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Abstract

Quasi-Monte Carlo (QMC) quadrature rules using higher order dig-
ital nets and sequences have been shown to achieve the almost optimal
rate of convergence of the worst-case error in Sobolev spaces of arbitrary
fixed smoothness α ∈ N, α ≥ 2. In a recent paper by the authors, it was
proved that randomly-digitally-shifted order 2α digital nets in prime base
b achieve the best possible rate of convergence of the root mean square
worst-case error of order N

−α(logN)(s−1)/2 for N = b
m, where N and s

denote the number of points and the dimension, respectively, which im-
plies the existence of an optimal order QMC rule. More recently, the au-
thors provided an explicit construction of such an optimal order QMC rule
by using Chen-Skriganov’s digital nets in conjunction with Dick’s digit in-
terlacing composition. These results were for fixed number of points. In
this paper we give a more general result on an explicit construction of
optimal order QMC rules for arbitrary fixed smoothness α ∈ N including
the endpoint case α = 1. That is, we prove that the projection of any
infinite-dimensional order 2α + 1 digital sequence in prime base b onto
the first s coordinates achieves the best possible rate of convergence of
the worst-case error of order N−α(logN)(s−1)/2 for N = b

m. The explicit
construction presented in this paper is not only easy to implement but
also extensible in both N and s.

Keywords: Quasi-Monte Carlo, Numerical integration, Higher order digital se-
quences, Sobolev space
MSC classifications: Primary, 41A55, 65D32; Secondary, 42C10, 65C05, 65D30

1 Introduction and statement of the main result

In this paper we study numerical integration of smooth functions defined over
the s-dimensional unit cube. Let f : [0, 1)s → R be an integrable function. We
denote the true integral of f by

I(f) :=

∫

[0,1)s
f(x) dx.
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A quasi-Monte Carlo (QMC) rule is an equal-weight quadrature rule where the

weights sum up to 1. That is, by using anN -element point set P
(s)
N = {x(s)

n : 0 ≤
n < N} ⊂ [0, 1)s, a QMC rule approximates I(f) by

I(f ;P
(s)
N ) =

1

N

N−1
∑

n=0

f(x(s)
n ).

In case of an infinite sequence of points S(s) = {x(s)
n : n ≥ 0} ⊂ [0, 1)s, we use

the first N elements of S(s) as P
(s)
N . Moreover, in case of an infinite-dimensional

sequence of points S = {xn : n ≥ 0} ⊂ [0, 1)N, we use the first N points of the

projection of S on to the first s coordinates as P
(s)
N . An explicit construction of

a good infinite-dimensional sequence of points is of considerable importance in
practical applications since then the point set is extensible in both N and s, i.e.,
both the number of points and the dimension can be increased while retaining
the existing points [20].

In order to measure the quality of a QMC point set or sequence for a class
of integrands instead of a single integrand, we consider the so-called worst-case
error for a normed function space which is defined as follows. Let V be a function

space with norm ‖ · ‖V . The worst-case error of a point set P
(s)
N in V , denoted

by ewor(V, P
(s)
N ), is the supremum of the quadrature error in the unit ball of V ,

i.e.,

ewor(V, P
(s)
N ) := sup

f∈V
‖f‖V ≤1

|I(f ;P (s)
N )− I(f)|.

Reproducing kernel Hilbert spaces of Sobolev type consisting of functions which
have square integrable partial mixed derivatives up to order 1 in each variable
have been frequently studied as an important example of a normed function
space in the literature, see for instance [18] and [30, Appendix A]. The worst-case
error in such function spaces is often connected with geometric discrepancy of
point sets, which measures how uniformly distributed the point set is. This fact
has motivated to construct low-discrepancy point sets and sequences. Indeed
there are many known explicit constructions of (possibly infinite-dimensional)
low-discrepancy point sets and sequences including those of Halton [17], Sobol’
[34], Faure [13], Niederreiter [27], Niederreiter and Xing [29], Chen and Skrig-
anov [4] and Dick and Pillichshammer [12] to list just a few.

Recently, function spaces with higher smoothness α ∈ N, α ≥ 2, have at-
tracted considerable attention in the area of uncertainty quantification, in par-
ticular partial differential equations with random coefficients, see for instance
[9, 10]. For such smooth functions it is possible to achieve higher order of con-
vergence of the worst-case error by exploiting the smoothness of the functions.
In his seminal work [5, 6], Dick studied the decay of the Walsh coefficients of
smooth functions and introduced a digit interlacing composition for construct-
ing the so-called (possibly infinite-dimensional) higher order digital nets and se-
quences which achieve the almost optimal rate of convergence N−α(logN)c(s,α)

for N = bm and some c(s, α) > 0, see [6, Theorem 5.4 & Corollary 5.5] and also
[2, Theorem 22]. (We refer to Subsection 2.1 for the definition of higher order
digital nets and sequences.) Although this order of convergence is best possible
up to some power of a logN factor, it has been unknown until recently whether
the exponent c(s, α) can be improved to be optimal.
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There has been some progress reported on the optimality of the exponent
c(s, α) for higher order digital nets. In [22], Hinrichs et al. considered periodic
Sobolev spaces and periodic Nikol’skij-Besov spaces with (real-valued) dominat-
ing mixed smoothness up to 2, and obtained c(s, α) = (s−1)/2 for order 2 digital
nets, which is best possible. In [15], the authors of this paper considered a re-
producing kernel Hilbert space Hα,s of Sobolev type consisting of non-periodic
functions with smoothness α ∈ N, α ≥ 2, and proved that randomly-digitally-
shifted order 2α digital nets can achieve the rate of convergence of the root mean
square worst-case error of order N−α(logN)(s−1)/2. (We refer to Subsection 2.2
for the definition of Hα,s.) This result directly implies the existence of a QMC
rule achieving c(s, α) = (s − 1)/2, which is best possible [15, Proposition 1.3].
More recently in [16], the authors of this paper provided an explicit construction
of such an optimal order QMC rule by using Chen-Skriganov’s digital nets in
conjunction with Dick’s digit interlacing composition.

In this third paper of the authors on the optimality of higher order digital
nets and sequences, we prove the following theorem:

Theorem 1. Let b be a prime, and s, α ∈ N. Let S be an infinite-dimensional

order 2α + 1 digital sequence over the finite field Fb, and let P
(s)
N be the set of

the first N points of the projection of S onto the first s coordinates for N ∈ N.
Then for any m ∈ N, we have

ewor(Hα,s;P
(s)
bm ) ≤ Cα,b,s

m(s−1)/2

bαm
,

where Cα,b,s is positive and independent of m.

Theorem 1 claims that the projection of any infinite-dimensional order 2α + 1
digital sequence onto the first s coordinates achieves the best possible rate of
convergence N−α(logN)(s−1)/2 of the worst-case error in Hα,s, when N is of
the form bm for some m ∈ N with a fixed prime base b. Thus our result
implies a new explicit construction of optimal order QMC rules for smooth
integrands, which is not only easy to implement but also extensible in both N
and s. As shown in [21, 31], in order for an extensible QMC rule to achieve a
rate of convergence better than N−1, the number of points must grow at least
geometrically. Therefore, our result is also best possible in this regard when
α ≥ 2.

