Skip to main content
Log in

Remote Sensing via 1-Minimization

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of detecting the locations of targets in the far field by sending probing signals from an antenna array and recording the reflected echoes. Drawing on key concepts from the area of compressive sensing, we use an 1-based regularization approach to solve this, generally ill-posed, inverse scattering problem. As is common in compressive sensing, we exploit randomness, which in this context comes from choosing the antenna locations at random. With n antennas we obtain n 2 measurements of a vector \(x \in\mathbb{C}^{N}\) representing the target locations and reflectivities on a discretized grid. It is common to assume that the scene x is sparse due to a limited number of targets. Under a natural condition on the mesh size of the grid, we show that an s-sparse scene can be recovered via 1-minimization with high probability if n 2Cslog2(N). The reconstruction is stable under noise and when passing from sparse to approximately sparse vectors. Our theoretical findings are confirmed by numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Borcea, G. Papanicolaou, C. Tsogka, Theory and applications of time reversal and interferometric imaging, Inverse Probl. 19, 5139–5164 (2003).

    MathSciNet  Google Scholar 

  2. M. Born, E. Wolf, Principles of Optics, 7th edn. (Cambridge University Press, Cambridge, 1999).

    Book  Google Scholar 

  3. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  4. E.J. Candès, T. Tao, J.K. Romberg, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inf. Theory 52(2), 489–509 (2006).

    Article  MATH  Google Scholar 

  5. E.J. Candès, Y. Plan, A probabilistic and RIPless theory of compressed sensing, IEEE Trans. Inf. Theory 57(11), 7235–7254 (2011).

    Article  Google Scholar 

  6. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math. 59(8), 1207–1223 (2006).

    Article  MATH  Google Scholar 

  7. E.J. Candès, T. Tao, Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006).

    Article  Google Scholar 

  8. E.J. Candès, T. Tao, The power of convex relaxation: near-optimal matrix completion, IEEE Trans. Inf. Theory 56(5), 2053–2080 (2010).

    Article  Google Scholar 

  9. A. Chambolle, T. Pock, A first-order primal-dual algorithm for convex problems with applications to imaging, J. Math. Imaging Vis. 40, 120–145 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  10. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput. 20(1), 33–61 (1998).

    Article  MathSciNet  Google Scholar 

  11. S. Chrétien, S. Darses, Invertibility of random submatrices via tail decoupling and a matrix Chernoff inequality, Stat. Probab. Lett. 82, 1479–1487 (2012).

    Article  MATH  Google Scholar 

  12. V. de la Peña, E. Giné, Decoupling: From Dependence to Independence (Springer, Berlin, 1999).

    Book  Google Scholar 

  13. D.L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006).

    Article  MathSciNet  Google Scholar 

  14. A. Fannjiang, P. Yan, T. Strohmer, Compressed remote sensing of sparse objects, SIAM J. Imaging Sci. 3, 595–618 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Fornasier, H. Rauhut, Compressive sensing, in Handbook of Mathematical Methods in Imaging, ed. by O. Scherzer (Springer, Berlin, 2011), pp. 187–228.

    Chapter  Google Scholar 

  16. S. Foucart, A. Pajor, H. Rauhut, T. Ullrich, The Gelfand widths of p -balls for 0<p≤1, J. Complex. 26(6), 629–640 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  17. J.J. Fuchs, On sparse representations in arbitrary redundant bases, IEEE Trans. Inf. Theory 50(6), 1341–1344 (2004).

    Article  Google Scholar 

  18. F. Gruber, E. Marengo, A. Devaney, Time-reversal-based imaging and inverse scattering of multiply scattering point targets, J. Acoust. Soc. Am. 118, 3129–3138 (2005).

    Article  Google Scholar 

  19. Y. Jin, J. Moura, N. O’Donoughue, Time reversal transmission in MIMO radar, in 41. Asilomar Conference on Signals, Systems and Computers, Asilomar (2007), pp. 2204–2208.

    Google Scholar 

  20. S. Kunis, H. Rauhut, Random sampling of sparse trigonometric polynomials II—orthogonal matching pursuit versus basis pursuit, Found. Comput. Math. 8(6), 737–763 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  21. B.K. Natarajan, Sparse approximate solutions to linear systems, SIAM J. Comput. 24, 227–234 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Nelson, V. Temlyakov, On the size of incoherent systems, J. Approx. Theory 163(9), 1238–1245 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  23. H.V. Poor, An Introduction to Signal Detection and Estimation (Springer, Berlin, 1994).

    Book  MATH  Google Scholar 

  24. D. Potts, G. Steidl, M. Tasche, Fast Fourier transforms for nonequispaced data: A tutorial, in Modern Sampling Theory: Mathematics and Applications, ed. by J. Benedetto, P. Ferreira (Birkhäuser, Boston, 2001), pp. 247–270. Chap. 12.

    Chapter  Google Scholar 

  25. H. Rauhut, Random sampling of sparse trigonometric polynomials, Appl. Comput. Harmon. Anal. 22(1), 16–42 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Rauhut, Compressive sensing and structured random matrices, in Theoretical Foundations and Numerical Methods for Sparse Recovery, ed. by M. Fornasier. Radon Series Comp. Appl. Math., vol. 9 (De Gruyter, Berlin, 2010), pp. 1–92.

    Google Scholar 

  27. H. Rauhut, G.E. Pfander, Sparsity in time-frequency representations, J. Fourier Anal. Appl. 16(2), 233–260 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Richards, Fundamentals of Radar Signal Processing (McGraw-Hill, New York, 2005).

    Google Scholar 

  29. M. Rudelson, R. Vershynin, On sparse reconstruction from Fourier and Gaussian measurements, Commun. Pure Appl. Math. 61, 1025–1045 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  30. A. Tolstoy, Matched Field Processing in Underwater Acoustics (World Scientific, Singapore, 1993).

    Google Scholar 

  31. J.A. Tropp, User-friendly tail bounds for sums of random matrices, Found. Comput. Math. 12(4), 389–434 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  32. J.A. Tropp, Recovery of short, complex linear combinations via l 1 minimization, IEEE Trans. Inf. Theory 51(4), 1568–1570 (2005).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

M.H. and H.R. acknowledge support by the Hausdorff Center for Mathematics and by the ERC Starting Grant SPALORA StG 258926. T.S. was supported by the National Science Foundation and DTRA under grant DTRA-DMS 1042939, and by DARPA under grant N66001-11-1-4090. Parts of this manuscript have been written during a stay of H.R. at the Institute for Mathematics and Its Applications, University of Minnesota, Minneapolis. T.S. thanks Haichao Wang for useful comments on an early version of this manuscript. The authors also wish to thank Axel Obermeier and the anonymous reviewers for helpful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Rauhut.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hügel, M., Rauhut, H. & Strohmer, T. Remote Sensing via 1-Minimization. Found Comput Math 14, 115–150 (2014). https://doi.org/10.1007/s10208-013-9157-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-013-9157-9

Keywords

Mathematics Subject Classification

Navigation