarly, for b ∈ A(n−i)×n we denote
by b(h) the complex ((n − i) × (n + 1)) matrix defined by (b(h))0 := (δk,h)1≤k≤n−i

and (b(h))∗ := b. We introduce a new ambient space, namely

T
(h)
i := {(

x, b, (λ : ϑ)
) |x ∈ An, b ∈ A(n−i)×n, λ ∈ A1

and ϑ = (ϑ1, . . . , ϑn−i ) ∈ An−i with ϑh �= 0
}
.

Let

H
(h)
i := {(

x, b, (λ : ϑ)
) ∈ T

(h)
i |F(x) = 0,

rkb = rkb(h)(x) = n − i, J (F )(x)Tλ + b(h)(x)TϑT = 0
}
.

Observe that T
(h)
i is an algebraic variety which is isomorphic to the affine space

An × A(n−i)×n × An−i and that H
(h)
i is an R-definable locally closed subvariety of

T
(h)
i . The ambient space T

(h)
i may be linearly embedded in Mi and this embedding

maps H
(h)
i into Ei .

Sometimes we shall tacitly identify T
(h)
i with the affine space An × A(n−i)×n ×

An−i . This will always be clear by the context.
For 1 ≤ h ≤ n − i and 1 ≤ l1 < · · · < ln−i ≤ n, let

O(h;l1,...,ln−i ) := {
a ∈ A(n−i)×(n+1) |a = [ak,l] 1≤k≤n−i

0≤l≤n
with ah,0 �= 0

and det[alk,lj ]1≤k,j≤n−i �= 0
}
,

U(l1,...,ln−i ) := {
b ∈ A(n−i)×n |b = [bk,l] 1≤k≤n−i

1≤l≤n
with det[blk,lj ]1≤k,j≤n−i �= 0

}
,

M
(i)
O(h;l1,...,ln−i )

:= {(
x, a, (λ : ω)

) ∈ Mi |a ∈ O(h;l1,...,ln−i )

}
,

T
(i,h)
U(l1,...,ln−i )

:= {(
x, b, (λ : ω)

) ∈ T
(h)
i |b ∈ U(l1,...,ln−i )

}
,

E
(i)
O(h;l1,...,ln−i )

:= Ei ∩ M
(i)
O(h;l1,...,ln−i )

and

H
(i,h)
U(l1,...,ln−i )

:= Hi ∩ T
(i,h)
U(l1,...,ln−i )

.

Observe that (E
(i)
O(h;l1,...,ln−i )

) 1≤h≤n−i
1≤l1<,...,ln−i≤n

and (H
(i,h)
U(l1,...,ln−i )

) 1≤h≤n−i
1≤l1<,...,ln−i≤n

are coverings

of Ei and H
(h)
i by open subvarieties.
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We are now able to state and prove the next result.

Proposition 4 Let 1 ≤ h ≤ n − i and 1 ≤ l1 < · · · < ln−i ≤ n. The R-definable alge-
braic variety E

(i)
O(h;l1,...,ln−i )

is isomorphic to An−i ×H
(i,h)
U(l1,...,ln−i )

. In particular, H
(h)
i is

an R-definable equidimensional algebraic variety which is empty or smooth and of
dimension (n − i)(n + 1) − 1. Let D(i,h) be the closed subvariety of T

(h)
i defined by

the condition rkBi < n − i or rkB
(h)
i (X) < n − i.

Then the equations of the system

F(X) = 0,
∂F

∂Xl

(X)Λ+ (Bh,l −Xl)Θh +
∑

1≤k≤n−i
k �=h

Bk,lΘk = 0, 1 ≤ l ≤ n, (3)

intersect transversally at any of their common solutions in T
(h)
i \D(i,h). The algebraic

variety H
(h)
i consists exactly of these solutions.

The set H(h)
i , interpreted as an incidence variety between An and A(n−i)×n×Pn−i ,

dominates the locus of all regular points of the complex hypersurface {F = 0}. The
real variety (H

(h)
i )R is non-empty if and only if {F = 0} contains a regular real point.

Proof The first part of this proof follows the same line as the proof of Proposition 3.
For the sake of completeness we briefly indicate the main arguments.

Observe that the succinctly written polynomial equation system

J (F )(X)TΛ + B(h)(X)TΘT = 0

is in fact

∂F

∂Xl

(X)Λ + (Bh,l − Xl)Θh +
∑

1≤k≤n−i
k �=h

Bk,lΘk = 0, 1 ≤ l ≤ n,

and that any point (x, b, (λ : ϑ)) ∈ T
(h)
i with ϑ = (ϑ1, . . . , ϑn−i ) which does not

belong to D(i,h) and is a solution of the polynomial equation system (3) satisfies the
condition

ϑh �= 0, λ �= 0 and J (F )(x) �= 0.

Therefore we may again assume λ = 1. The Jacobian of the specialized system, ob-
tained from (3) by setting Λ = 1, is the polynomial ((n + 1) × (n − i)(n + 1) + n)

matrix

Ji,h :=

⎡
⎢⎢⎢⎢⎢⎣

∂F
∂X1

· · · ∂F
∂Xn

∗

0 · · · 0

Bh(X)T

0 · · · 0
Θ1 · · · Θn−i

0

0 · · · 0

· · ·

. . .

· · ·

0 · · · 0
0 · · · 0

0

Θ1 · · · Θn−i

⎤
⎥⎥⎥⎥⎥⎦

,
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with

Bh(X) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bh,1 − X1 · · · Bh,n − Xn

B1,1 · · · B1,n

...
...

...

Bh−1,1 · · · Bh−1,n

Bh+1,1 · · · Bh+1,n

...
...

...

Bn−i,1 · · · Bn−i,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A point (x, b, (1 : ϑ)) of Ti
(h) with ϑ = (ϑ1, . . . , ϑn−i ) which does not belong to

D(i,h) satisfies the polynomial equation system (3) if and only if (x, b,ϑ) is a solution
of the specialized system. Moreover, we have J (f )(x) �= 0 and ϑ �= 0 in this case.
This implies that the ((n + 1) × ((n − i)(n + 1) + n)) matrix Ji,h has maximal rank
n + 1 at (x, b,ϑ).

Thus the equations of (3) intersect transversally at any of their common solutions
in T

(h)
i \ D(i,h). It is also clear from the definitions that these solutions form the

algebraic variety H
(h)
i . As in the proof of Proposition 3 one sees that H

(h)
i is empty

or equidimensional of dimension (n − i)(n + 1) − 1 and dominates the locus of the
regular points of {F = 0}.

We now are going to construct for 1 ≤ h ≤ n − i and 1 ≤ l1 < · · · < ln−i ≤ n an
isomorphism from the algebraic variety E

(i)
O(h;l1,...,ln−i )

to An−i × H
(i,h)
U(l1,...,ln−i )

.

Without loss of generality we may restrict our attention to the case h := 1 and
l1 := 1, . . . , ln−i := n − i. We consider therefore

U := U(1,...,n−i) =
{
b ∈ A(n−i)×n |b = [bk,l] 1≤k≤n−i

1≤l≤n
,det[bk,l]1≤k,l≤n−i �= 0

}

and

O := O(1;1,...,n−i) =
{
a ∈ A(n−i)×(n+1) |a = [ak,l] 1≤k≤n−i

1≤l≤n
, a1,0 �= 0,

det[ak,l]1≤k,l≤n−i �= 0
}
.

Further, we consider the ((n − i) × (n − i)) matrix

Q :=

⎡
⎢⎢⎢⎢⎢⎣

1
A1,0

−A2,0
A1,0

· · · −An−i,0
A1,0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦

,
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whose inverse matrix is

Q−1 =

⎡
⎢⎢⎢⎢⎣

A1,0 A2,0 · · · An−i,0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤
⎥⎥⎥⎥⎦

.

Let A′′ = [A′′
k,l] 1≤k≤n−i

1≤l≤n
be the matrix A′′ := QTA∗ and let Ω ′′ = (Ω ′′

1 , . . . ,Ω ′′
n−i ) be

the row vector Ω ′′ := Ω(QT)−1. Observing the identity A0 · Q = (1,0, . . . ,0) we
conclude that (QTA)0 = (1,0, . . . ,0) and (QTA)∗ = A′′ hold. Moreover, we have
Ω ′′

1 = A0 · ΩT.
The entries A′′

k,l of A′′ are rational functions belonging to Q(A), all well defined at
any point of O, and the same is true for the entries of the ((n− i)× (n− i)) matrix Q.
On the other hand, the entries Ω ′′

k of Ω ′′ are polynomials belonging to Q[A,Ω].
Let (x, a, (λ : ω)) be a point of E

(i)
O . Then q := Q(a), and A′′(a) and Ã(a) := qTa

are well defined, q is a regular complex ((n − i) × (n − i)) matrix and (x, qTa,

(λ : q−1(ω))) satisfies by the previous commentaries the following conditions:

(
qTa

)
0 = (1,0, . . . ,0),

(
qTa

)
∗ = A′′(a), A′′(a) ∈ U, Ã(a) ∈ O,

Ω ′′
1 (a,ω) �= 0, rkA′′(a) = rk

(
Ã(a)

)
(x) = n − i,

J (F )(x)Tλ + (
Ã(a)

)
(x)TΩ ′′(a,ω)T = 0.

Therefore, we obtain a morphism of algebraic varieties

ϕO : E(i)
O → An−i × H

(i,h)
U ,

defined for (x, a, (λ : ω)) by

ϕO

(
x, a, (λ : ω)

) := (
a0, x,A′′(a),

(
λ : Ω ′′(a,ω)

))
.

Our argumentation implies that ϕO is an isomorphism of algebraic varieties. For any
1 ≤ h ≤ n − i and 1 ≤ l1 < · · · < ln−i ≤ n we obtain therefore an isomorphism of
algebraic varieties,

ϕO(h;l1,...,ln−i )
: E(i)

O(h;l1,...,ln−i )
→ An−i × H

(i,h)
U(l1,...,ln−i )

.

Finally, Proposition 3 implies that (H
(h)
i )R is non-empty if and only if {F = 0} con-

tains a regular real point. �

For algorithmic applications, Propositions 3 and 4 contain too many open con-
ditions, namely the conditions rkA∗ = rkA(X) = n − i,A0Ω

T �= 0 or rkB =
rkB(X) = n − i,Θh �= 0. Of course, the condition rkB = rkB(X) = n − i may be
eliminated by a suitable specialization of the (n− i)× n matrix B . However, one has
to take care that this specialization process does not kill too many regular points of

Author's personal copy



Found Comput Math (2012) 12:75–122 91

the hypersurface {F = 0}. On the other side, the algorithmic tools we have at hand
require subvarieties of affine spaces with closed and smooth real traces. In order to
satisfy these two requirements, we are going to replace the polynomial equation sys-
tem (3) by a simpler one, namely the system (4) below.

This leads us to a third family of polar incidence varieties. Proposition 5 below
represents a fair compromise between our algorithmic requirements and our geomet-
ric intuition. We shall need it later for the task of finding efficiently regular real points
of {F = 0}, in case that {F = 0}R is compact.

We need some notation. Let 1 ≤ h ≤ n − i and let γ be a non-zero real number.
For b ∈ Ai with b = (bn−i+1, . . . , bn) we denote by b(i,h;γ ) the complex ((n− i)×n)

matrix

b(i,h;γ ) :=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 · · · 0 · · · 0 0 · · · 0
. . .

...

0 · · · γ · · · 0 bn−i+1 · · · bn

. . .
...

0 · · · 0 · · · 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where the row number h is (0, . . . , γ, . . . ,0, bn−i+1, . . . , bn).
We now introduce the ambient space

Ni
(h) := {(

x, b, (λ : ϑ)
) |x ∈ An, b ∈ Ai and ϑ = (ϑ1, . . . , ϑn−i ) ∈ An−iwithϑh �= 0

}

and consider the R-definable subvariety H
(h,γ )

i of Ni
(h) given by

H
(h,γ )

i := {(
x, b, (λ : ϑ)

) ∈ Ni
(h) |x = (x1, . . . , xn) ∈ An,F (x) = 0, xh − γ �= 0,

J (F )(x)Tλ + (
b

(h)
(i,h;γ )

(x)
)T

ϑT = 0
}
.