We would remark that our present result covers the endpoint case α = 1,
which has not been included in the previous results [15, 16]. Furthermore, since
any order 2α + 1 digital sequence is also an order 2α′ + 1 digital sequence for
all α′ < α due to the so-called propagation rules [3], it also achieves the best
possible rate of convergence N−α′

(logN)(s−1)/2 of the worst-case error in Hα′,s

as long as α′ < α. The main idea of our proof of Theorem 1 is to exploit
the decay and the sparsity of the Walsh coefficients of the reproducing kernel
simultaneously in a different way from [16]. A similar approach is used in [12]
to prove the best possible order of the L2 discrepancy bound for higher order
digital sequences over F2. Whether it is possible to lower the necessary order
of digital sequences from 2α + 1 while still achieving the best possible rate of
convergence is an open question.

We note that the optimal order of convergence in the Sobolev space with
smoothness α is also achieved by using the Frolov lattice rule in conjunction
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with a periodization technique [14, 25, 36, 37]. In fact, it has been shown that
the Frolov lattice rule achieves the optimal order of convergence in Besov and
Triebel-Lizorkin spaces with dominating mixed smoothness, and the optimality
in the Sobolev space is obtained from the fact that the Sobolev space coincides
with the Triebel-Lizorkin space under the special choice of the parameters. Al-
though the Frolov lattice rule is an equal-weight quadrature rule, the weights
do not sum up to 1 in general, so that it is not a QMC rule. Periodizing an
integrand can be interpreted as having a modified quadrature rule with possibly
unequal weights of the original integrand [19], and is shown to cause a severe
consequence especially in high dimensions even for the constant functions [24].
Since our optimal order QMC rule does not require such a periodization, a
numerical stability is kept independently of the dimension. Nevertheless, a sig-
nificant advantage of the Frolov lattice rule lies in its universality, that is, one
quadrature rule satisfies the optimal order worst-case error bounds for many
function spaces (such as Besov, Triebel-Lizorkin, and Sobolev) with different
smoothness. As mentioned above, our presented optimal order QMC rules also
possess a kind of universality, which is though weaker than that of the Frolov
lattice rule. On the other hand, the Frolov lattice rule is not extensible in ei-
ther N or s and also seems not easy to implement in high dimensions. Finally
we would point out that both of the quadrature rules have randomized and
unbiased variants [8, 23].

2 Preliminaries

Throughout this paper we shall use the following notations. Let N be the set
of positive integers and N0 = N ∪ {0}. Let b be a fixed prime, and Fb the
finite field with b elements, which we identify with the set {0, 1, . . . , b − 1}
equipped with addition and multiplication modulo b. The operators ⊕ and ⊖
denote digitwise addition and subtraction modulo b, respectively, that is, for
k =

∑∞
i=1 κib

i−1 ∈ N0 and k′ =
∑∞

i=1 κ
′
ib

i−1 ∈ N0 with κi, κ
′
i ∈ Fb, where all,

except a finite number of κi and κ′
i, are 0, we define

k ⊕ k′ :=
∞
∑

i=1

λib
i−1 and k ⊖ k′ :=

∞
∑

i=1

λ′
ib

i−1,

where λi = κi + κ′
i (mod b) and λ′

i = κi − κ′
i (mod b). In case of vectors in N

s
0,

the operators ⊕ and ⊖ are applied componentwise.

2.1 Higher order digital nets and sequences

2.1.1 Definitions

We start with a general digital construction scheme of infinite-dimensional finite
point sets in the unit cube due to Niederreiter [28, p. 63].

Definition 1. For m,n ∈ N, let Cj ∈ F
n×m
b for j ∈ N be n × m matrices

over Fb. For an integer 0 ≤ h < bm, we denote the b-adic expansion of h by
h =

∑m
i=1 ηib

i−1. For j ∈ N, let

xh,j =
ξ1,h,j
b

+
ξ2,h,j
b2

+ · · ·+ ξn,h,j
bn

,
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where ξ1,h,j , ξ2,h,j , . . . , ξn,h,j are given by

(ξ1,h,j , ξ2,h,j , . . . , ξn,h,j)
⊤ = Cj(η1, η2, . . . , ηm)⊤.

Then the set Pbm = {x0,x1, . . . ,xbm−1} with xh = (xh,1, xh,2, . . .) ∈ [0, 1)N is
called an infinite-dimensional digital net over Fb with generating matrices Cj .
Moreover, the projection of Pbm onto the first s coordinates is called a digital
net over Fb with generating matrices C1, . . . , Cs.

This construction scheme can be extended to the case of an infinite-dimensional
sequence of points [28, p. 72].

Definition 2. Let Cj ∈ F
N×N

b for j ∈ N be N × N matrices over Fb. For each

Cj = (c
(j)
k,l )k,l∈N we assume that there exists a function K : N → N such that

c
(j)
k,l = 0 when k > K(l). For a non-negative integer h, we denote the b-adic

expansion of h by h =
∑a

i=1 ηib
i−1 for some a ∈ N. For j ∈ N, let

xh,j =
ξ1,h,j
b

+
ξ2,h,j
b2

+ · · · ,

where ξ1,h,j , ξ2,h,j , . . . are given by

(ξ1,h,j , ξ2,h,j , . . .)
⊤ = Cj(η1, η2, . . . , ηa, 0, 0, . . .)

⊤.

Then the sequence S = (x0,x1, . . .) with xh = (xh,1, xh,2, . . .) ∈ [0, 1)N is called
an infinite-dimensional digital sequence over Fb with generating matrices Cj .
Moreover, the projection of S onto the first s coordinates is called a digital
sequence over Fb with generating matrices C1, . . . , Cs.

Note that the condition c
(j)
k,l = 0 for all sufficiently large k is a standard as-

sumption to ensure that every number xh,j is b-adic rational, i.e., xh,j is written
in a finite b-adic expansion, so that every point in S belongs to [0, 1)N, see for
instance [12, 28].

Now we give the definitions of higher order digital nets and sequences, which
are special cases of [6, Definition 4.3] and [6, Definition 4.8], respectively.

Definition 3. For m,n, s, α ∈ N with n ≥ αm, let P
(s)
bm be a digital net over Fb

with generating matrices C1, . . . , Cs ∈ F
n×m
b . For 1 ≤ i ≤ n and 1 ≤ j ≤ s, we

denote the i-th row of Cj by ci,j . Let t be an integer with 0 ≤ t ≤ αm which
satisfies the following condition: For all 1 ≤ i(j, vj) < · · · < i(j, 1) ≤ n with

s
∑

j=1

min(α,vj)
∑

l=1

i(j, l) ≤ αm− t,

the vectors ci(1,v1),1, . . . , ci(1,1),1, . . . , ci(s,vs),s, . . . , ci(s,1),s are linearly indepen-

dent over Fb. Then we call P
(s)
bm an order α digital (t,m, s)-net over Fb.

Definition 4. Let S be an infinite-dimensional digital sequence over Fb with
generating matrices Cj ∈ F

N×N

b . For s ∈ N, S(s) denotes the projection of S onto
the first s coordinates, i.e., the digital sequence over Fb with generating matrices
C1, . . . , Cs. Let t(s) be a non-negative integer. If for any m ∈ N with αm ≥ t(s)
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the set of the first bm points of S(s) is an order α digital (t(s),m, s)-net over
Fb, then we call S(s) an order α digital (t(s), s)-sequence over Fb.

Moreover, if there exists a function t : N → N such that S(s) is an order
α digital (t(s), s)-sequence over Fb for any s ∈ N, then we call S an infinite-
dimensional order α digital sequence over Fb.