Observe that Ni
(h) is an algebraic variety which is isomorphic to the affine space

An × Ai × An−i and that H
(h,γ )

i is an R-definable locally closed subvariety of Ni
(h).

The ambient space Ni
(h) may be linearly embedded in Ti

(h) and this embedding
maps H

(h,γ )

i into H
(h)
i . Frequently we shall tacitly identify N

(h)
i with the affine space

An × Ai × An−i . This will always be clear by the context. Let B∗
n−i+1, . . . ,B

∗
n be

new indeterminates.

Proposition 5 Let 1 ≤ h ≤ n − i and let γ be a non-zero real number. Then, outside
of the locus given by Θh(Xh − γ ) = 0, the polynomial equations of the system

F(X) = 0,

∂F (X)

∂Xh

Λ + (γ − Xh)Θh = 0,

∂F (X)

∂Xl

Λ − XlΘh + Θl = 0, (4)

1 ≤ l ≤ n − i, l �= h
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∂F (X)

∂Xl

Λ + (
B∗

l − Xl

)
Θh = 0,

n − i < l ≤ n,

intersect transversally at each of their common solutions in Ni
(h). Moreover, the

polynomial equation system (4) and the open condition Θh(Xh − γ ) �= 0 define
the algebraic variety H

(h,γ )

i which is therefore empty or equidimensional of dimen-

sion n − 1. The varieties H
(h,γ )

i and (H
(h,γ )

i )R dominate the locus of all points
x = (x1, . . . , xn) of {F = 0} and {F = 0}R satisfying the conditions ∂F

∂Xh
(x) �= 0 and

xh − γ �= 0. In particular, (H
(h,γ )

i )R is non-empty and equidimensional of dimension
n − 1 if and only if the hypersurface {F = 0} contains a real point x = (x1, . . . , xn)

with ∂F
∂Xh

(x) �= 0 and xh − γ �= 0. The polynomials contained in (4) generate in
R[X,B∗

n−i+1, . . . ,B
∗
n,Λ,Θ]Θh(Xh−γ ) the trivial ideal or form a reduced regular se-

quence.

Proof Without loss of generality we may assume h := 1. Let (x, b, (λ : ϑ)) be a point
of An × Ai × Pn−i with x = (x1, . . . , xn), b = (bn−i+1, . . . , bn), ϑ = (ϑ1, . . . , ϑn−i )

and ϑ1(x1 − γ ) �= 0 which is a solution of the polynomial equation system (4) in the
case h = 1. Without loss of generality we may suppose ϑ1 = 1. Therefore, (x, b,λ,ϑ)

represents a solution of the polynomial equation system (4) with Θ1 replaced by one
and satisfies the condition x1 − γ �= 0. Observe that the conditions (4), Θ1 = 1 and
X1 − γ �= 0 imply ∂F

∂X1
�= 0. Therefore we have ∂F

∂X1
(x) �= 0. The Jacobian J(x,b,λ,ϑ)

of the system (4) at the point (x, b,λ,ϑ) is the complex ((n + 1) × 2n) matrix

J(x,b,λ,ϑ) :=
⎡
⎢⎣

J (F )(x) 0 O1×(n−1)

∂F
∂X1

(x) O1×(n−1)∗
J (F )n−1(x)T In−1

⎤
⎥⎦ ,

with J (F )n−1(x) := ( ∂F
∂X2

(x), . . . , ∂F
∂Xn

(x)). From ∂F
∂X1

(x) �= 0 we deduce that

J(x,b,λ,ϑ) has maximal rank n + 1.
Therefore, outside of the locus given by Θ1(X1 − γ ) = 0, the equations of the

system (4) intersect transversally at each of their common solutions in An × Ai ×
Pn−i .

Let x = (x1, . . . , xn) be an arbitrary complex or real point of the hypersurface
{F = 0} satisfying the conditions ∂F

∂X1
(x) �= 0 and x1 − γ �= 0 and let

ϑ1 := 1, λ := x1 − γ

∂F
∂X1

(x)
,

ϑ2 := − ∂F

∂X2
(x)λ + x2, . . . , ϑn−i := − ∂F

∂Xn−i

(x)λ + xn−i ,

bn−i+1 := − ∂F

∂Xn−i+1
(x)λ + xn−i+1, . . . , bn := − ∂F

∂Xn

(x)λ + xn,

ϑ := (ϑ1, . . . , ϑn−i ) and b := (bn−i+1, . . . , bn).
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Then the point (x, b, (λ : ϑ)) ∈ An × Ai × Pn−i represents a solution of the poly-
nomial equation system (4) and satisfies the condition ϑ1(x1 − γ ) �= 0. There-
fore, the solutions (x, b, (λ : ϑ)) ∈ An × Ai × Pn−i of (4) with x = (x1, . . . , xn),
ϑ := (ϑ1, . . . , ϑn−i ), ϑ1 = 1 and x1 − γ �= 0 dominate the locus of all points x =
(x1, . . . , xn) of {F = 0} with ∂F

∂X1
(x) �= 0 and x1 − γ �= 0. One easily sees from the

definitions that the points of the algebraic variety H(1,γ ) represent exactly the solu-
tions of (4) which satisfy the condition Θ1(X1 − γ ) �= 0. Therefore, H(1,γ ) is empty
or equidimensional of dimension n − 1. It follows from our previous argumentation
that H(1,γ ) and H

(1,γ )

R
dominate the locus of all points x = (x1, . . . , xn) of {F = 0}

and {F = 0}R which satisfy the conditions ∂F
∂X1

(x) �= 0 and x1 − γ �= 0.

Hence, H
(1,γ )

R
is non-empty (and equidimensional of dimension n−1) if and only

if {F = 0} contains a real point x = (x1, . . . , xn) with ∂F
∂X1

(x) �= 0 and x1 − γ �= 0.
The rest of the statement of Proposition 5 now follows by standard arguments of
commutative algebra. �

Observation 6 Let the notation be as in Proposition 4 and 5. Then the closures of
(H

(h)
i )R and (H

(h,γ )

i )R in their respective real ambient spaces do not need to be
compact, even if {F = 0}R is so. However, the assumption that {F = 0}R is bounded
implies that (H

(h,γ )

i )R is compact for sufficiently large γ .

In the sequel we shall refer for 1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i and γ > 0 to the
equation systems (1), (3), and (4) and the corresponding varieties Ei , H

(h)
i and H

(h,γ )

i

as polar incidence varieties of the equation F = 0.
The varieties Ei and H

(h)
i are inspired by the concept of a generic ith dual polar

variety of the hypersurface {F = 0} whereas the variety H
(h,γ )

i is inspired by the
concept of a meagerly generic polar variety of {F = 0} (see [8], Sect. 4, Example 2).

3.2 A Parametric View of the Generic Dual Polar Varieties of a Real Hypersurface

In [8], Sect. 3.1 we made (without any proof) a comment, saying that generic dual
polar varieties of smooth hypersurfaces may become singular. This statement seems
to be incorrect as the following result shows.

Theorem 7 Let F be reduced, 1 ≤ i ≤ n−1 and let a be a complex ((n−i)×(n+1))

matrix with generic submatrix a∗. Suppose that {F = 0} contains a regular real point.
Then the generic dual polar variety WK(a) is smooth at any of its F -regular points x

satisfying the condition rka(x) = n − i.

Proof Let ϕi : Ei → A(n−i)×(n+1) be the morphism of smooth algebraic varieties in-
duced by the canonical projection from An ×A(n−i)×(n+1) ×Pn−i onto A(n−i)×(n+1),
and suppose that the generic polar variety WK(a) is not empty.

From [8], Corollaries 1 and 2 we deduce that WK(a) is equidimensional of dimen-
sion n − i − 1 and non-empty. On the other hand Proposition 3 implies that Ei is
equidimensional of dimension (n − i)(n + 2) − 1.
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One sees easily that ϕ−1
i (a) is isomorphic to

W ∗ := {
x ∈ An |J (F )(x) �= 0, x ∈ WK(a), rka(x) = n − i

}
.

Therefore, we conclude from the theorem of Fibers (see e.g. [55]) that the morphism
ϕi is dominating (i.e., the constructible set ϕi(Ei) is Zariski dense in A(n−i)×(n+1)).
Since by assumption a is a generic element of A(n−i)×(n+1), Sard’s theorem (see e.g.
[17, 57]) implies that a is a regular value of ϕi . Therefore ϕ−1

i (a), and hence W ∗,
are smooth. This means that the polar variety WK(a) is smooth at any of its F -regular

points x satisfying the condition rka(x) = n − i. �

For generic classic polar varieties the counterpart of Theorem 7 is a well-known
result on generic classic polar varieties of complex hypersurfaces (see the comments
in [8, 46] and [2] for an elementary proof).

We are now going to formulate and prove an avatar of [8], Theorem 1 for the
most general type of real polar incidence variety (see Theorem 8 and Corollary 9
below).

Theorem 8 Suppose that the hypersurface {F = 0} contains a regular real point.
Let C be a generically regular connected component of {F = 0}R. Then there exists

a non-empty, open, semialgebraic subset O
(i)
C of A(n−i)×(n+1) such that any a ∈ O

(i)
C

satisfies the following conditions:

(i) rka∗ = n − i, a0 �= 0 and the dual polar variety WK(a) is generic and contains a
regular point of C.

(ii) For any two points x ∈ (WK(a))R and (λ : ω) ∈ Pn−i
R

with z := (x, a, (λ : ω)) ∈
E

(i)
R

there exists a permutation matrix M ∈ Zn×n such that the linear forms

X′
1, . . . ,X

′
n,Ak,l,1 ≤ k ≤ n − i,0 ≤ l ≤ n with (X′

1, . . . ,X
′
n) := XM form a

system of local parameters of E
(i)
R

at z.

Proof Let us consider the morphism of smooth real varieties ψi : E
(i)
R

→
A

(n−i)×(n+1)
R

induced by the canonical projection from An
R

× A
(n−i)×(n+1)
R

× Pn−i
R

onto A
(n−i)×(n+1)
R

. From [8], Theorem 1 and Sard’s Theorem we deduce that there

exists a non-empty, open, semialgebraic subset O
(i)
C of A

(n−i)×(n+1)
R

such that any

a ∈ O
(i)
C is a regular value of the smooth mapping ψi and satisfies the condition (i)

of the theorem. Let us consider an arbitrary real ((n − i) × (n + 1)) matrix a of O(i)

and let x = (x1, . . . , xn) ∈ (WK(a))R and (λ : ω) ∈ Pn−i
R

with ω = (ω1, . . . ,ωn−i ) be

arbitrary points. Suppose that z := (x, a, (λ : ω)) belongs to E
(i)
R

. Without loss of
generality we may assume that λ = 1 holds. Let Li be the Jacobian of the polynomial
equation system

F(X) = 0,
∂F

∂Xl

(X) +
∑

1≤k≤n−i

(Ak,l − Ak,0Xl)Ωk = 0, 1 ≤ l ≤ n.
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An explicit description of the polynomial (n + 1) × (n + (n + 2)(n − i)) matrix Li

was given in the proof of Proposition 3.
The matrix Li at the point z takes the form

Li (z) :=
⎡
⎢⎢⎢⎢⎢⎣

∂F
∂X1

(x) · · · ∂F
∂Xn

(x) 0 · · · 0 0 · · · 0 · · · 0 · · · 0 0 · · · 0

ω1 · · · ωn−i 0 · · · 0 −x1ω1 · · · −x1ωn−i

∗ a(x)T 0
. . . 0 0

0 · · · 0 · · · ω1 · · · ωn−i −xnω1 · · · −xnωn−i

⎤
⎥⎥⎥⎥⎥⎦

.

Since a is a regular value of the smooth map ψi , we conclude that the indeterminates
Ak,l,1 ≤ k ≤ n − i,0 ≤ l ≤ n are local parameters of E

(i)
R

at z. This implies that the
((n + 1) × (2n − i)) matrix

N :=
[

∂F
∂X1

(x) · · · ∂F
∂Xn

(x)

∗
0 · · · 0

a(x)T

]

has maximal rank n+1. Since z belongs to E
(i)
R

, we have rka(x)T = rka(x) = n− i.
Therefore there are i + 1 columns among the first n columns of N which together
with the columns of the ((n + 1) × (n − i)) matrix

[
0 · · · 0

a(x)T

]

form a non-singular ((n + 1) × (n + 1)) matrix. This implies that there exist
n − i − 1, say X′

1, . . . ,X
′
n−i−1, from the indeterminates X1, . . . ,Xn which to-

gether with Ak,l,1 ≤ k ≤ n − i,0 ≤ l ≤ n form a set of local parameters of E
(i)
R

at z. Since by Proposition 3 we have dimE
(i)
R

= (n − i)(n + 2) − 1, we ob-

tain a complete system of local parameters of E
(i)
R

. Observe, finally, that there
exists a permutation matrix M ∈ Zn×n such that the first n − i − 1 entries of
XM are the indeterminates X′

1, . . . ,X
′
n−i−1. This finishes the proof of the theo-

rem. �

In the case i = n − 1, Theorem 8 implies the following result.

Corollary 9 Suppose that the hypersurface {F = 0} contains a regular real
point. Then there exists a non-empty, open, semialgebraic subset O of An+1

R

such that any point a = (a0, a1, . . . , an) of O satisfies the following two condi-
tions:
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(i) a0 �= 0, (a1, . . . , an) �= 0 and the (locally closed) subvariety Wa of An × A1 de-
fined by the system

F(X) = 0,

∂F

∂Xl

(X)Λ + al − a0Xl = 0,

1 ≤ l ≤ n,

∨
1≤l≤n

al − a0Xl �= 0,

(5)

is zero-dimensional and of cardinality #WK(a), the equations of (5) intersect
transversally at any point of Wa and the real trace (Wa)R of Wa is non-
empty.

(ii) For any (x,λ) ∈ (Wa)R the point z := (x, a, (λ : 1)) belongs to E
(n−1)
R

and

A0,A1, . . . ,An form a system of local parameters of E
(n−1)
R

at z.

Proof Since the hypersurface {F = 0} contains a regular real point, there exists a
generically regular connected component C of {F = 0}R. Apply Theorem 8 for the
case i := n − 1 to C and set O := O

(n−1)
C . Observing that a ∈ O implies WK(a)

generic and Wa
∼= WK(a), Corollary 9 follows easily from [4, 5], Lemma 7 and Propo-

sition 3. �

We comment on Corollary 9 from an algorithmic point of view.
Let A = (A0, . . . ,An) be a row vector of n + 1 new indeterminates A0, . . . ,An.
Suppose F ∈ Q[X] and that the hypersurface {F = 0} contains a regular real point.

Let 1 ≤ h ≤ n. From Proposition 3 we conclude that, outside of the locus given by

A0 · · ·An(Ah − A0Xh) = 0,

the polynomial equations

F(X) = 0,

∂F

∂Xl

(X)Λ + Al − A0Xl = 0,

1 ≤ l ≤ n,

(6)

intersect transversally at any of their common solutions. This implies that the poly-
nomial equations

F(X) = 0,

− ∂F

∂Xl

(Ah − A0Xh) + (Al − A0Xl)
∂F

∂Xh

(X) = 0,

1 ≤ l ≤ n, l �= h,

(7)
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intersect transversally in any of their solutions (x, a) ∈ An × An+1 not contained
in the locus A0 · · ·An(Ah − A0Xh) = 0. Therefore, the polynomials which consti-
tute the system (7) generate in Q[A,X]A0···An(Ah−A0Xh) the trivial ideal or form a
reduced regular sequence. Hence the ideal ah generated by these polynomials in
Q(A)[X](Ah−A0Xh) is trivial or a radical complete intersection ideal of dimension
zero.

The hypersurface {F = 0} contains by assumption a regular real point. Thus Corol-
lary 9 implies that there exists 1 ≤ h ≤ n such that ah is a radical complete intersec-
tion ideal of dimension zero which vanishes on a regular point with coordinates in a
suitable real closure K of the field Q(A). Without loss of generality, we may assume
that the variables X1, . . . ,Xn are in a general position with respect to the ideal ah

and that in particular the variable X1 separates the zeros of ah in K(i)n, where i is
an algebraic number with i2 + 1 = 0.

For the sake of simplicity we shall suppose 2 ≤ h ≤ n. Hence we conclude that
there exist polynomials �h ∈ Q[A] and Ph,G

(h)
2 , . . . ,G

(h)
n ∈ Q[A,X1] with �h �= 0,

degX1
Ph ≥ 1 and degX1

G
(h)
j < degX1

Ph,2 ≤ j ≤ n, such that Ph is primitive and
separable with respect to the variable X1 and such that

Ph, �hX2 − G
(h)
2 , . . . , �hXn − G(h)

n

generate the ideal ah in Q(A)[X]Ah−A0Xh
. We then say that the polynomials

Ph,G
(h)
2 , . . . ,G

(h)
n form a geometric solution over Q(A) of the equation system (7)

and the open condition Ah − A0Xh �= 0 in the variables X1, . . . ,Xn.
The polynomial Ph is uniquely determined by (7), and �h may be chosen as the

numerator of the discriminant of Ph with respect to the indeterminate X1. This choice
in turn determines G

(h)
2 , . . . ,G

(h)
n . From Corollary 9 we deduce that degX1

Ph is
bounded by the degree, say μ, of the (n − 1)th generic dual polar variety of {F = 0}.

Let Vh be the union of all irreducible components of the closed subvariety of
An ×An+1, defined by the polynomial equation system (7) in the unknowns X and A

that are not contained in the locus given by A0A1 · · ·An(Ah −A0Xh) = 0. From [52],
Theorem 1, we deduce that the total degree of the polynomials

�h,Ph,G
(h)
2 , . . . ,G(h)

n ∈ Q[A,X1]

is of order O(μdegVh).
Suppose that F is given by a division-free arithmetic circuit σ of size L in Q[X]

(thus F has rational coefficients). Let δ1 ≤ μ be the degree of the system (7) over
Q(A) outside of the locus given by Ah − A0Xh = 0 and δ := δ1μdegVh. Then we
have δ1 ≤ dn and degVh ≤ (d + 1)n and therefore δ = dO(n).

Then the polynomial �h ∈ Q[A] and the coefficients with respect to X1 of the
polynomials Ph,G

(h)
2 , . . . ,G

(h)
n have a representation by a division-free arithmetic

circuit σ ∗ in Q[A] of size L(nd)O(1)δ2. The circuit σ ∗ may be computed from the
input circuit σ in time L(nd)O(1)δ2 (see the original contributions [25, 27, 28, 36]
and the survey [20] for the notions of geometric solution, system degree and details
of the algorithm).
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Applying now real quantifier elimination to the formula

(∃X1)
(
Ph(A,X1) = 0 ∧ A0 · · ·An

(
Ah�h(A) − A0G

(h)
h (A,X1)

) �= 0 ∧ �h(A) �= 0
)

we obtain a quantifier-free formula Ψh(A) in the variables A0, . . . ,An over the ele-
mentary language of ordered fields. The formula Ψh(A) describes the image of the
semialgebraic set

{
(a, x1) ∈ An+1

R
× A1

R
|a = (a0, . . . , an),Ph(a, x1) = 0,

a0 · · ·an

(
ah�h(a) − a0G

(h)
h (a, x1)

) �= 0, �h(a) �= 0
}

under the canonical projection An+1
R

× A1
R

→ An+1
R

. Thus for a = (a0, . . . , an) ∈
An+1

R
the formula Ψh(a) is true if and only if there exists a point x = (x1, . . . , xn)

of An
R

such that (x, a) is a solution of the polynomial equation system (7) with
a0 · · ·an(ah − a0xh) �= 0. In its turn this implies that Ψh(a) is true if and only if
there exists a point (x,λ) of An

R
× A1

R
with x = (x1, . . . , xn) such that (x, a,λ) is a

solution of the polynomial equation system (5) with a0 · · ·an(ah −a0xh) �= 0, whence
(x, a, (λ : 1)) ∈ E

(n−1)
R

and x ∈ WK(a). From the choice of h we see that the semi-

algebraic subset of An+1
R

defined by the formula Ψh(A) has a non-empty interior,
which therefore contains “generic” rational points. Let a ∈ Qn+1 be such a point.
From the inputs a and σ we are now able to construct in time L(nd)O(1)δ2 a regular
real algebraic point x ∈ An

R
which belongs to the dual polar variety x ∈ WK(a). By

[8], Theorem 3 the point x has degree at most μ and belongs to {F = 0}R.
The crux with this kind of argumentation is the following:

Although we are able to compute in time L(nd)O(1)δ2 from the arithmetic circuit σ

an arithmetic–boolean circuit with = and > decision gates which represents a non-
empty open set Mh of points of An+1

R
that satisfy the formula Ψh, we are generally

not able to find efficiently sample points of Mh, neither rational nor algebraic ones.
An exception is made by certain well-determined singular curves, whose generic

dual polar varieties are never empty [45].
By the way, let us mention that the procedures we have in mind for the elimina-

tion of just one real existential quantifier are the most classical ones, which may be
adapted to the circuit representation of polynomials. There are no precise references
to the subject. For technical aspects see [21], Sect. B.

Fix now an index 1 ≤ i < n − 1 and suppose that we are able to find a “generic”
point a∗ ∈ Qn+1 such that Ψh(a

∗) holds. Then we may find a ((n − i − 1) × (n + 1))

matrix a∗∗ ∈ Q(n−i−1)×(n+1) such that the rational ((n − i) × (n + 1)) matrix a :=[
a∗
a∗∗

]
is generic. Hence WK(a) is a generic dual polar variety of {F = 0}. Observe that

WK(a) contains WK(a∗). Since the assertion Ψh(a
∗) holds, we conclude that WK(a∗)

contains a regular real point x. Because x is also contained in WK(a), the generic dual
polar variety WK(a) contains regular real points.

This leads to the problem of efficiently finding for a given consistent system of
strict inequalities of arithmetic-circuit represented polynomials of Q[X] a rational
(or algebraic) point x ∈ An

R
which satisfies all these inequalities. We call such a point

a rational (or algebraic) witness for the given system.
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In the next section we are going to design a procedure which decides, under the
assumption that {F = 0}R is compact, whether the hypersurface {F = 0} contains
a regular real point, and, if this is the case, returns such a point for each connected
component of {F = 0}R.

4 Bipolar Varieties

4.1 Definition and Basic Properties of Bipolar Varieties

In order to estimate the complexity of this procedure we shall now introduce the con-
cept of a bipolar variety of the equation F = 0 in different variants. The maximal
degree of all bipolar varieties of the equation F = 0 will then determine the run-
ning time of the procedure. Dual polar varieties represent a complex reflection of the
Lagrange multipliers. Therefore, their geometric meaning concerns more real than
complex algebraic varieties. Maybe this is the reason why they, motivated by the aim
to find real solutions of polynomial equation systems, were only recently introduced
in (complex) algebraic geometry.

The definition of the dual polar varieties associated with an equidimensional com-
plex algebraic variety S requires that S is represented as a subvariety of a projective
space Pn which is in turn equipped with a distinguished hyperplane H at infinity and
with a non-degenerate hyperquadric Q such that Q ∩ H is again non-degenerate.

Of particular interest is the case where S is a smooth subvariety of the affine
space An, suitably embedded in Pn. This leads to the concepts of an affine and a
real dual polar variety (see [4, 5] and [8] for details and motivations.)

The bipolar varieties of the equation F = 0 should be introduced as generic
dual polar varieties associated with the smooth incidence varieties Ei or H

(h)
i ,

1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i (if they are not empty), and should be defined in a
“natural” way, only depending on the polynomial F , such that their degree is relevant
for the complexity of the problem of finding regular real algebraic points belonging
to {F = 0}. We shall see that Ei is not suitable for this task, but that H

(h)
i furnishes

an appropriate notion of bipolar varieties.
Let us fix 1 ≤ i ≤ n − 1 and 1 ≤ h ≤ n − i and observe that arbitrary points

(x, a, (λ : ω)) ∈ Ei or (x, a, (λ : ϑ)) ∈ H
(h)
i satisfy the condition λ �= 0. Therefore,

in principle, we may suppose λ = 1 and consider Ei and H
(h)
i as subvarieties of the

respective affine spaces An × A(n−i)×(n+1) × An−i and An × A(n−i)×n × An−i .
However, these affine embeddings of Ei and H

(h)
i are rather irrelevant for our

algorithmic considerations, because we are looking for a description of x as a function
of a,λ and ω (or alternatively as a function of b,λ and ϑ ) and not for the opposite.