Remark 1. It is clear from Definition 3 that any digital net can be regarded
as an order α digital (t,m, s)-net with t = αm since then there is no linear
independence condition imposed on the rows of the generating matrices. Once
a digital sequence is considered, however, it follows from Definition 4 that the
value of t(s) is supposed to be independent of m. Since we are interested in
the convergence behavior of the worst-case error as a function of m (instead of

a fixed m), we allow the situation αm < t(s) and think of P
(s)
b1 , P

(s)
b2 , . . . as a

sequence of order α digital (t(s),m, s)-nets with a fixed t(s).

2.1.2 Explicit construction

Explicit constructions of infinite-dimensional order 1 digital sequences over Fb

have been given by Sobol’ [34], Niederreiter [27], Tezuka [35], Niederreiter and
Xing [29] and others. For instance, the Niederreiter sequence introduced in
[27], which was generalized thereafter in [35], is constructed as follows. Let
p1, p2, . . . ∈ Fb[x] be distinct monic irreducible polynomials over Fb. For each
j ∈ N, let ej = deg(pj) and consider the following Laurent series expansion

xej−z−1

pj(x)i
=

∞
∑

l=1

a(j)(i, z, l)x−l ∈ Fb((x
−1)),

for integers i ≥ 1 and 0 ≤ z < ej. Then define the matrix Cj = (c
(j)
k,l )k,l∈N by

c
(j)
k,l = a(j)

(⌊

k − 1

ej

⌋

+ 1, (k − 1) mod ej , l

)

.

Note that we have c
(j)
k,l = 0 whenever k > l. It is known that these matrices Cj

generate an infinite-dimensional order 1 digital sequence over Fb whose function
t : N → N is given by

t(s) =

s
∑

j=1

(ej − 1) ,

for any s ∈ N. We refer to [11, Section 8] for more information on these special
constructions of infinite-dimensional order 1 digital sequences. In what follows,
we introduce the digit interlacing composition due to Dick [5, 6], which enables
to explicitly construct infinite-dimensional order α digital sequences over Fb for
a given α ∈ N by using infinite-dimensional order 1 digital sequences over Fb.

Definition 5. For α ∈ N, let x = (x1, . . . , xα) ∈ [0, 1)α. For 1 ≤ j ≤ α, we
denote the b-adic expansion of xj by xj = ξ1,j/b + ξ2,j/b

2 + · · · with ξi,j ∈ Fb,
which is understood to be unique in the sense that infinitely many of the ξi,j ’s
are different from b− 1. Then we define the map Dα : [0, 1)α → [0, 1) by

Dα(x1, . . . , xα) :=

∞
∑

i=1

α
∑

j=1

ξi,j
bα(i−1)+j

.
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In case of an infinite-dimensional point x = (x1, x2, . . .) ∈ [0, 1)N, we apply Dα

to every non-overlapping consecutive α components of x, i.e.,

Dα(x1, x2, . . .) := (Dα(x1, . . . , xα),Dα(xα+1, . . . , x2α), . . .) ∈ [0, 1)N.

By using infinite-dimensional order 1 digital sequences and Dα, we can con-
struct infinite-dimensional order α digital sequences as follows [6, Theorems 4.11
and 4.12].

Lemma 1. Let S = {xn : n ≥ 0} ⊂ [0, 1)N be an infinite-dimensional order 1
digital sequence over Fb with t = t1 : N → N. For α ∈ N, define

Dα(S) := {Dα(xn) : n ≥ 0} ⊂ [0, 1)N.

Then Dα(S) is an infinite-dimensional order α digital sequence over Fb with
t = tα : N → N, where tα is given by

tα(s) = αt1(αs) +
sα(α − 1)

2
,

for any s ∈ N.

Remark 2. Let S be an infinite-dimensional digital sequence with generating
matrices Cj ∈ F

N×N

b . For i, j ∈ N, let ci,j denote the i-th row of Cj. For each

j ∈ N, define a matrix Dj ∈ F
N×N

b , whose i-th row is denoted by di,j, as

dα(h−1)+i,j = ch,α(j−1)+i,

for h ∈ N and 1 ≤ i ≤ α. Then the infinite-dimensional digital sequence over Fb

with generating matrices Dj ∈ F
N×N

b is nothing but Dα(S) defined in Lemma 1.

2.1.3 Dual net and Dick metric functions

The concept of dual net is of crucial importance in analyzing the worst-case
error of a digital net.

Definition 6. For m,n, s ∈ N, let P
(s)
bm be a digital net with generating matrices

C1, . . . , Cs ∈ F
n×m
b . Then the dual net of P

(s)
bm , denoted by P

(s)⊥
bm , is defined as

P
(s)⊥
bm :=

{

k = (k1, . . . , ks) ∈ N
s
0 : C

⊤
1
~k1 ⊕ · · · ⊕ C⊤

s
~ks = 0 ∈ F

m
b

}

,

where we set ~k = (κ1, . . . , κn) for k ∈ N0 whose b-adic expansion is denoted by
k =

∑∞
i=1 κib

i−1, where all except a finite number of κi are 0.

Further we recall the definition of the Dick metric function µα for α ∈ N [6].
Note that the special case where α = 1 was originally introduced in [26] and
[32], and is called the NRT metric function.

Definition 7. Let α ∈ N. For k ∈ N, we denote the b-adic expansion of k by
k = κ1b

c1−1 + κ2b
c2−1 + · · ·+ κvb

cv−1 such that κ1, . . . , κv ∈ {1, . . . , b− 1} and
c1 > c2 > · · · > cv > 0. Then we define

µα(k) :=

min(α,v)
∑

i=1

ci,

7



and µα(0) := 0. For k = (k1, . . . , ks) ∈ N
s
0, we define

µα(k) :=

s
∑

j=1

µα(kj).

Then the minimum Dick metric of a digital net is defined as follows.

Definition 8. For m,n, s ∈ N, let P
(s)
bm be a digital net over Fb and P

(s)⊥
bm its

dual net. For α ∈ N, the minimum Dick metric of P
(s)
bm is defined by

ρα(P
(s)
bm ) := min

k∈P
(s)⊥

bm
\{0}

µα(k).

2.1.4 Some properties of higher order digital nets and sequences

The following property of an order α digital (t,m, s)-net directly follows from
the linear independence of the rows of generating matrices, see [11, Chapter 15].

Lemma 2. For any order α digital (t,m, s)-net P
(s)
bm over Fb, we have

αm− t < ρα(P
(s)
bm ) ≤ αm.

Moreover, the following lemma is known under the name of propagation rule,
which states that any order α digital net is also an order α′ digital net as long
as 1 ≤ α′ < α. The lemma again directly follows from the linear independence
of the rows of the generating matrices. We refer to [5, Theorem 3.3] and [6,
Theorem 4.10] for the proof.

Lemma 3. For α ∈ N, let P
(s)
bm be an order α digital (t,m, s)-net over Fb with

some integer 0 ≤ t ≤ αm. Then, for any α′ ∈ N with 1 ≤ α′ < α, P
(s)
bm is also

an order α′ digital (tα′ ,m, s)-net over Fb with tα′ = ⌈tα′/α⌉.

2.2 Sobolev spaces

Here we introduce the function space which we consider in this paper. First
let us consider the one-dimensional case. For α ∈ N, the Sobolev space with
smoothness α is given by

Hα :=
{

f : [0, 1) → R |

f (r) : absolutely continuous for r = 0, . . . , α− 1, f (α) ∈ L2([0, 1))
}

,

where f (r) denotes the r-th derivative of f , with the inner product

〈f, g〉α =

α−1
∑

r=0

∫ 1

0

f (r)(x) dx

∫ 1

0

g(r)(x) dx+

∫ 1

0

f (α)(x)g(α)(x) dx,

for f, g ∈ Hα. The space Hα is also a reproducing kernel Hilbert space with the
reproducing kernel

Kα(x, y) =
α
∑

r=0

Br(x)Br(y)

(r!)2
+ (−1)α+1B2α(|x− y|)

(2α)!
,
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for x, y ∈ [0, 1), where Br denotes the Bernoulli polynomial of degree r.
For the s-dimensional case, we consider the s-fold tensor product space of the

one-dimensional space introduced above. Thus the Sobolev space Hα,s which
we deal with is simply given by Hα,s =

⊗s
j=1 Hα. Then it follows from [1,

Section 8] that the reproducing kernel of the space Hα,s is the product of the
reproducing kernels for the one-dimensional space Hα. Therefore, Hα,s is the
reproducing kernel Hilbert space with the inner product

〈f, g〉α,s =
∑

u⊆{1,...,s}

∑

ru∈{0,...,α−1}|u|

∫

[0,1)s−|u|

(

∫

[0,1)|u|

f (ru,α)(x) dxu

)(

∫

[0,1)|u|

g(ru,α)(x) dxu

)

dx{1,...,s}\u,

for f, g ∈ Hα,s, and the reproducing kernel

Kα,s(x,y) =

s
∏

j=1

Kα(xj , yj),

for x = (x1, . . . , xs),y = (y1, . . . , ys) ∈ [0, 1)s. In the above, we use the following
notation: For u ⊆ {1, . . . , s} and x ∈ [0, 1)s, we write xu = (xj)j∈u. Moreover,
for ru = (rj)j∈u ∈ {0, . . . , α − 1}|u|, (ru,α) denotes the s-dimensional vector
whose j-th component equals rj if j ∈ u, and α otherwise. Note that an integral
and sum over the empty set is defined to be the identity operator.

2.3 Walsh functions

Here we recall the definition of Walsh functions. First let us define the one-
dimensional Walsh functions.

Definition 9. For b ∈ N, b ≥ 2, let ωb := exp(2π
√
−1/b). For k ∈ N0, we de-

note the b-adic expansion of k by k =
∑∞

i=1 κib
i−1, where all except a finite num-

ber of κi are 0. The k-th b-adic Walsh function bwalk : [0, 1) → {1, ωb, . . . , ω
b−1
b }

is defined by

bwalk(x) := ωκ1ξ1+κ2ξ2+···
b ,

where we denote the unique b-adic expansion of x ∈ [0, 1) by x =
∑∞

i=1 ξib
−i

with ξi ∈ Fb.

The above definition can be extended to the multi-variate case as follows.

Definition 10. For b ∈ N, b ≥ 2 and k = (k1, . . . , ks) ∈ N
s
0, the k-th b-adic

Walsh function bwalk : [0, 1)
s → {1, ωb, . . . , ω

b−1
b } is defined by

bwalk(x) :=

s
∏

j=1

bwalkj
(xj).

Since we shall always use Walsh functions in a fixed prime base b, we omit the
subscript and simply write walk or walk.

9



As shown in [11, Theorem A.11], the Walsh system {walk : k ∈ N
s
0} is a

complete orthonormal system in L2([0, 1)s) for any s ∈ N. Thus, we can define
the Walsh series of f ∈ L2([0, 1)s) by

∑

k∈Ns
0

f̂(k)walk(x),

where f̂(k) denotes the k-th Walsh coefficient of f defined by

f̂(k) :=

∫

[0,1)s
f(x)walk(x) dx.

Regarding the reproducing kernel Kα,s given in the last subsection, we have

K̂α,s(k, l) :=

∫

[0,1)2s
Kα,s(x,y)walk(x)wall(y) dx dy

=

∫

[0,1)2s

s
∏

j=1

Kα(xj , yj)walkj
(xj)wallj (yj) dx dy

=

s
∏

j=1

∫

[0,1)2
Kα(xj , yj)walkj

(xj)wallj (yj) dxj dyj =

s
∏

j=1

K̂α(kj , lj),

(1)

for any k = (k1, . . . , ks), l = (l1, . . . , ls) ∈ N
s
0. As shown in [2, Proposition 20],

there exists a positive constant Dα,b such that

∣

∣

∣K̂α(k, l)
∣

∣

∣ ≤ Dα,bb
−µα(k)−µα(l) (2)

for any k, l ∈ N0. In order to ensure the pointwise absolute convergence of the
Walsh series of Kα,s, it suffices to prove that Kα,s is continuous, which is in fact
trivial, and that

∑

k,l∈Ns
0

∣

∣

∣K̂α,s(k, l)
∣

∣

∣ < ∞. (3)

To address the proof of our main result first, we postpone the proof of (3)
to Section 4, where the result in Subsection 3.1 shall be used when α = 1.
Nevertheless, for any α ∈ N, the following pointwise equality holds

Kα,s(x,y) =
∑

k,l∈N
s
0

K̂α,s(k, l)walk(x)wall(y)

=
∑

k,l∈Ns
0





s
∏

j=1

K̂α(kj , lj)



walk(x)wall(y).

3 Proof of the main result

We repeat the main result of this paper for the reader’s convenience:
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Theorem 1. Let b be a prime, and s, α ∈ N. Let S be an infinite-dimensional

order 2α + 1 digital sequence over the finite field Fb, and let P
(s)
N be the set of

the first N points of the projection of S onto the first s coordinates for N ∈ N.
Then for any m ∈ N, we have

ewor(Hα,s;P
(s)
bm ) ≤ Cα,b,s

m(s−1)/2

bαm
,

where Cα,b,s is positive and independent of m.

Again we recall that the infinite-dimensional order 2α + 1 digital sequence
S can be constructed by applying the digit interlacing composition D2α+1 to

the infinite-dimensional order 1 digital sequence S1. Thus the point set P
(s)
bm is

obtained as

S1 → D2α+1(S1) = S → P
(s)
bm .

Throughout this section we write P instead of P
(s)
bm for ease of notation, and

denote the dual net of P by P⊥. As stated in Remark 1, P is an order 2α+ 1
digital (t,m, s)-net with t independent of m. Moreover, for f, g : N → R, we
write f(m) ≪a,b g(m) if there exists a positive constant C which depends on
some parameters (a and b in this case) such that f(m) ≤ Cg(m) for all m. We
first give the proof of Theorem 1 by using Lemma 8, which is shown later.

Proof of Theorem 1. In order to prove Theorem 1, it suffices from Definition 4
and Remark 1 to prove that the inequality

ewor(Hα,s;P
(s)
bm ) ≪α,b,s,t

m(s−1)/2

bαm
(4)

holds for any m ∈ N.
Using [2, Theorem 15], (1) and (2), we have

(ewor(Hα,s;P ))
2
=

∑

k,l∈P⊥\{0}

K̂α,s(k, l)

≤
∑

k,l∈P⊥\{0}

∣

∣

∣K̂α,s(k, l)
∣

∣

∣ =
∑

k,l∈P⊥\{0}

s
∏

j=1

∣

∣

∣K̂α(kj , lj)
∣

∣

∣

≪α,b,s

∑

k,l∈P⊥\{0}

K̂α,s(k,l) 6=0

s
∏

j=1

b−µα(kj)−µα(lj)

=
∑

k,l∈P⊥\{0}

K̂α,s(k,l) 6=0

b−µα(k)−µα(l).