Consider now an arbitrary point (x, a, (λ : ω)) of Ei with ω = (ω1, . . . ,ωn−i ) ∈
An−i . Then we have a0 · ωT �= 0 and this implies ω �= 0. Therefore there exists an
index 1 ≤ h ≤ n − i with ωh �= 0. For any such h we obtain a different embedding of
the affine ambient space An × A(n−i)×(n+1) × An−i in P(n−i)(n+2)+n, and it remains
undetermined which embedding we should choose in order to define the bipolar vari-
eties of Ei . Different embeddings lead to completely incompatible generic dual polar
varieties that cannot be patched together.
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The situation looks different in the case of H
(h)
i . For any point (x, b, (λ : ϑ)) of

H
(h)
i with ϑ = (ϑ1, . . . , ϑn−i ) we have ϑh �= 0. Therefore, by setting ϑh := 1 we

obtain a canonic embedding of the ambient space An × A(n−i)×n × An−i into the
projective space P(n−i)(n+1)+n.

Let us be more precise. We associate with 1 ≤ h ≤ n − i the hyperplane at infinity

Lh := {Θh = 0} := {
(x : b : λ : ϑ) ∈ P(n−i)(n+1)+n |x ∈ An, b ∈ A(n−i)×n,

λ ∈ A1, ϑ ∈ An−i , ϑ = (ϑ1, . . . , ϑn−i ), ϑh = 0
}

and the hyperquadric Q defined by the equation

∑
1≤l≤n

X2
l +

∑
1≤k≤n−i

1≤l≤n

B2
k,l + Λ2 +

∑
1≤k≤n−i

Θ2
k = 0.

Then Q and Q ∩ Lh are non-degenerate and

(Q ∩ Lh) ∩ An
R

× A
(n−i)×n
R

× An−i
R

is positive-definite and induces in An
R

× A
(n−i)×n
R

× An−i
R

the Euclidean distance.
Similarly, we associate with 1 ≤ h ≤ n − i the hyperplane at infinity

L̃h := {Θh = 0}
:= {

(x : b : λ : ϑ) ∈ P2n |x ∈ An, b ∈ Ai , λ ∈ A1, ϑ ∈ An−i ,

ϑ = (ϑ1, . . . , ϑn−i ), ϑh = 0
}

and the hyperquadric Qh defined by the equation

∑
1≤l≤n

X2
l +

∑
n−i<l≤n

B∗
l

2 +
∑

1≤k≤n−i

Θ2
k = 0.

Again Qh and Qh ∩ L̃h are non-degenerate and

(
Qh ∩ L̃h

) ∩ An
R

× Ai
R

× An−i
R

is positive-definite and induces in An
R

× Ai
R

× An−i
R

the Euclidean distance.
This leads us to the following concept.

Definition 10 Let 1 ≤ i ≤ n − 1 and 1 ≤ h ≤ n − i and let γ be a non-zero real
number. The bipolar varieties B(i,h,j) and B(i,h,j ;γ ) are defined as follows:

For 1 ≤ j ≤ (n − i)(n + 1) − 1 let B(i,h,j) be a ((n − i)(n + 1) − j)th generic

dual polar variety of H
(h)
i and for 1 ≤ j ≤ n − 1 let B(i,h,j ;γ ) be a (n − j)th generic

dual polar variety of H
(h,γ )

i . We call B(i,h,j) the large bipolar variety of the equation
F = 0 associated with the indices i, h and j . For γ generic, we call B(i,h,j ;γ ) the
small bipolar variety of the equation F = 0 associated with the indices i, h and j .
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In the latter case we think of γ as given by the context and use as a shorthand

B̃(i,h,j) := B(i,h,j ;γ ).

This notation is justified because we are only interested in invariants like the dimen-
sion and the degree of our bipolar varieties, and these are independent of the particular
(generic) choice of γ and the linear projective varieties we used to define our objects.

The bipolar varieties B(i,h,j) and B(i,h,j ;γ ) are well-defined geometric objects,

although the varieties H
(h)
i and H

(h,γ )

i are not closed (compare the definition of the
notion of polar variety in Sect. 2, where we have taken care of this situation).

Let us fix again 1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i and a non-zero real number γ . In
the sense of [4, 5] we are now going to study different extrinsic descriptions of the
bipolar varieties B(i,h,j),1 ≤ j ≤ (n− i)(n+ 1)− 1 and B(i,h,j ;γ ),1 ≤ j ≤ n− 1, by
means of equations and inequalities.

Let

ν = (ν1, . . . , νj ), ζ = (ζ1, . . . , ζj ),

[ρr,l] 1≤r≤j
1≤l≤n

, [μr,k] 1≤r≤j
1≤k≤n−i

k �=h

, [βr;k,l] 1≤r≤j
1≤k≤n−i

1≤l≤n

be row vectors and matrices of generic real (or rational) numbers.
Further, let us write

Θ
(h)
1 := Θ1, . . . , Θ

(h)
h−1 := Θh−1, Θ

(h)
h := 1,

Θ
(h)
h+1 := Θh+1, . . . , Θ

(h)
n−i := Θn−i

and

Θ(h) := (
Θ

(h)
1 , . . . ,Θ

(h)
n−i

)
.

We consider now two polynomial matrices T(i,h,j) and T(i,h,j ;γ ).
The first one is the ((n + j + 1) × ((n − i)(n + 1) + n)) matrix

T(i,h,j) :=

⎡
⎢⎢⎢⎢⎢⎣

J (F ) 0 O1×(n−i−1)

∂(J (F )TΛ+B(X)TΘ(h)T )
∂(X1,...,Xn)

J (F )T [Bl,k] 1≤l≤n
1≤k≤n−i

k �=h

I

[ρr,l − νrXl] 1≤r≤j
1≤l≤n

ζT − ΛνT [μr,k − νrΘk] 1≤r≤j
1≤k≤n−i

k �=h

⎤
⎥⎥⎥⎥⎥⎦

,

where the index j has the range 1 ≤ j ≤ (n − i)(n + 1) − 1 and I represents the
((n + j + 1) × (n − i)n) submatrix

I :=
⎡
⎢⎣

O1×n O1×n · · · O1×n O1×n · · · O1×n

In Θ1In · · · Θh−1In Θh+1In · · · Θn−iIn

F(h) F(1) · · · F(h−1) F(h+1) · · · F(n−i)

⎤
⎥⎦
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with

F(k) := [βr;k,l − νrBk,l] 1≤r≤j
1≤l≤n

for 1 ≤ k ≤ n − i.

The second polynomial matrix T(i,h,j ;γ ) is the ((n + j + 1) × 2n) matrix

T(i,h,j ;γ ) :=
⎡
⎢⎢⎢⎢⎢⎣

J (F ) 0

C∂(J (F )TΛ+B
(h)
(h,γ )

(X)TΘ(h)T )

∂(X1,...,Xn)
J (F )T

[ρr,l − νrXl] 1≤r≤j
1≤l≤n

ζT − ΛνT [μr,k − νrΘk] 1≤r≤j
1≤k≤n−i

k �=h

[βr;h,l − νrB
∗
l
] 1≤r≤j

n−i<l≤n

⎤
⎥⎥⎥⎥⎥⎦

,

where 1 ≤ j ≤ n − 1. Here C denotes the ((n + 1) × n) submatrix

C :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 0 0 0 · · · 0
1 · · · 0 0 0 0 · · · 0

. . .
. . .

0 · · · 1 0 0 0 · · · 0
0 · · · 0 0 0 0 · · · 0
0 · · · 0 0 1 0 · · · 0
0 · · · 0 0 0 1 · · · 0

. . .
. . . 0

0 · · · 0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whose first and (h + 1)th rows consist only of zeros.
One deduces from Definition 10, Propositions 4 and 5 that a point (x, b, (λ : ϑ))

of H
(h)
i or H

(h,γ )

i with ϑh = 1 belongs to B(i,h,j) or B(i,h,j ;γ ) if and only if all (n +
j +1)-minors of T(i,h,j) or T(i,h,j ;γ ) vanish at (x, b,λ,ϑ(h)) in An ×A(n−i)n ×An−i ,
where ϑ(h) := (ϑ1, . . . , ϑh−1, ϑh+1, . . . , ϑn−i ).

Further, from [4, 5], Proposition 8 we conclude that the bipolar varieties B(i,h,j)

and B(i,h,j ;γ ) are of (local) dimension j − 1 at any point (x, b, (λ : ϑ)) of H
(h)
i ∩

B(i,h,j) and H
(h,γ )

i ∩ B(i,h,j ;γ ). Thus B(i,h,j) and B(i,h,j ;γ ) are empty or equidimen-
sional of dimension j − 1.

Moreover, from [8] we infer that these bipolar varieties are normal and Cohen–
Macaulay at any point of H

(h)
i or H

(h,γ )

i they contain.
In T(i,h,j) we fix any n+j columns which contain the columns corresponding to at

least one of the indeterminates X1, . . . ,Xn and to B∗
h,1, . . . ,B

∗
h,n. We characterize this

choice by a vector t ∈ Nn+j whose entries are the numbers of the selected columns.
We denote by

M
(i,h,j,t)

n+j+1 , M
(i,h,j,t)

n+j+2 , . . . , M
(i,h,j,t)

(n−i)(n+1)+n

the (n + j + 1)-minors of T(i,h,j) obtained by adding one by one to the selected
columns t each of the columns of T(i,h,j), and, for 1 ≤ s ≤ j , we denote by m(i,h,j,t,s)
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the (n + j)-minor of T(i,h,j) corresponding to the selected columns t and all rows
except the row numbered n + s + 1.

Proposition 11 Let D(i,h,j,t,s) be the closed subvariety of T
(h)
i defined by the condi-

tion

rkB < n − i or rkB(h)(X) < n − i or m(i,h,j,t,s) = 0.

Then the polynomial equations of the system

F(X) = 0,
∂F

∂Xl

(X)Λ + Bh,l − Xl +
∑

1≤k≤n−i
k �=h

Bk,lΘk = 0, 1 ≤ l ≤ n,

M
(i,h,j,t)

n+j+1 = 0, . . . , M
(i,h,j,t)

(n−i)(n+1)+n = 0

intersect transversally at any of their common solutions in T
(h)
i \ D(i,h,j,t,s). They

define B(i,h,j) \ D(i,h,j,t,s) in T
(h)
i \ D(i,h,j,t,s).