Let us recall the interpolation inequality for Dick metric functions given in [15,
Lemma 3.1], which states that for α, β ∈ N with 1 < α ≤ β we have

µα(k) ≥
α− 1

β − 1
µβ(k) +

β − α

β − 1
µ1(k),
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for any k ∈ N
s
0. Since we only consider the case β = 2α+1 in the following, we

simply write

µα(k) ≥ Aµ2α+1(k) +Bµ1(k), (5)

where A = (α − 1)/(2α) and B = (α + 1)/(2α). It follows from the inequality
(5) and Definition 8 that

(ewor(Hα,s;P ))
2 ≪α,b,s

∑

k,l∈P⊥\{0}

K̂α,s(k,l) 6=0

b−µα(k)−µα(l)

≤
∑

k,l∈P⊥\{0}

K̂α,s(k,l) 6=0

b−A(µ2α+1(k)+µ2α+1(l))−B(µ1(k)+µ1(l))

≤ b−2Aρ2α+1(P )
∑

k,l∈P⊥\{0}

K̂α,s(k,l) 6=0

b−B(µ1(k)+µ1(l))

= b−2Aρ2α+1(P )
∞
∑

z=2ρ1(P )

∑

k,l∈P⊥\{0}

K̂α,s(k,l) 6=0,µ1(k)+µ1(l)=z

b−Bz,

= b−2Aρ2α+1(P )
∞
∑

z=2ρ1(P )

|Jα(z)|
bBz

, (6)

where we define

Jα(z) := {(k, l) ∈ (P⊥ \ {0})2 : K̂α,s(k, l) 6= 0, µ1(k) + µ1(l) = z}. (7)

Plugging the bound on |Jα(z)| which will be given in Lemma 8, i.e.,

|Jα(z)| ≪α,b,s,t (z − 2ρ1(P ))2sα+1zs−1b(z−2ρ1(P ))/2,

into (6) and using the change of variables z = κ+ 2ρ1(P ), we obtain

(ewor(Hα,s;P ))2 ≪α,b,s,t b
−2Aρ2α+1(P )

∞
∑

κ=0

κ2αs+1(κ+ 2ρ1(P ))s−1bκ/2

bB(κ+2ρ1(P ))

≪s
ρ1(P )s−1

b2Aρ2α+1(P )+2Bρ1(P )

∞
∑

κ=0

κs(2α+1)

bκ/(2α)

≪α,b,s
ms−1

b2Aρ2α+1(P )+2Bρ1(P )
,

where the last inequality stems from the facts that the sum over κ is finite and
depends only on s, α, b and that ρ1(P ) cannot be larger than m. Finally, since
it follows from Lemmas 2 and 3 that

2Aρ2α+1(P ) + 2Bρ1(P ) ≥ α− 1

α
((2α+ 1)m− t) +

α+ 1

α
(m− ⌈t/(2α+ 1)⌉)

= 2αm− α− 1

α
t− α+ 1

α
⌈t/(2α+ 1)⌉,

we have

(ewor(Hα,s;P ))
2 ≪α,b,s,t

ms−1

b2αm
.

Thus the result follows by taking the square root.

12



3.1 Sparsity of the Walsh coefficients

Here we show the sparsity of the Walsh coefficients K̂α,s in a stronger form
than that given by the authors in [16, Section 4.1]. Let us consider the one-
dimensional case first. As can be seen from [2, Section 3.1], the Walsh coefficient
of the univariate reproducing kernel Kα is given by

K̂α(k, l) =

α
∑

r=0

b̂r(k)b̂r(l) + (−1)α+1b̂2α,per(k, l), (8)

for k, l ∈ N0, where we write

b̂r(k) :=

∫ 1

0

Br(x)

r!
walk(x) dx,

b̂r,per(k, l) :=

∫ 1

0

∫ 1

0

B̃r(|x− y|)
r!

walk(x)wall(y) dxdy,

where B̃r : R → R is defined by extending Br periodically to R. Note that we
have Br(|x − y|) = B̃r(x − y) for even r and Br(|x − y|) = (−1)1x<y B̃r(x − y)
for odd r for any x, y ∈ [0, 1), where 1x<y equals 1 if x < y and 0 otherwise.

In order to prove that the Walsh coefficients K̂α are sparse, i.e., K̂α(k, l) = 0
for many choices of k, l ∈ N0, we introduce the notion of type (p, q).

Definition 11. For k, l ∈ N0, we denote the b-adic expansions of k and l by

k =

v
∑

i=1

κib
ci−1 and l =

w
∑

i=1

λib
di−1,

respectively, where κ1, . . . , κv, λ1, . . . , λw ∈ {1, . . . , b−1}, c1 > c2 > · · · > cv > 0
and d1 > d2 > · · · > dw > 0. For k = 0 (l = 0, resp.), we assume that v = 0
and κ0b

c0−1 = 0 (w = 0 and λ0b
d0−1 = 0, resp.). For p, q ∈ N0, we write

k(p) =

v
∑

i=p+1

κib
ci−1 and l(q) =

w
∑

i=q+1

λib
di−1,

where the empty sum equals 0. Then we say that (k, l) is of type (p, q) if k(p) =
l(q) and κpb

cp−1 6= λqb
dq−1, where we set κ0b

c0−1 = λ0b
d0−1 = 0, except the

case k = l where we say that (k, l) is of type (0, 0).

Remark 3. If (k, l) is of type (p, q), then it follows from the above definition
that v− p = w− q, and that κv−i = λw−i and cv−i = dw−i for all 0 ≤ i < v− p.
For any k, l ∈ N0, there is a unique set of nonnegative integers p, q with p ≤ v
and q ≤ w such that (k, l) is of type (p, q).

Now the sparsity of the Walsh coefficients can be formulated as follows.

Proposition 1. Let k, l ∈ N0 such that (k, l) is of type (p, q) with p+ q > 2α.
Then we have K̂α(k, l) = 0.

In order to prove Proposition 1, it suffices to show that every term on the right-
hand side of (8) is 0 whenever (k, l) is of type (p, q) such that p+ q > 2α, which
shall be proven in Lemmas 4 and 5 below.
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Lemma 4. Let k, l ∈ N0 such that (k, l) is of type (p, q) with p+ q > 2α. Then

we have b̂r(k)b̂r(l) = 0 for all 0 ≤ r ≤ α.

Proof. Since p+q > 2α, we must have either p > α or q > α, which implies that
either v > α or w > α holds, i.e., the b-adic expansion of either k or l contains
more than α non-zero terms. Then it is known from [6, Lemma 3.7] that either
the k-th or l-th Walsh coefficients of polynomials of degree less than or equal to
α are all 0. This means either b̂r(k) = 0 or b̂r(l) = 0 for all 0 ≤ r ≤ α, which
completes the proof.

Lemma 5. For r ∈ N, r ≥ 2, let k, l ∈ N0 such that (k, l) is of type (p, q) with

p+ q > r. Then we have b̂r,per(k, l) = 0.

Proof. We prove this lemma by induction on r ≥ 2.
Let us consider the case r = 2 first. If (k, l) is of type (p, q) with p+ q > 2,

it never follows that k = l, k(1) = l(1) with k 6= l, k(1) = l, k = l(1), k(2) = l, or
k = l(2), since in such cases (k, l) becomes of type (p, q) with p+ q = 0, 2, 1, 1,
2 and 2, respectively. Then the result immediately follows from [7, Lemma 10].