Proof Obvious by Proposition 4, and Propositions 6 and 8 of [4, 5]. �

Observe that, for i, h fixed, the bipolar varieties are ordered by inclusion as fol-
lows:

H
(h)
i � B(i,h,(n−i)(n+1)−1) ⊃ · · · ⊃ B(i,h,1)

(where H
(h)
i denotes the Zariski closure of H

(h)
i ). The variety B(i,h,1) is empty or

zero-dimensional. If B(i,h,1) is non-empty the chain is strictly decreasing.
Let us fix again 1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i and a non-zero real number γ . From

Proposition 5 we deduce that for Θh = 1 the equations of the system (4) generate
in Q[X,Λ,B∗

n−i+1, . . . ,B
∗
n,Θ(h)]Xh−γ the vanishing ideal of H

(h,γ )

i (interpreted as
affine subvariety of An ×Ai ×A(n−i)). Therefore, all (n+ j + 1)-minors of T(i,h,j ;γ )

vanish at a point (x, b, (λ : ϑ)) of H
(h,γ )

i with ϑ = (ϑ1, . . . , ϑn−i ) and ϑh = 1 if
and only if (x, b, (λ : ϑ))belongs to the affine variety (B(i,h,j ;γ ))Xh−γ , consisting of
the elements of (B(i,h,j ;γ )) which satisfy the condition Xh − γ �= 0. In other words,

(B(i,h,j ;γ ))Xh−γ is the locus of H
(h,γ )

i , where all (n + j + 1)-minors of T(i,h,j ;γ )

vanish.
In T(i,h,j ;γ ) we fix any n + j columns which contain the columns corresponding

to the indeterminate Xh, to the entries of Θ(h) and to B∗
l , n − i < l ≤ n. As before let

us characterize this selection by a vector t ∈ Nn+j . We denote by

M
(i,h,j,t;γ )

n+j+1 , M
(i,h,j,t;γ )

n+j+2 , . . . , M
(i,h,j,t;γ )

2n

the n+j +1-minors obtained by adding one by one to the selected columns each col-
umn of T(i,h,j ;γ ), and, for 1 ≤ s ≤ j , we denote by m(i,h,j,t,s;γ ) the (n + j)-minor of
T(i,h,j ;γ ) corresponding to selected columns t and all rows, except the row numbered
n + s + 1.
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Proposition 12 The sequence of polynomials

F(X),
∂F

∂Xh

(X)Λ + γ − Xh,
∂F

∂Xl

(X)Λ − Xl + Θl, 1 ≤ l ≤ n − i, l �= h,

∂F

∂Xl

(X)Λ + B∗
l − Xl, n − i < l ≤ n, M

(i,h,j,t;γ )

n+j+1 , . . . , M
(i,h,j,t;γ )

2n

(8)

generates in

R := Q
[
X,Λ,B∗

n−i+1, . . . ,B
∗
n,Θ(h)

]
m(i,h,j,t,s;γ )(Xh−γ )

the trivial ideal or forms a reduced regular sequence. The sequence defines in R the
affine variety (B(i,h,j ;γ ))m(i,h,j,t,s;γ )(Xh−γ ) and their entries intersect transversally at
any point of (B(i,h,j ;γ ))m(i,h,j,t,s;γ )(Xh−γ ).

Proof Obvious from Proposition 5, and Propositions 6 and 8 of [4, 5]. �

Similarly as above, notice that, for i, h, γ fixed, the bipolar varieties B(i,h,j ;γ ) are
ordered by inclusion as follows:

H
(h,γ )

i � B(i,h,n−1;γ ) ⊃ · · · ⊃ B(i,h,1;γ ).

The variety B(i,h,1;γ ) is empty or zero-dimensional. If B(i,h,1;γ ) is non-empty, then
the chain strictly decreases.

Observation 13 Let the notation be as in Propositions 11 and 12 and let j ≥ 2. The
loci of B(i,h,j) ∩ H

(h)
i and (B(i,h,j ;γ ))Xh−γ ∩ H

(h,γ )

i , where, for suitable t ∈ Nn+j

and 1 ≤ s ≤ j , all minors of the form m(i,h,j,t,s) and m(i,h,j,t,s;γ ) vanish, coincide

with B(i,h,j−1) ∩H
(h)
i and Bi,h,j−1;γ ∩H

(h,γ )

i and are empty or of pure codimension

one. Moreover, for each point z of B(i,h,1) ∩ H
(h)
i and B(i,h,1;γ ) ∩ H

(h,γ )

i there exist
minors of the form m(i,h,1,t,1) and m(i,h,1,t,1;γ ), t ∈ Nn+1, respectively, which do not
vanish at z.

Proof Obvious by [8], Lemma 2. �

4.2 Degrees of Bipolar Varieties

We denote by degB(i,h,j), deg B(i,h,j ;γ ) and deg B̃(i,h,j) the geometric degrees of the
respective bipolar varieties in their respective affine ambient spaces (see [31] for a
definition and properties of the geometric degree of a subvariety of an affine space).

From Lemma 1 and [8], Theorem 13 we deduce that for 1 ≤ j ≤ n − 1

deg B(i,h,j ;γ ) ≤ deg B̃(i,h,j) ≤ deg B(i,h,(n−i)n−i+j) (9)

holds.
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Suppose that {F = 0}R is compact and contains a regular point. Then Obser-
vation 6, Proposition 5, Lemma 1 and [8], Corollary 1 imply that (B̃(i,h,j))R and
(B(i,h,j))R are non-empty. This implies 1 ≤ deg B̃(i,h,1) ≤ degB(i,h,(n−i)(n+1)−i+1).

For d ≥ 2 and 1 ≤ j ≤ (n − i)(n + 1) − 1 we infer from the Bézout inequality
[22, 31, 62] the following extrinsic bounds for these degrees (see [5] for details):

degB(i,h,j) ≤ dn+1(nd + j)(n−i)(n+1)−j = (nd)O((n−i)n) (10)

whence, in particular,

degB(n−1,h,j) ≤ (nd2 + dj)n+1

(nd + j)j
≤ (

nd(d + 1)
)n+1 = (nd)O(n). (11)

Similarly we have for 1 ≤ j ≤ n − 1

deg B(i,h,j ;γ ) ≤ deg B̃(i,h,j) ≤ dn+1(nd + j)(n−j) ≤ d
(
nd(d + 1)

)n = (nd)O(n).

(12)
In view of the subsequent algorithmic considerations we notice that the estimates

(11) and (12) of the degree are of order (nd)O(n).
We now fix only 1 ≤ i ≤ n − 1, 1 ≤ k ≤ n − i and a non-zero real number γ .
For 1 ≤ l ≤ n we are going to consider the following closed subvarieties of the

affine ambient spaces Ti
(h) and Ni

(h), which we denote by Sl
(i,h) and Sl

(i,h;γ ).
Let Sl

(i,h) be the Zariski closure of the locally closed subset of Ni
(h) defined by

the conditions

F(X) = 0,
∂F

∂Xt ′
(X)Λ + (Bh,t ′ − Xt ′)Θh +

∑
1≤k≤n−i

k �=h

Bk,t ′Θk = 0, 1 ≤ t ′ ≤ l,

rkB = rkB(h)(X) = n − i and J (F ) �= 0

and let Sl
(i,h;γ ) be the Zariski closure of the locally closed subset of Ni

(h) defined by
the conditions

F(X) = 0,

∂F

∂Xh

(X)Λ + (γ − Xh)Θh = 0,

∂F

∂Xt ′
(X)Λ − Xt ′Θh + Θt ′ = 0,

1 ≤ t ′ ≤ min{l, n − i}, t ′ �= h,

∂F

∂Xt ′
(X)Λ + (

B∗
t ′ − Xt ′

)
Θh = 0,

n − i < t ′ ≤ l,

Xh − γ �= 0.

Observe that the particular structure of the Jacobian of the system (3) implies that the
polynomials of the equations defining S

(i,h)
l form outside of the closed locus given by
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the conditions rkB < n − i, rkB(X) < n − i or J (F ) = 0 locally a reduced regular
sequence. The same is true for the polynomials of the equations defining S

(i,h;γ )

l

outside of the locus Xh − γ = 0. In particular, this implies that the polynomials of
the systems (3) and (4) form outside of these closed loci locally strongly reduced
regular sequences.

From the Bézout Inequality we deduce the estimates

degSl
(i,h) ≤ dl+1 (13)

and

degSl
(i,h;γ ) ≤ dl+1. (14)

We associate now with i, h, γ and the real interpretation of the polynomial equation
F = 0 the following discrete parameters:

δ(i,h) := max
{{

degS
(i,h)
l |1 ≤ l ≤ n

}
,max

{
degB(i,h,(n−i)n−i+j) |1 ≤ j ≤ n − 1

}}

and

δ(i,h;γ ) := max
{{

degS
(i,h;γ )

l |1 ≤ l ≤ n
}
,max

{
deg (B(i,h,j ;γ ))Xh−γ |1 ≤ j ≤ n−1

}}
.

For generically chosen γ we write

δ̃(i,h) := δ(i,h;γ ).

We observe that the parameter max{degB(i,h,j)|1 ≤ j ≤ (n − i)(n + 1) − 1} re-
mains invariant under linear transformations of the coordinates X1, . . . ,Xn by unitary
complex (n×n) matrices, whereas the parameter max{deg (B(i,h,j ;γ ))Xh−γ |1 ≤ j ≤
n − 1} is coordinate-dependent even for such special linear transformations. There-
fore, we call δ(i,h) the unitary-independent degree of the real interpretation of the
equation F = 0 associated with i and h. In the same vein we call δ(i,h;γ ) and δ̃(i,h)

the unitary-dependent degrees of the real interpretation of F = 0 associated with i,
h, γ and with i, h, respectively.

In the light of the geometric underpinning of the notion of dual polar varieties
exposed in [4, 5], Sect. 2, the limitation to unitary complex matrices makes sense.
The definition of dual polar varieties in intrinsic terms requires as ingredients a non-
degenerate hyperquadric and a hyperplane at infinity in the corresponding projective
ambient space such that the restriction of the given hyperquadric to the hyperplane at
infinity remains non-degenerate. If the chosen hyperquadric represents in the associ-
ated real affine space the Euclidean norm, then only unitary matrices leave the given
geometric situation invariant. For details we refer to [4, 5], Sects. 2 and 3.1. Taking
into account the estimates (13) and (9) we conclude that

δ(i,h;γ ) ≤ δ̃(i,h) ≤ δ(i,h) (15)

and that

δ(i,h) = (nd)O(n) (16)
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holds. This implies

δ(i,h;γ ) = (nd)O(n) (17)

and

δ̃(i,h) = (nd)O(n). (18)

4.3 The Real Root Finding Problem for F

We finish Sect. 4 with the design of a discrete family of efficient, non-uniform de-
terministic (or alternatively uniform probabilistic) procedures Π(i,h), 1 ≤ i ≤ n − 1,
1 ≤ h ≤ n − i, which satisfy the following specification. Let Z be a new indetermi-
nate.

Input: An essentially division-free arithmetic circuit σ in Q[X] of size L and non-
scalar depth � having a single output node.

Input Specification: The circuit σ represents a polynomial F ∈ Q[X] of positive de-
gree d and logarithmic height at most η. The semialgebraic set {F = 0}R is com-
pact and the indeterminates X1, . . . ,Xn are in general position with respect to the
complex hypersurface {F = 0}.

Output: The procedure Π(i,h) accepts the input σ if {F = 0} contains a real reg-
ular point. If this is the case, the procedure returns a circuit representation
of the coefficients of n + 1 polynomials P,G1, . . . ,Gn ∈ Q[Z] satisfying for
G := (G1, . . . ,Gn) the following output specification:

– P is monic and separable.
– degG < degP ≤ deg B̃(i,h,1) ≤ δ(i,h) with degG := max{degG1, . . . ,degGn}.
– The zero-dimensional complex affine variety, {G(z) | z ∈ A1,P (z) = 0} con-

tains a smooth, real algebraic sample point of each generically smooth con-
nected component of {F = 0}R. In order to represent these sample points, an
encoding “à la Thom” of the real zeros of the polynomial P is returned (see
e.g. [16] for this kind of encoding).

We say that Π(i,h) solves the real root finding problem for F . We fix now 1 ≤ i ≤
n − 1 and 1 ≤ h ≤ n − i.

Design of the Procedure Π(i,h) Let σ be an essentially division-free circuit in Q[X]
of size L having a single output node which represents a polynomial F ∈ Q[X] sat-
isfying the input specification of the procedure Π(i,h). Let d be the (positive) degree
of F and η its logarithmic height. We consider the function

‖·‖ : {F = 0}R → R

induced by the Euclidean norm on Rn. Observe that ‖·‖ is continuous and semi-
algebraic. Since by assumption {F = 0}R is compact, the function ‖·‖ is bounded
by a positive constant, say K , which we suppose to be minimal with respect to this
property. From the effective Lojasiewicz Inequality (see [56], Theorem 3) we deduce
that there exists a universal constant c > 0 (not depending on L,�, d,n or η) which
satisfies the condition log(max{1,K}) ≤ ηdcn2

.
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Let us choose a positive integer γ with logγ > ηdcn2
which is representable by a

division-free arithmetic circuit in Z of size and non-scalar depth O(logη + n2 logd)

and observe that γ > K holds.
Therefore, any real point x = (x1, . . . , xn) of the hypersurface {F = 0} satisfies

the condition xh − γ �= 0. Since by assumption the indeterminates X1, . . . ,Xn are in
general position with respect to {F = 0}, we may suppose without loss of generality
that any generically regular connected component of {F = 0}R contains also a point
x with ∂F

∂Xh
(x) �= 0.