Now assume that the result holds true for r − 1. That is, we assume that

b̂r−1,per(k, l) = 0 for k, l ∈ N0 of type (p, q) with p+ q > r − 1. (9)

If either k = 0 or l = 0 holds, the result b̂r,per(k, l) = 0 immediately follows from
[7, Lemma 11]. Thus we focus on the case k, l > 0 in the following. Moreover,

since b̂r,per(l, k) = b̂r,per(k, l), we can restrict ourselves to the case p > r/2. As
in [11, Equation 14.18], for any k, l ∈ N and r > 2 we have the identity

b̂r,per(k, l) = − 1

bc1

( 1

1− ω−κ1

b

b̂r−1,per(k
(1), l) +

(

1

2
+

1

ω−κ1

b − 1

)

b̂r−1,per(k, l)

+

∞
∑

a=1

b−1
∑

θ=1

1

ba(ωθ
b − 1)

b̂r−1,per(θb
a+c1−1 + k, l)

)

.

Thus, in order to prove b̂r,per(k, l) = 0 for k, l ∈ N of type (p, q) with p+ q > r,

it suffices to prove that (i) b̂r−1,per(k
(1), l) = 0, (ii) b̂r−1,per(k, l) = 0 and (iii)

b̂r−1,per(θb
a+c1−1+k, l) = 0 for any a ∈ N and 1 ≤ θ ≤ b− 1 whenever p+ q > r

and p > r/2.

First, from the induction assumption (9), it is trivial that b̂r−1,per(k, l) = 0
also for k, l ∈ N of type (p, q) with p+ q > r. The remaining two items (i) and
(iii) can be proven in the following way.

As k(1) can be written as

k(1) =

p
∑

i=2

κib
ci−1 +

w
∑

i=q+1

λib
di−1,

where κpb
cp−1 6= λqb

dq−1, (k(1), l) is of type (p− 1, q), where p− 1 + q > r − 1.

Thus, again from the induction assumption (9), it follows that b̂r−1,per(k
(1), l) =

0, which completes the proof of the item (i).
Similarly, as θba+c1−1 + k can be written as

θba+c1−1 + k = θba+c1−1 +

p
∑

i=1

κib
ci−1 +

w
∑

i=q+1

λib
di−1,
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where κpb
cp−1 6= λqb

dq−1, for any a ∈ N and 1 ≤ θ ≤ b − 1, (θba+c1−1 + k, l) is
of type (p+1, q), where p+1+ q > r+1. Again from the induction assumption

(9), it follows that b̂r−1,per(θb
c+a1−1 + k, l) = 0, which completes the proof of

the item (iii).

Let us move on to the high-dimensional case. As a corollary of Proposition 1,
the sparsity of the Walsh coefficients K̂α,s can be formulated as follows.

Corollary 1. Let k = (k1, . . . , ks), l = (l1, . . . , ls) ∈ N0 such that (kj , lj) is of
type (pj , qj) with pj + qj > 2α for at least one index j ∈ {1, . . . , s}. Then we

have K̂α,s(k, l) = 0.

Proof. For an index j ∈ {1, . . . , s} such that (kj , lj) is of type (pj , qj) with

pj + qj > 2α, it follows from Proposition 1 that K̂α(kj , lj) = 0. The result then
follows from (1).

3.2 A bound on |J
α
(z)|

Here we give a bound on the cardinality of Jα(z) defined in (7) by using the
result on the sparsity of the Walsh coefficients K̂α,s and the property of higher
order digital nets. For this purpose, we introduce the following two sets

Rα(k, z2) := {l ∈ P⊥ \ {0} : µ1(l) = z2, K̂α,s(k, l) 6= 0},
Jα(z1, z2) := {(k, l) ∈ (P⊥ \ {0})2 : µ1(k) = z1, µ1(l) = z2, K̂α,s(k, l) 6= 0},

for z1, z2 ∈ N and k ∈ N
s
0. In what follows,

(

i
j

)

denotes the binomial coefficient,

where we set
(

i
j

)

= 0 if j > i.

We first give a bound on |Rα(k, z2)|. It is obvious from Definition 8 that
µ1(l) ≥ ρ1(P ) for l ∈ P⊥ \ {0}. Thus |Rα(k, z2)| = 0 for z2 < ρ1(P ). For
z2 ≥ ρ1(P ) the following holds true.

Lemma 6. Let P be an order 2α+1 digital (t,m, s)-net over Fb. For z2 ≥ ρ1(P )
and k ∈ N

s
0, we have

|Rα(k, z2)| ≪α,b,s

2α
∏

i=1

(

(i + 1)z2 − ρi+1(P ) + s

s

)

.

Proof. For p = (p1, . . . , ps), q = (q1, . . . , qs) ∈ N
s
0, define the set

Rp,q(k, z2) := {l ∈ P⊥ \ {0} : µ1(l) = z2, (kj , lj) is of type (pj , qj)}.

It follows from Corollary 1 that in order to have K̂α,s(k, l) 6= 0, (kj , lj) must be
of type (pj , qj) with pj + qj ≤ 2α for all j = 1, . . . , s. Thus we have

Rα(k, z2) ⊂
⋃

p,q∈N
s
0

pj+qj≤2α,∀j

Rp,q(k, z2). (10)

Note that each Rp,q(k, z2) is a subset of P
⊥ and that the above union is disjoint.

Further define the set

S2α(z2) :=
{

(δi,j , ζi,j)1≤i≤2α,1≤j≤s ∈ (N0 × {1, . . . , b− 1})2sα
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:
s
∑

j=1

δi,j ≤ (i+ 1)z2 − ρi+1(P ), i = 1, . . . , 2α
}

,

and the mapping φ2α from N
s
0 to (N0 × {1, . . . , b− 1})2sα by

(lj)1≤j≤s 7→ (di,j − di+1,j , λi,j)1≤i≤2α,1≤j≤s,

where we denote the b-adic expansion of lj by lj =
∑wj

i=1 λi,jb
di,j−1. For i > wj ,

we set (di,j , λi,j) = (0, 1).
First we show that the image of the restriction of φ2α to Rp,q(k, z2) is in-

cluded in S2α(z2) for any p, q ∈ N
s
0 with pj + qj ≤ 2α. From Definition 8 we

have

µi(l) =

s
∑

j=1

i
∑

l=1

dl,j ≥ ρi(P ),

for any i ∈ N and l ∈ P⊥ \ {0}. Thus it follows that again for any i ∈ N

s
∑

j=1

(di,j − di+1,j) =

s
∑

j=1

di,j −





s
∑

j=1

i+1
∑

l=1

dl,j −
s
∑

j=1

i
∑

l=1

dl,j





≤
s
∑

j=1

di,j − ρi+1(P ) +

s
∑

j=1

i
∑

l=1

dl,j

≤
s
∑

j=1

d1,j − ρi+1(P ) +

s
∑

j=1

id1,j

= (i+ 1)µ1(l)− ρi+1(P ) = (i+ 1)z2 − ρi+1(P ).

Thus it implies that (di,j − di+1,j , λi,j)1≤i≤2α,1≤j≤s ∈ S2α(z2).
Next we show that the restricted map φ2α|Rp,q(k,z2) : Rp,q(k, z2) → S2α(z2)

is injective. We denote the b-adic expansion of kj by kj =
∑vj

i=1 κi,jb
ci,j−1 for

k = (k1, . . . , ks) ∈ N
s
0. Let l ∈ Rp,q(k, z2) and φ2α(l) = (δi,j , ζi,j)1≤i≤2α,1≤j≤s.

It suffices to show that l is determined by (δi,j , ζi,j)1≤i≤2α,1≤j≤s, k, p and q.
Since (kj , lj) is of type (pj , qj), we have

wj
∑

i=qj+1

λi,jb
di,j−1 =

vj
∑

i=pj+1

κi,jb
ci,j−1,

where the empty sum equals 0, and dqj+1,j = cpj+1,j . Note that if qj = wj ,
which is equivalent to pj = vj , then we set dwj+1,j = cvj+1,j = 0. Further, by
the definition of φ2α and the fact qj ≤ 2α, for all 1 ≤ i ≤ qj we have

λi,j = ζi,j and di,j =

qj
∑

h=i

δh,j + dqj+1,j =

qj
∑

h=i

δh,j + cpj+1,j .

Thus lj can be determined by (δi,j , ζi,j)1≤i≤2α, kj , pj and qj as

lj =

wj
∑

i=1

λi,jb
di,j−1 =

qj
∑

i=1

ζi,jb
cpj+1,j+

∑qj

h=i
δh,j−1 +

vj
∑

i=pj+1

κi,jb
ci,j−1,

16



where the empty sum equals 0. This implies the injectivity of φ2α|Rp,q(k,z2).
By using (10) and the result that φ2α|Rp,q(k,z2) : Rp,q(k, z2) → S2α(z2) is

injective, we obtain

|Rα(k, z2)| ≤
∑

p,q∈N
s
0

pj+qj≤2α,∀j

|Rp,q(k, z2)| ≤
∑

p,q∈N
s
0

pj+qj≤2α,∀j

|S2α(z2)|

= ((α + 1)(2α+ 1))s|S2α(z2)| ≪α,s |S2α(z2)|,

where the number (α+1)(2α+1) represents the total number of possible com-
binations of p, q ∈ N0 such that p + q ≤ 2α. Finally the cardinality of S2α(z2)
is given by

|S2α(z2)| = (b− 1)2αs
2α
∏

i=1

∣

∣

∣

∣

∣

∣







(δi,j)1≤j≤s ∈ N
s
0 :

s
∑

j=1

δi,j ≤ (i + 1)z2 − ρi+1(P )







∣

∣

∣

∣

∣

∣

= (b− 1)2αs
2α
∏

i=1

(i+1)z2−ρi+1(P )
∑

ri=0

∣

∣

∣

∣

∣

∣







(δi,j)1≤j≤s ∈ N
s
0 :

s
∑

j=1

δi,j = ri







∣

∣

∣

∣

∣

∣

= (b− 1)2αs
2α
∏

i=1

(i+1)z2−ρi+1(P )
∑

ri=0

(

ri + s− 1

s− 1

)

= (b− 1)2αs
2α
∏

i=1

(

(i+ 1)z2 − ρi+1(P ) + s

s

)

,

which completes the proof.

We move on to a bound on |Jα(z1, z2)|. It is again obvious from Definition 8
that µ1(k), µ1(l) ≥ ρ1(P ) for k, l ∈ P⊥ \ {0}. Thus |Jα(z1, z2)| = 0 when either
z1 < ρ1(P ) or z2 < ρ1(P ). For z1, z2 ≥ ρ1(P ) the following holds true.

Lemma 7. Let P be an order 2α+ 1 digital (t,m, s)-net over Fb. For z1, z2 ≥
ρ1(P ), we have

|Jα(z1, z2)| ≪α,b,s b
z1−ρ1(P )+1

(

z1 + s− 1

s− 1

) 2α
∏

i=1

(

(i + 1)z2 − ρi+1(P ) + s

s

)

.

Proof. From the definitions of Rα(k, z2) and Jα(z1, z2), we have

|Jα(z1, z2)| ≤ |{k ∈ P⊥ \ {0} : µ1(k) = z1}|
× max

k∈P⊥\{0}
µ1(k)=z1

|{l ∈ P⊥ \ {0} : µ1(l) = z2, K̂α,s(k, l) 6= 0}|

= |I(z1)| max
k∈P⊥\{0}
µ1(k)=z1

|Rα(k, z2)|,

where we write

I(z1) := {k ∈ P⊥ \ {0} : µ1(k) = z1}.
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By adapting [33, Lemma 2.2], we have

|I(z1)| = |{k ∈ P⊥ \ {0} : µ1(k) = z1}|
=

∑

d1,...,ds∈N0

d1+···+ds=z1

|{k ∈ P⊥ \ {0} : µ1(kj) = dj}|

≤
∑

d1,...,ds∈N0

d1+···+ds=z1

bd1+···+ds−ρ1(P )+1 = bz1−ρ1(P )+1

(

z1 + s− 1

s− 1

)

.

Moreover, the bound on |Rα(k, z2)| obtained in Lemma 6 is independent of the
choice of k. Hence the result follows.

Finally we give a bound on |Jα(z)|. Since µ1(k), µ1(l) ≥ ρ1(P ) for k, l ∈
P⊥ \ {0}, |Jα(z)| = 0 for z < 2ρ1(P ). For z ≥ 2ρ1(P ) we have the following
result.

Lemma 8. Let P be an order 2α + 1 digital (t,m, s)-net over Fb. For z ≥
2ρ1(P ), we have

|Jα(z)| ≪α,b,s,t (z − 2ρ1(P ))2sα+1zs−1b(z−2ρ1(P ))/2.

Proof. For z ≥ 2ρ1(P ), we have

Jα(z) =
⋃

z1,z2≥ρ1(P )
z1+z2=z

Jα(z1, z2).

Since the sets on the right-hand side above are pairwise disjoint, we have

|Jα(z)| =
∑

z1,z2≥ρ1(P )
z1+z2=z

|Jα(z1, z2)| ≤ 2
∑

ρ1(P )≤z1≤⌊z/2⌋
z2=z−z1

|Jα(z1, z2)|

where the last inequality stems from the symmetry of the Walsh coefficients, i.e.,

K̂α,s(l,k) = K̂α,s(k, l) for any k, l ∈ N
s
0. By using the bound on |Jα(z1, z2)|

given in Lemma 7, we have

|Jα(z)| ≪α,b,s

∑

ρ1(P )≤z1≤⌊z/2⌋
z2=z−z1

bz1−ρ1(P )+1

(

z1 + s− 1

s− 1

) 2α
∏

i=1

(

(i+ 1)z2 − ρi+1(P ) + s

s

)

.

It follows from Lemmas 2 and 3 that for 1 ≤ i ≤ 2α

(

(i+ 1)z2 − ρi+1(P ) + s

s

)

≤
(

(i+ 1)(z2 −m) + ⌈t(i+ 1)/(2α+ 1)⌉+ s− 1

s

)

≪α,b,s,t (z2 − ρ1(P ))s.

Also we have
(

z1 + s− 1

s− 1

)

≪s z
s−1
1 .
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Hence

|Jα(z)| ≪α,b,s,t

∑

ρ1(P )≤z1≤⌊z/2⌋
z2=z−z1

bz1−ρ1(P )+1zs−1
1 (z2 − ρ1(P ))2αs

≪b,s (z − 2ρ1(P ))b(z−2ρ1(P ))/2zs−1(z − 2ρ1(P ))2αs.

Thus the result follows.

4 Summability of the Walsh coefficients

In this section we prove:

Lemma 9. For α, s ∈ N,

∑

k,l∈Ns
0

∣

∣

∣K̂α,s(k, l)
∣

∣

∣ < ∞.