From Proposition 5 and the choice of γ we deduce that the (polynomial) equations
of the system

F(X) = 0,

∂F

∂Xh

(X)Λ + γ − Xh = 0,

∂F

∂Xl

(X)Λ − Xl + Θl = 0,

1 ≤ l ≤ n − i, l �= h,

∂F

∂Xl

(X)Λ + B∗
l − Xl = 0,

n − i < l ≤ n,

(19)

intersect transversally at each of their real solutions. Moreover, the polynomials
of (19) generate the trivial ideal or form a strongly reduced regular sequence in
Q[X,B∗

n−i+1, . . . ,B
∗
n,Λ,Θ∗]Xn−γ (see Sect. 4.2).

Denote by V := S
(i,h;γ )
n the locally closed algebraic subvariety of An ×Ai ×An−i

consisting of the common (complex) solutions of the polynomial equation system
(19) which satisfy the condition Xh − γ �= 0 and let VR := V ∩ (An

R
× Ai

R
× An−i

R
)

be the real trace of V . Our choice of γ implies that VR consists of all real solutions of
(19) and is therefore closed. Moreover, from our assumptions and Proposition 5 we
deduce that V and VR are empty or smooth of dimension n−1, and that the real vari-
ety VR is non-empty if and only if {F = 0}R contains a smooth point. More precisely,
for any generically smooth connected component C of {F = 0}R there exists a point
(x, b,λ,ϑ) of VR with x ∈ C, ∂F

∂Xh
(x) �= 0 and (b,λ,ϑ) ∈ Ai

R
× An−i

R
. Therefore,

a set of algebraic sample points for the connected components of VR gives rise to a
set of algebraic sample points for the generically smooth connected components of
{F = 0}R.

Suppose now that the hypersurface {F = 0} contains a smooth real point. Then the
real variety VR is smooth and equidimensional of dimension n−1. For 1 ≤ j ≤ n−1
we deduce from [5], Proposition 2 that the real bipolar variety (B(i,h,j ;γ ))R (and
hence the complex variety (B(i,h,j ;γ ))Xh−γ contains at least one point of each con-
nected component of VR. Therefore, (B(i,h,j ;γ ))Xh−γ and (B(i,h,j ;γ ))R are equidi-
mensional of dimension j −1. From Proposition 12 and Observation 13 we conclude
that for 2 ≤ j ≤ n − 1 the algebraic variety (B(i,h,j ;γ ))Xh−γ \ (B(i,h,j−1;γ ))Xh−γ is
locally definable by reduced regular sequences.
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In the same way one sees that the complex variety (B(i,h,1;γ ))Xh−γ is zero-
dimensional and contains for each connected component of VR an algebraic sample
point.

The algorithm Π(i,h) proceeds now by deciding whether (B(i,h,1;γ ))Xh−γ contains
real algebraic points, and, if this is the case, by computing them. The algorithm infers
from these data whether the hypersurface {F = 0}R contains smooth points. If the
answer is positive, the data furnish also a finite set of smooth real algebraic sample
points for the generically smooth connected components of {F = 0}R.

At the beginning, the procedure Π(i,h) transforms the input circuit σ and the
chosen encoding of γ into an essentially division-free arithmetic circuit σ1 in
Q[X,B∗

n−i+1, . . . ,B
∗
n,Λ,Θ(h)] of size O(L+n2 logd + logη) and non-scalar depth

O(�+n2 logd + logη) such that σ1 represents the equation system (19) and the poly-
nomial Xn − γ . Taking the circuit σ1 as input, the procedure Π(i,h) now follows the
pattern of the (non-uniform deterministic or probabilistic) procedure described in the
proofs of [5], Theorem 11 and [4], Theorem 13 in order to decide whether VR is
empty.

If VR is empty, then the procedure Π(i,h) returns the answer that the hypersurface
{F = 0} does not contain any smooth real point.

If VR is non-empty, the procedure Π(i,h) produces a circuit representation of the
coefficients of 2n + 1 polynomials P,G1, . . . ,Gn,Gn+1, . . . ,G2n ∈ Q[Z] satisfying
for G̃ := (G1, . . . ,G2n) the following output specification:

– P is monic and separable.
– deg G̃ < degP ≤ deg(B(i,h,1;γ ))Xh−γ ≤ deg B(i,h,1;γ ).
– (B(i,h,1;γ ))(Xn−γ ) = {G̃(z)|z ∈ A1,P (z) = 0}.
From this representation of the variety (B(i,h,1;γ ))(Xn−γ ) we deduce that for G :=
(G1, . . . ,Gn) the zero-dimensional variety {G(z) | z ∈ A1,P (z) = 0} contains a
smooth real algebraic sample point for each generically smooth connected compo-
nent of {F = 0}R. Finally, one obtains a set of real algebraic sample points for the
generically smooth connected components of {F = 0}R from G and the Thom en-
coding of the real zeros of P . If P has no real zeros, the procedure Π(i,h) returns the
information that {F = 0}R does not contain any smooth point.

The procedure from [4] and [5], called by Π(i,h), is based on the original paradigm
[25, 27] of a procedure with intrinsic complexity that solves polynomial equation
systems over the complex numbers (see also [20, 24, 28]).

We are now going to describe succinctly how this procedure is applied to the task
of real root finding (Proposition 12 and Observation 13 will here play a key role).

For this purpose we shall freely refer to terminology, mathematical results and sub-
routines of [28], where the first streamlined version of this procedure was presented
and implemented as the “Kronecker algorithm” (compare also [36]).

In order to simplify the exposition we shall refrain from the presentation of details
which ensure only appropriate genericity conditions for the procedure. The following
description requires the reader to be acquainted with the details of the Kronecker al-
gorithm. Although this description may look at first glance intricate, no substantially
new idea, nor one that has not been explained before, is introduced. Recall that the
polynomials of (19) generate the trivial ideal or form a strongly reduced regular se-
quence in Q[X,B∗

n−i+1, . . . ,B
∗
n,Λ,Θ(h)]Xh−γ . In this situation the procedure Π(i,h)
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applies to the system (19) the algorithm “Geometric Solve” of [28] to decide whether
V is empty. If V is empty, the information that {F = 0}R does not contain any regular
point is returned. Suppose that this is not the case. Then the algorithm “Geometric
Solve” returns a lifting fiber of the variety V .

Next, beginning with j := n − 1, the procedure Π(i,h) decides for any index 1 ≤
j ≤ n − 1 whether the variety B(i,h,j ;γ ) is empty or returns a lifting fiber of it. In
case that there exists an index 1 ≤ j ≤ n − 1 with B(i,h,j ;γ ) = ∅, the procedure Π(i,h)

returns the information that {F = 0}R does not contain any regular point. Suppose
that this is not the case.

For 1 ≤ j ≤ n − 1 we fix a vector of column numbers t (j) ∈ Nn+j of T(i,h,j ;γ )

corresponding to the indeterminate Xh, to the entries of Θ(h), to B∗
l , n − i < l ≤ n

and to j other columns of T(i,h,j ;γ ).
We claim that m(i,h,j,t(j),1;γ ) does not vanish identically on any irreducible com-

ponent of B(i,h,j ;γ ).
Let M be the ((n+ 1)× (n+ 1)) submatrix of the Jacobian of the equation system

(19) which corresponds to the indeterminate Xh, to the entries of Θ(h) and to B∗
l , n−

i < l ≤ n (thus we have detM = m(i,h,j,t(1),1;γ )).
Observe that detM vanishes nowhere on V . Let 1 ≤ j ≤ n − 1. The matrix which

gives rise to m(i,h,j,t(j),1;γ ) contains M as submatrix. From the genericity of the rows
number n+2, . . . , n+j of this matrix and the determinant structure of m(i,h,j,t(j),1;γ )

one easily deduces that the hypersurface of An × Ai × An−i defined by the equation
m(i,h,j,t(j),1;γ ) = 0 cuts V properly. Let W be the resulting intersection and let t ∈
Nn+j be a suitable vector. In a similar way as before we see that the hypersurfaces of
An × Ai × An−i defined by

M
(i,h,j,t;γ )

n+j+1 = 0, . . . , M
(i,h,j,t;γ )

2n = 0 (20)

cut Wm(i,h,j,t,1;γ )
properly. Thus the hypersurfaces of An × Ai × An−i defined by (20)

and m(i,h,j,t(j),1;γ ) = 0 cut V properly outside of the locus given by m(i,h,j,t,1;γ ) = 0

(compare [8], Sect. 3 for this kind of argumentation).
Let C be an irreducible component of B(i,h,j ;γ ). From [5], Proposition 8 we de-

duce that there exists a suitable vector t ∈ Nn+j such that the minor m(i,h,j,t,1;γ ) does
not vanish identically on C. Outside of the locus of An × Ai × An−i defined by this
minor, the irreducible component C is the intersection of V with the variety given by
the system (20). Since the codimension of C in V is n − j , our claim follows.

From Proposition 12 we deduce that the system

F(X) = 0,
∂F

∂Xh

(X)Λ + γ − Xh = 0,

∂F

∂Xl

(X)Λ − Xl + Θl = 0, 1 ≤ l ≤ n − i, l �= h,

∂F

∂Xl

(X)Λ + B∗
l − Xl = 0, n − i < l ≤ n, (21)

M
(i,h,j,t(j);γ )

n+j+1 = 0, . . . , M
(i,h,j,t(j);γ )

2n = 0,

m(i,h,j,t(j),1;γ )(Xh − γ ) �= 0
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defines the variety

(B(i,h,j ;γ ))m
(i,h,j,t(j),1;γ )

(Xn−γ ).

The assumption B(i,h,j ;γ ) �= ∅ implies that this variety is not empty. Therefore the
polynomials of the equations of the system (21) form a reduced regular sequence in

Q
[
X,Λ,B∗

n−i+1, . . . ,B
∗
n,Θ(h)

]
m

(i,h,j,t(j),1;γ )
(Xh−γ )

and hence a lifting system in the sense of [28] for the variety B(i,h,j ;γ ). Inductively we
suppose that there is given a lifting fiber of B(i,h,j ;γ ) on which m(i,h,j,t(j),1;γ )(Xh−γ )

nowhere vanishes.
In this situation Π(i,h) combines the algorithms “Lifting Curve”, “Change Free

Variables”, “Change Lifting Point” and “Change Primitive Element” of [28] in
order to produce a Kronecker parameterization of a suitable curve C(i,h,j ;γ ) in
(B(i,h,j ;γ ))m

(i,h,j,t(j),1;γ )
(Xh−γ ) which lifts the fiber of a sufficiently generic lifting

point with respect to the lifting system (21) and a sufficiently generic Noether po-
sition of B(i,h,j ;γ ).

Next the procedure Π(i,h) applies for n + j ≤ k ≤ 2n the algorithm “One Dimen-
sional Intersect” of [28] to the given Kronecker parameterization of C(i,h,j ;γ ) and the

polynomials M
(i,h,j−1,t (j−1);γ )

k and m(i,h,j−1,t (j−1),1;γ )(Xh − γ ) and computes the
greatest common divisor of the resulting univariate elimination polynomials. This
greatest common divisor is not one, since by assumption the variety B(i,h,j−1;γ )

is not empty. In this way Π(i,h) produces a lifting fiber of B(i,h,j−1;γ ) on which
m(i,h,j−1,t (j−1),1;γ ) vanishes nowhere.

At the end Π(i,h) produces a geometric solution of the zero-dimensional algebraic
variety B(i,h,1;γ ). More precisely, the procedure Π(i,h) produces a circuit representa-
tion of the coefficients of 2n + 1 polynomials P,G1, . . . ,G2n ∈ Q[Z] as above.

From the complexity estimates of [28] we deduce that Π(i,h) runs using

(L + logη)(nd)O(1)
(
max

{
max

{
degS

(i,h;γ )

l |1 ≤ l ≤ n
}
,

max
{
deg B(i,h,j,t;γ ) |1 ≤ j ≤ n − 1

}})2

= (L + logη)(nd)O(1)(δ(i,h;γ ))
2

arithmetical operations, organized with respect to the parameters of the arithmetic
circuit σ , in non-scalar depth

O
(
n3(� + log(dnη)

)
log δ(i,h;γ )

)
.