We would recall that this summability is needed to ensure the pointwise absolute
convergence of the Walsh series of Kα,s.

Proof. For α ≥ 2, by using (1) and (2), we have

∑

k,l∈Ns
0

∣

∣

∣K̂α,s(k, l)
∣

∣

∣ =
∑

k,l∈Ns
0

s
∏

j=1

∣

∣

∣K̂α,s(kj , lj)
∣

∣

∣ =





∑

k,l∈N0

∣

∣

∣K̂α(k, l)
∣

∣

∣





s

≤ Ds
α,b





∑

k,l∈N0

b−µα(k)−µα(l)





s

= Ds
α,b

(

∑

k∈N0

b−µα(k)

)2s

.

As shown in [5, Lemma 2.10], the last sum is bounded above by 1 + α + b−2.
Thus the result follows.

Let α = 1. Since the sum
∑

k∈N0
b−µ1(k) is no longer finite, we need to

exploit the sparsity of the Walsh coefficients obtained in Proposition 1. Since

∑

k,l∈Ns
0

∣

∣

∣K̂1,s(k, l)
∣

∣

∣ =





∑

k,l∈N0

∣

∣

∣K̂1(k, l)
∣

∣

∣





s

≤ Ds
1,b









∑

k,l∈N0

K̂1(k,l) 6=0

b−µ1(k)−µ1(l)









s

,

it suffices to prove that the last sum is finite. It follows from Proposition 1 that
K̂1(k, l) = 0 whenever (k, l) is of type (p, q) with p+ q > 2, so that

∑

k,l∈N0

K̂1(k,l) 6=0

b−µ1(k)−µ1(l) =
∑

p,q∈N0
p+q≤2

∑

k,l∈N0

(k, l): type (p, q)

b−µ1(k)−µ1(l)

=
∑

p,q∈N0
p+q≤2

∑

z1,z2∈N0

b−z1−z2 |Jp,q(z1, z2)|, (11)

where we define the set

Jp,q(z1, z2) := {(k, l) ∈ N
s
0 : µ1(k) = z1, µ1(l) = z2, (k, l) is of type (p, q)}.
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In what follows, we estimate the cardinality of Jp,q(z1, z2) and the inner sum of
(11) for possible choices of p and q. Due to the symmetry of k and l, we only
consider the case p ≥ q.

1. p = q = 0: Since it follows that k = l, Jp,q(z1, z2) is empty if z1 6= z2.
Otherwise, the cardinality of Jp,q(z1, z2) equals the number of possible
choices for k such that µ1(k) = z1. Thus we have

|Jp,q(z1, z2)| =
{

0 if z1 6= z2,

⌈bz1−1(b− 1)⌉ otherwise,

and

∑

z1,z2∈N0

b−z1−z2 |Jp,q(z1, z2)| =
∑

z1∈N0

b−2z1⌈bz1−1(b − 1)⌉ = 1 +
1

b
.

2. p = 1, q = 0: Since k must be of the form κ1b
z1−1+ l, Jp,q(z1, z2) is empty

if z1 ≤ z2. Otherwise, the cardinality of Jp,q(z1, z2) equals the number of
possible choices for l such that µ1(l) = z2 times the number of possible
choices for κ1 ∈ {1, . . . , b− 1}. Thus we have

|Jp,q(z1, z2)| =
{

0 if z1 ≤ z2,

⌈bz2−1(b− 1)⌉(b− 1) otherwise,

and

∑

z1,z2∈N0

b−z1−z2 |Jp,q(z1, z2)| =
∑

z1>z2

b−z1−z2⌈bz2−1(b− 1)⌉(b− 1)

≤ (b − 1)
∑

z1>z2

b−z1−z2bz2

= (b − 1)

∞
∑

z1=1

b−z1

z1−1
∑

z2=0

1

= (b − 1)

∞
∑

z1=1

b−z1z1 < ∞.

3. p = 2, q = 0: Since k must be of the form κ1b
z1−1+κ2b

c2−1+ l, Jp,q(z1, z2)
is empty if z1 ≤ z2 + 1. Otherwise, the cardinality of Jp,q(z1, z2) equals
the number of possible choices for l such that µ1(l) = z2 times the number
of possible choices for κ1, κ2 ∈ {1, . . . , b− 1} and c2 ∈ {z2+1, . . . , z1− 1}.
Thus we have

|Jp,q(z1, z2)| =
{

0 if z1 ≤ z2 + 1,

⌈bz2−1(b − 1)⌉(b− 1)2(z1 − z2 − 1) otherwise,

and
∑

z1,z2∈N0

b−z1−z2 |Jp,q(z1, z2)|
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=
∑

z1>z2+1

b−z1−z2⌈bz2−1(b − 1)⌉(b− 1)2(z1 − z2 − 1)

≤ (b− 1)2
∑

z1>z2+1

b−z1−z2bz2(z1 − z2 − 1)

≤ (b− 1)2
∞
∑

z1=2

b−z1

z1−2
∑

z2=0

(z1 − z2 − 1)

=
(b− 1)2

2

∞
∑

z1=2

b−z1(z1 − 1)z1 < ∞.

4. p = q = 1: Since k and l are given of the forms k = κ1b
z1−1 + k′ and

l = λ1b
z2−1 + k′, respectively, with some 0 ≤ k′ < bmin(z1,z2)−1 and

κ1b
z1−1 6= λ1b

z2−1, the cardinality of Jp,q(z1, z2) equals the number of
possible choices for k′ times the number of possible choices for κ1, λ1 ∈
{1, . . . , b− 1}. Note that if z1 = z2, we have κ1 6= λ1. Thus we have

|Jp,q(z1, z2)| =
{

⌈bmin(z1,z2)−1⌉(b− 1)(b− 2) if z1 = z2,

⌈bmin(z1,z2)−1⌉(b− 1)2 otherwise,

≤ bmin(z1,z2)(b − 1),

and
∑

z1,z2∈N0

b−z1−z2 |Jp,q(z1, z2)| = (b− 1)
∑

z1,z2∈N0

b−z1−z2bmin(z1,z2)

≤ 2(b− 1)
∑

z1≥z2≥0

b−z1−z2bz2

= 2(b− 1)

∞
∑

z1=0

b−z1

z1
∑

z2=0

1

= 2(b− 1)
∞
∑

z1=0

b−z1(z1 + 1) < ∞.

In this way, since we only have six choices for p and q, and for each choice the
inner sum of (11) is shown to be finite, (11) itself is also finite. Thus the result
follows.
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[24] F. Y. Kuo, I. H. Slaon and H. Woźniakowski, Periodization strategy may
fail in high dimensions, Numer. Algorithms 46 (2007), 369–391.

[25] V. K. Nguyen, M. Ullrich and T. Ullrich, Change of variable in spaces of
mixed smoothness and numerical integration of multivariate functions on
the unit cube, ArXiv Preprint arXiv:1511.02036.

[26] H. Niederreiter, Low-discrepancy point sets, Monatsh. Math. 102 (1986),
155–167.

[27] H. Niederreiter, Low-discrepancy and low-dispersion sequences, J. Number
Theory 30 (1988), 51–70.

[28] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo
Methods, CBMS-NSF Regional Conference Series in Applied Mathemat-
ics, Vol. 63, SIAM, Philadelphia, 1992.

[29] H. Niederreiter and C. P. Xing, Rational Points on Curves over Finite
Fields: Theory and Applications, London Mathematical Society Lecture
Note Series 285, Cambridge University Press, Cambridge, 2001.
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