The procedure can easily be translated to the bit model. In order to estimate its bit
complexity we consider the logarithmic height, say κ(i,h;γ ) = O((nd)nη), of the
bipolar variety B(i,h,1,γ ). It is now straightforward to see that a representation of
P as primitive polynomial of Z[Z] and hence a minimal arithmetic expression of the
real zeros of P can be found using O(L2(ndη)O(1)(δ(i,h;γ )κ(i,h;γ ))

2) bit operations
(see [30] for the relationship between arithmetic and bit representation of integers).
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An alternative procedure to Π(i,h) may be obtained applying for j := 1 the algo-
rithm “Geometric Solve” of [28] to the system (8). The complexity estimates for this
procedure, which are the same as for Π(i,h), follow from arguments in [8], Sect. 4
and especially from Theorem 3 and Example 2.

We have therefore proven the following complexity statement (compare [4], The-
orem 11 and [5], Theorem 13).

Theorem 14 Let n,d, η, i, h, δ,L, � be natural numbers with d ≥ 1,1 ≤ i ≤ n − 1
and 1 ≤ h ≤ n − i. Let X1, . . . ,Xn and Z be indeterminates over Q and let X :=
(X1, . . . ,Xn). There exists an arithmetic network N (or arithmetic–boolean circuit)
over Q, depending on certain parameters and having size

O
(
(L + logη)(nd)O(1)δ2) = (nd)O(n) logη

and non-scalar depth

O
(
n3(� + log(ndη)

)
log δ

) = O
(
n4 log(dnη) logd

)
,

such that N satisfies for suitable specializations of its parameters the following con-
dition: Let F ∈ Q[X] be a polynomial of degree d and (logarithmic) height η and
assume that F is given by an essentially division-free arithmetic circuit σ in Q[X]
of size L and non-scalar depth �. Suppose that {F = 0}R is compact, that the vari-
ables X1, . . . ,Xn are in general position with respect to the complex hypersurface
{F = 0}, and that the unitary-dependent generic degree of the real interpretation of
F = 0 associated with i and h is bounded by δ (in symbols: δ̃(i,h) ≤ δ). Then the
algorithm represented by the arithmetic network N starts from the circuit σ as input
and decides whether the hypersurface {F = 0} contains a smooth real point. If this is
the case, the algorithm produces a circuit representation of the coefficients of n + 1
polynomials P,G1, . . . ,Gn ∈ Q[Z] satisfying for G := (G1, . . . ,Gn) the following
output specification:

– P is monic and separable.
– degG < degP ≤ δ.
– The complex affine variety {G(z) | z ∈ A1,P (z) = 0} is zero-dimensional and con-

tains a smooth real algebraic sample point for each generically smooth connected
component of {F = 0}R.

In order to represent these sample points the algorithm returns an encoding “à la
Thom” of the real zeros of the polynomial P .

For the terminology of arithmetic network and boolean–arithmetic circuit we refer
to [63, 64].

Four remarks on the formulation of Theorem 14 are in order.

– If we limit our attention to arithmetic input circuits σ in Z[X] which depend only
on the parameters 0,1, then we may replace in the statement of Theorem 14 the
quantity logη by �.
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– The upper bound O(n3(� + log(ndη)) log δ) for the non-scalar depth of the arith-
metical network N is far from being optimal, because it depends on the factor n3.
Only a single factor n is justified by our recursive method, whereas the coarse es-
timate in the effective Lojasiewicz Inequality [56] contributes with an extra factor
of n2. In any case, it would be desirable, but maybe difficult to achieve, to have an
upper bound of O(n(� + log(ndη)) log δ) for the non-scalar depth of N .

We state the third remark in the following way:

Observation 15 The statement of Theorem 14 remains true if we drop the hypothesis
that the indeterminates X1, . . . ,Xn are in a general position with respect to the com-
plex hypersurface {F = 0} and if we assume that the condition δ(i,h) ≤ δ is satisfied.
This is always the case for δ = (nd)O(n).

Proof In the design of the procedure Π(i,h) the genericity assumption on the vari-
ables was only used in order to guarantee that the partial derivative ∂F

∂Xh
does not

vanish identically on any generically regular connected component of {F = 0}R. It is
easy to see that this can be achieved by an orthogonal matrix M ∈ An×n

R
which trans-

forms X = (X1, . . . ,Xn) into Y = (Y1, . . . , Yn) := XM . Let us denote by δ̃(i,h)(Y )

and δ(i,h)(Y ) the unitary-dependent and unitary-independent degrees, respectively, of
the real interpretation of the equation F(YMT) = 0, which are associated with the in-
dices 1 ≤ i ≤ n−1 and 1 ≤ h ≤ n− i. Then Theorem 14 may be applied to F(YMT).
From (15) we deduce the estimate δ̃(i,h)(Y ) ≤ δ(i,h)(Y ). Since the degree δ(i,h) is
unitary-independent, we have δ(i,h)(Y ) = δ(i,h), where δ(i,h) is defined with respect to
the original variables X1, . . . ,Xn. According to (16) we have δ(i,h) = (nd)O(n). This
implies the statement of Observation 15. �

The fourth remark is the following statement.

Observation 16 Theorem 14 asserts only the existence of a computation that, for a
given n-variate input polynomial F of degree d , logarithmic height η and circuit size
and non-scalar depth L and �, with variables in general position and {F = 0}R com-
pact, solves the real root finding problem for F in sequential and non-scalar parallel
time O((L + logη)(nd)O(1)δ̃2

(i,h)) and O(n3(� + log(ndη)) log δ̃(i,h)), respectively,

where δ̃(i,h) denotes the unitary-dependent generic degree of the real interpretation
of the equation F = 0 associated with 1 ≤ i ≤ n − 1 and 1 ≤ h ≤ n − i.

Theorem 14 therefore refers to the non-uniform complexity model. In order to re-
alize such a computation in terms of the uniform complexity model within the same
order of sequential and parallel time, probabilistic methods have to be used (see [36]
and [28]). This is achieved by choosing randomly the parameters of the arithmetic
network N of Theorem 14. The same remark applies mutatis mutandis to Observa-
tion 15.

Let us finally comment that the algorithm Π(i,h) can be reinterpreted as the fol-
lowing simple minded procedure, inspired by the well-known trick of Rabinowitsch.
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Let F ∈ Q[X] be a polynomial satisfying the input specification of the procedure
Π(i,h) and let γ be an integer such that any real point x = (x1, . . . , xn) of the hy-
persurface {F = 0} satisfies the condition xh �= γ . Since {F = 0}R is by assumption
compact, such an integer γ exists (recall the beginning of the design of the procedure
Π(i,h)).

Consider now the polynomial equation system

F(X) = 0,

∂F

∂Xh

(X)Λ + γ − Xh = 0
(22)

and observe that it admits only smooth solutions in An × A1 and that its equations
generate in R[X,Λ] the trivial or a radical complete intersection ideal. Moreover,
observe that the connected components of the real solutions of (22) correspond to the
generically regular connected components of {F = 0}R.

By means of the already mentioned algorithm of [4], Theorem 11 and [5], Theo-
rem 13 we may find for each connected component of

{
(x,λ) ∈ Rn × R |F(x) = 0,

∂F

∂Xh

(x)λ + γ − xh = 0

}

a real algebraic sample point and therefore also for each generically regular connected
component of {F = 0}R.

For given 1 ≤ i ≤ n − 1 and 1 ≤ h ≤ n − i the equations in (22) form part of the
system (19), which is solved by the procedure Π(i,h). Without the larger context of

the incidence varieties H
(h,γ )

i and H
(h)
i and their real traces, this procedure seems

to be arbitrary and depending on the position of the variables X1, . . . ,Xn and its
complexity behavior appears as completely unrelated to the geometry of the complex
hypersurface {F = 0} and the real variety {F = 0}R.

Thanks to the notion of bipolar varieties we now become aware that this is not the
case (see Theorem 14 and Observation 15).

5 Walks

We are now going to develop a common view for the procedures Π(i,h),1 ≤ i ≤
n − 1,1 ≤ h ≤ n − i described in Sect. 4 for the task of finding smooth points in
possibly singular, real compact hypersurfaces, and the algorithms developed in [2–4]
and [5] for the case of smooth real complete intersection varieties.

Let us fix a polynomial F ∈ Q[X] and suppose without loss of generality that the
hypersurface {F = 0} contains a regular real point.

Let 1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i and a suitable integer γ ∈ N be given. We first
analyze the procedure Π(i,h) on input σ , where σ is an essentially division-free arith-
metic circuit in Q[X] representing the polynomial F , while {F = 0}R is supposed to
be compact with {F = 0}R = ({F = 0}Xh−γ )R.
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On input σ we may interpret Π(i,h) as a computation which starts with the variety

H
(h,γ )

i defined by the system (4) and “walks down” through the localized bipolar
varieties (B(i,h,j ;γ ))Xh−γ , beginning with j := n − 1 and ending with j := 1.

In view of Lemma 1 we may interpret the procedure Π(i,h) on input σ, alterna-

tively, as a computation that starts with the variety H
(h)
i defined by the system (3)

and walks in reverse mode through the non-generic dual polar varieties of H
(h)
i de-

fined for 1 ≤ j ≤ n − 1 as follows: We replace in the (((n − i)(n + 1) + j + 1) ×
((n − i)(n + 1) + n)) matrix T(i,h,(n−i)n−i+j) introduced at the beginning of Sect. 4
the rows numbered n + j + 1, . . . , (n − i)(n + 1) + j by unit vectors whose entries
are all zero, except one entry of value 1 at the place of the column of T(i,h,(n−i)n−i+j)

which corresponds to one of the indeterminates Bk,l,1 ≤ k ≤ n − i,1 ≤ l ≤ n with
(k, l) /∈ {(h,n − i + 1), . . . , (h,n)}. The points of (H

(h)
i ), where the rank of this new

matrix is not maximal, form a dual polar variety of (H
(h)
i ) which is non-generic

(in fact, meagerly generic in the sense of [8]). The computation, which represents
the alternative interpretation of the procedure Π(i,h) on input σ , cuts (H

(h)
i )Xh−γ

and the intersections of (H
(h)
i )Xh−γ with the dual polar varieties obtained in this

way, by the affine hyperplanes {Bk,l − βk,l = 0} with 1 ≤ k ≤ n − i,1 ≤ l ≤ n,
(k, l) /∈ {(h,n − i + 1), . . . , (h,n)}, where βk,l is defined as βk,l := 0 for k �= l,
βk,k := 1 for k �= h and βh,h := γ .

This construction yields algebraic varieties which are by Lemma 1 isomorphic to

(
H

(h;γ )

i

)
Xh−γ

, (B(i,h,n−1;γ ))∩
(
H

(h;γ )

i

)
Xh−γ

, . . . , (B(i,h,1;γ ))∩
(
H

(h;γ )

i

)
Xh−γ

.

We are now going to analyze the main algorithm of [4, 5] in an analogous way.
First, let us choose for each 1 ≤ i ≤ n − 1 a generic matrix bi = [bk,l] 1≤k≤n−i

1≤l≤n

of Q(n−i)×n such that all these matrices become “nested”, i.e., for 1 < i ≤ n − 1 the
matrix bi forms the first n− i rows of the ((n− i +1)×n) matrix bi−1. The genericity
condition for the matrices bi,1 ≤ i ≤ n − 1, will become clear by the context.

Suppose now again that F is given by an essentially division-free arithmetic cir-
cuit σ in Q[X]. Under the assumption that the polynomial F is reduced and {F = 0}R

is non-empty and smooth, this algorithm starts on input σ with the complex hyper-
surface {F = 0} and walks down for h := 1 through the generic dual polar varieties

W
K(b

(1)
1 )

⊃ · · · ⊃ W
K(b

(1)
n−1)

associated with the rational matrices b
(1)
1 , . . . , b

(1)
n−1 (observe that h := 1 is the only

choice of h which satisfies the condition 1 ≤ h ≤ n − i for any index 1 ≤ i ≤ n − 1).
Alternatively, we may interpret this algorithm as a procedure that cuts the variety

H
(1)
n−1 first with the hyperplanes {Bk,l − bk,l = 0},1 ≤ k ≤ n − 1,1 ≤ l ≤ n, and then

successively with the hyperplanes {Θn−1 = 0}, . . . , {Θ2 = 0}.
Observe that for 1 < i ≤ n − 1 the (locally closed) variety
⎧⎨
⎩

(
x, b′, (λ : ϑ), b′′) ∈ (

H
(1)
i × A(i−1)×n

) | rk

[
b′

b′′

]
= rk

[
b′

b′′

](1)

(x) = n − 1

⎫⎬
⎭
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is isomorphic to

H
(1)
n−1 ∩ {Θn−1 = 0, . . . ,Θn−i+1 = 0}

and that

H
(1)
i ∩ {

Bk,l − bk,l = 0 |1 ≤ k ≤ n − i,1 ≤ l ≤ n
}

is isomorphic to W
K(b

(1)
i )

.

This shows that we have two different interpretations of essentially the same pro-
cedure.

We are now going to generalize this view as walks in the set

Γn := {
(i, h, j) |1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i,1 ≤ j ≤ (n − i)(n + 1)

}
.

Roughly speaking, a walk W is given by a sequence

(
(i1, h, j1), . . . , (im,h, jm)

)

of “nodes” of Γn and a series of affine linear cuts. These cuts become subdivided in m

disjoint packets. The first packet of cuts precedes node (i1, h, j1). The packet number
2 ≤ k ≤ m becomes inserted between node (ik−1, h, jk−1) and (ik, h, jk). The cuts fix
arbitrary rational values for some (or none) of the indeterminates Bk,l,1 ≤ k ≤ n− i1,

1 ≤ l ≤ n, and value zero for some (or none) of the indeterminates Θ2, . . . ,Θn−i1 .

For 1 ≤ l ≤ n, let S
(i1,h)
l (W ) be the variety obtained by intersecting S

(i1,h)
l with

the cuts of W preceding the node (i1, h, j1). We require that these cuts be transversal,
that these varieties be non-empty and equidimensional and that for 1 < l ≤ n the
condition

dimS
(i1,h)
l−1 (W ) = dimS

(i1,h)
l (W ) + 1

be satisfied.
The walk W now is interpreted by the following semantics:
The node (i1, h, j1) is interpreted as the variety S

(i1,h)
n (W ). For 1 < k ≤ m the

node (ik, h, jk) becomes interpreted as the closed variety W(ik,h,jk) which we are
going to describe now.

For jk = (n− ik)(n+ 1) let W(ik,h,jk) := H
(h)
ik

and for 1 ≤ jk < (n− ik)(n+ 1) let

W(ik,h,jk) be an appropriate, possibly non-generic dual polar variety of H
(h)
ik

, defined
by the non-maximality of the rank of the ((n+jk +1)× ((n− ik)(n+1)+n)) matrix
which we obtain similarly as before by replacing in T(ik,h,jk) suitable rows by suitable
(n − ik)(n + 1) + n) unit vectors, all compatible according to Lemma 1 with the cuts
of W up to the node (ik, h, jk). Then W(ik,h,jk) is obtained by intersecting W(ik,h,jk)

with the cuts of W up to the node (ik, h, jk) and taking the closure of this intersection
in the corresponding ambient space.

We ask the walk W to fulfill the following requirements:

– j1 = (n − i1)(n + 1).
– 1 ≤ i1 ≤ · · · ≤ im ≤ n − 1.
– For 1 < k ≤ m the variety W(ik,h,jk) is non-empty and equidimensional.
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– For 1 < k ≤ m the variety W(ik−1,h,jk−1) contains W(ik,h,jk) and satisfies the condi-
tion dim W(ik−1,h,jk−1) = dim W(ik,h,jk) + 1.

– dim W(im,h,jm) = 0.
– For 1 < k ≤ m the cuts W between the nodes (ik−1, h, jk−1) and (ik, h, jk) are

transversal to W(ik−1,h,jk−1) and define W(ik,h,jk) as a subvariety of W(ik−1,h,jk−1).

The varieties W(ik,h,jk),1 ≤ k ≤ m, of the walk W possibly have to be localized by a
suitable polynomial in order to satisfy these requirements.

For 1 ≤ i ≤ n − 1 and 1 ≤ h ≤ n − i the procedure Π(i,h) produces on input
σ a walk which we denote by W(i,h)(F ) (in fact, there are several, algorithmically
equivalent, candidates for W(i,h)(F )).

Similarly, in case that F is reduced and {F = 0}R is smooth, the main algorithm
of [4, 5] produces on input σ a characteristic walk which we denote by Wn(F ).

Let W be an arbitrary walk in Γn with node sequence ((i1, h, j1), . . . , (im,h, jm)).
The (dual) degree δ(W ) of W is defined as

δ(W ) := max
{
max

{
degS

(i,h)
l (W ) |1 ≤ l ≤ n

}
,max

{
deg W(ik,h,jk) |1 ≤ k ≤ m

}}
.

Suppose that {F = 0} contains a regular real point. We say that the walk W solves the
real root finding problem for F if the canonical projection of (W(im,h,jm))R into An

R

is a (finite) set of real algebraic sample points for the generically regular connected
components of {F = 0}R.

Suppose that the polynomial F is represented by an essentially division-free arith-
metic circuit σ in Q[X] of size L and non-scalar depth �.

Applying the Kronecker algorithm to this situation we obtain the following result.

Theorem 17 Let the notation and assumptions be as before and suppose that the
walk W solves the real root finding problem for F . Then W represents a computa-
tion in Q which starts from σ and uses O(L(nd)O(1)δ(W )2) arithmetic operations,
organized with respect to the parameters of the arithmetic circuit σ , in non-scalar
depth O(n(� + log(nd)) log δ(W )) and whose output encodes a finite set of real al-
gebraic sample points for the generically regular connected components of {F = 0}R.
The number and degree of these sample points is bounded by δ(W ).

Proof The walk W represents a computation in Q that calculates from σ first a rep-
resentation of (complex) algebraic points of S

(i1,h)
n (W ) using O(L(nd)O(1)δ(W )2)

arithmetic operations organized in non-scalar depth O(n(�+ log(nd)) log δ(W )). The
number and degree of these points is bounded by δ(W ). The assumption that W
solves the real root finding problem for F is then used to extend this computation
to a representation of a finite set of real algebraic sample points for the generically
regular connected components of {F = 0}R. The number and degree of these sample
points is bounded by δ(W ). �

Here, two remarks are in order:

– For 1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i and {F = 0}R compact, containing a regular
point, Theorem 14, Observation 15 and Theorem 17 applied to W(i,h)(F ) are com-
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patible with Theorem 17 if we consider the constant γ , produced by the proce-
dure Π(i,h) on input σ , as precomputed. Observe that we have under this condition
δ(W(i,h)(F )) = δ(i,h;γ ).

Similarly Theorem 17 is compatible with [4], Theorem 11 and [5], Theorem 13,
if we identify δ(Wn(F )) with the degree of the real interpretation of F in [4]
and [5].

– We have no general criterion at hand to decide which real point finding algorithms
for hypersurfaces are of best intrinsic complexity. However, if we limit our at-
tention to the algorithms Π(i,h),1 ≤ i ≤ n − 1,1 ≤ h ≤ n − i, then [8], Theorem
13 implies that Π(n−1,1) has the best intrinsic sequential complexity which in the
worst case is of order dO(n). This means that for {F = 0}R compact, the Rabinow-
itsch trick inspired algorithm, which consists of solving the polynomial equation
system (21) subject to the open condition Xh − γ �= 0 for suitable γ ∈ N, has a
fairly good intrinsic complexity despite its coordinate-dependent, extrinsic aspect.

On the other hand, the algorithm Π(n−1,1) comes very close to the “critical point
method” applied to point finding in real hypersurfaces (see [1] and [49]).

6 Witnesses for Real Inequalities

At the end of Sect. 3 we addressed the problem of how to efficiently find for a given
consistent system of strict inequalities of arithmetic circuit-represented polynomials
of Q[X] a rational witness, i.e., a point x ∈ Qn which satisfies all these inequalities.

In this section we focus on this problem in case of a single inequality. Moreover,
since the problem of finding rational witnesses even for a single inequality involves
subtle height estimates from Diophantine geometry, we limit our attention to the sim-
pler problem of finding a real algebraic witness for a given consistent polynomial
inequality.

For this purpose let us consider a square-free polynomial F ∈ Q[X] of positive
degree d . We suppose that F is given by an essentially division-free arithmetic circuit
σ in Q[X] of size L and non-scalar depth � and that {F = 0}R is compact. We shall
make use of the following fact.

Proposition 18 The following two conditions for the polynomial F are equivalent:

(i) The polynomial F changes its sign in An
R

, i.e., there exist points u,v ∈ An
R

such
that F(u)F (v) < 0 holds.

(ii) The real variety {F = 0}R contains a regular point.

Proof For F irreducible, Proposition 18 is an immediate consequence of [11], The-
orem 4.5.1. This implies the equivalence of conditions (i) and (ii) for an arbitrary
square-free polynomial F ∈ Q[X] �

For the next result we recall from Sect. 4 that δ(n−1,1) denotes the unitary-
independent degree of the equation F = 0 associated with i := n − 1 and h := 1.
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Theorem 19 Let the notation and assumptions be as before. In the non-uniform de-
terministic or the uniform probabilistic complexity model there exists an algorithm
which on input σ decides whether F changes its sign in An

R
and, if this is the case,

produces the Thom encoding of two real algebraic witness points u,v ∈ An
R

satisfying
the conditions F(u) > 0 and F(v) < 0.

The algorithm uses L(nd)O(1)(δ(n−1,1))
2 = (nd)O(n) arithmetic operations in Q

organized in non-scalar depth O(n(� + log(nd)) log δ(n−1,1)).

Proof Since {F = 0}R is supposed to be compact, we may apply the algorithm
Π(n−1,1) of Sect. 4 to the input circuit σ which represents the polynomial F .

The algorithm decides first whether {F = 0}R contains a regular point. From
Proposition 18 we know that this is the case if and only if the polynomial F changes
its sign in An

R
.

Suppose we get a positive answer. Then the algorithm Π(n−1,1) produces the
Thom encoding of a regular real algebraic point x = (x1, . . . , xn) of {F = 0}R such
that the degree of x over Q is at most δ(n−1,1). We then determine the signs of
∂F
∂X1

(x), . . . , ∂F
∂Xn

(x). Since x is regular we may suppose without loss of generality

that ∂F
∂X1

(x) > 0.
We consider the univariate polynomial G(X1) ∈ R[X1], G(X1) := F(X1,

x2, . . . , xn). From F(x) = 0 and ∂F
∂X1

(x) > 0 we deduce that G(x1) = 0 and
dG
dX1

(x1) > 0. In other words, G(X1) changes its sign at x1. Applying any of
the most classic procedures for the real root finding of univariate polynomials
over R to this situation, we may decide whether G(X1) has zeros in the inter-
vals (−∞, x1) and (x1,∞). If for example G(X1) has no zero in (x1,∞), we put
u := (x1 + 1, x2, . . . , xn). Similarly, we put v := (x1 − 1, x2, . . . , xn) if G(X1) has
no zero in (−∞, x1). For the sake of simplicity let us suppose that G(X1) has zeros
in (−∞, x1) as well as in (x1,∞). Then we compute the roots a < x1 < b of G(X1)

which come closest to x1 and put u := ( x1+b
2 , x2, . . . , xn) and v := ( x1+a

2 , x2, . . . , xn).
Observe that in any case we have F(u) > 0 and F(v) < 0.

For the decision whether the polynomial F changes its sign in An
R

, the algorithm
requires L(nd)O(1)(δ(n−1,1))

2 arithmetic operations in Q organized in non-scalar
depth O(n(� + log(nd)) log δ(n−1,1)). If this is the case, the procedure Π(n−1,1) pro-
duces the real algebraic points u and v as witnesses for the strict inequalities F > 0
and F < 0. The degrees of u and v over Q are at most δ(n−1,1). This implies that we
can find u and v using at most L(nd)O(1)(δ(n−1,1))

2 arithmetic operations in Q, or-
ganized with respect to the parameters of the arithmetic circuit σ , in non-scalar depth
O(n(� + log(nd)) log δ(n−1,1)). This yields the complexity bounds of the theorem. �
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