Skip to main content
Log in

Volumes for \({\mathrm{SL}}_N({\mathbb {R}})\), the Selberg Integral and Random Lattices

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

There is a natural left and right invariant Haar measure associated with the matrix groups GL\({}_N(\mathbb {R})\) and SL\({}_N(\mathbb {R})\) due to Siegel. For the associated volume to be finite it is necessary to truncate the groups by imposing a bound on the norm, or in the case of SL\({}_N(\mathbb {R})\), by restricting to a fundamental domain. We compute the asymptotic volumes associated with the Haar measure for GL\({}_N(\mathbb {R})\) and SL\({}_N(\mathbb {R})\) matrices in the case that the singular values lie between \(R_1\) and \(1/R_2\) in the former, and that the 2-norm, or alternatively the Frobenius norm, is bounded by R in the latter. By a result of Duke, Rudnick and Sarnak, such asymptotic formulas in the case of SL\({}_N(\mathbb {R})\) imply an asymptotic counting formula for matrices in SL\({}_N(\mathbb {Z})\). We discuss too the sampling of SL\({}_N(\mathbb {R})\) matrices from the truncated sets. By then using lattice reduction to a fundamental domain, we obtain histograms approximating the probability density functions of the lengths and pairwise angles of shortest length bases vectors in the case \(N=2\) and 3, or equivalently of shortest linearly independent vectors in the corresponding random lattice. In the case \(N=2\) these distributions are evaluated explicitly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. G. Akemann and Z. Burda, Universal microscopic correlations for products of independent Ginibre matrices, J. Phys. A 45 (2012), 465210.

    MathSciNet  MATH  Google Scholar 

  2. G. Akemann, J.R. Ipsen, and M. Kieburg, Products of rectangular random matrices: Singular values and progressive scattering, Phys. Rev. E 88 (2013), 052118.

    Article  Google Scholar 

  3. M.R. Bremner, Lattice basis reduction: an introduction to the LLL algorithm and its applications, CRC Press, Boca Raton, FL, 2012.

    MATH  Google Scholar 

  4. P. Diaconis and P.J. Forrester, Hurwitz and the origin of random matrix theory in mathematics, Random Matrices: Theory Appl. 6 (2017), 1730001.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Duke, Z. Rudnick and P. Sarnak, Density of integer points on affine homogeneous varieties, Duke Math. J. 81 (1993), 143–179.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Edelman and N. Raj Rao, Random matrix theory, Acta Numerica (A. Iserles, ed.), vol. 14, Cambridge University Press, Cambridge, 2005.

    Google Scholar 

  7. P.J. Forrester, Log-gases and random matrices, Princeton University Press, Princeton, NJ, 2010.

    MATH  Google Scholar 

  8. P.J. Forrester and J.P. Keating, Singularity dominated strong fluctuations for some random matrix averages, Commun. Math. Phys. 250 (2004), 119–131.

    Article  MathSciNet  MATH  Google Scholar 

  9. P.J. Forrester and E.M. Rains, A Fuchsian matrix differential equation for Selberg correlation integrals, Commun. Math. Phys. 309, (2012), 771–792.

    Article  MathSciNet  MATH  Google Scholar 

  10. P.J. Forrester and S.O. Warnaar, The importance of the Selberg integral, Bull. Am. Math. Soc. 45 (2008), 489–534.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Fuchs and I. Rivin, Generic thinness in finitely generated subgroups of  \(SL{}_n(\mathbb{Z})\), arXiv:1506.01735.

  12. D. Goldstein and A.Mayer, On the equidistribution of Hecke points, Forum Math. 15 (2003), 165–189.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Hardy, Average characteristic polynomials of determinant point processes, Ann. L’Institut Henri Poincaré – Prob. et Stat. 51 (2015), 283–303.

    Google Scholar 

  14. A. Hurwitz, Über die Erzeugung der Invarianten durch Integration, Nachr. Ges. Wiss. Göttingen (1897), 71–90.

  15. H. Jack, The asymptotic value of the volume of a certain set of matrices, Proc. Edinburgh Math. Soc. 15 (1967), 209–213.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Jack and A.M. Macbeath, The volume of a certain set of matrices, Math. Proc. Camb. Phil. Soc. 55 (1959), 213–223.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Kieburg, A.B.J. Kuijlaars and D. Stivigny Singular value statistics of matrix products with truncated unitary matrices, Int. Math. Research Notices 2016 (2016), 3392–3424.

  18. S. Kim, On the shape of a high-dimensional random lattice, Ph.D. thesis, Stanford University, 2015.

  19. S. Kim, On the distribution of lengths of short vectors in a random lattice, Mathematische Zeitschrift 282 (2016), 1117–1126.

    Article  MathSciNet  MATH  Google Scholar 

  20. A.M. Macbeath and C.A. Rogers, A modified form of Siegel’s mean value theorem, Math. Proc. Camb. Phil. Soc. 51 (1955), 565–576.

    Article  MathSciNet  MATH  Google Scholar 

  21. A.M. Macbeath and C.A. Rogers, Siegel’s mean value theorem in the geometry of numbers, Math. Proc. Camb. Phil. Soc. 54 (1958), 139–151.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Marklof, The \(n\) -point correlations between value of a linear form, Ergod. Th. & Dyn. Systems 20 (2000), 1127–1172.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Marklof and A. Strömbergsson, Kinetic transport in the two-dimensional periodic Lorentz gas, Nonlinearity 21 (2008), 1413–1422.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Marklof and A. Strömbergsson, The distribution of free path lengths in the periodic Lorentz gas and related lattice point problems, Ann. Math. 172 (2010): 1949–2033.

    Article  MathSciNet  MATH  Google Scholar 

  25. J. Marklof and A. Strömbergsson, The periodic Lorentz gas in the Boltzmann-Grad limit: asymptotic estimates, Geometric and Functional Analysis 21 (2011) 560–647.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Marklof and A. Strömbergsson, Diameters of random circulant graphs, Combinatorica 33 (2013) 429-466.

    Article  MathSciNet  MATH  Google Scholar 

  27. A.M. Mathai, Jacobians of matrix transformations and functions of matrix arguments, World Scientific, Singapore, 1997.

    Book  MATH  Google Scholar 

  28. H. Minkowski, Diskontinuitätsbereich für arithmetische äquivalenz, J. Reine Angew. Math. 129 (1905), 220–274.

    MathSciNet  MATH  Google Scholar 

  29. R.J. Muirhead, Aspects of multivariate statistical theory, Wiley, New York, 1982.

    Book  MATH  Google Scholar 

  30. P.Q. Nguyen and D. Stehlé, Low-dimensional lattice basis reduction revisited, Algorithmic number theory, Lecture notes in computer science, vol. 3076, Springer Berlin Heidelberg, 2001, pp. 338–357.

  31. G. Parisi, On the most compact regular lattices in large dimensions: A statistical mechanical approach, J. Stat. Phys. 132 (2008), 207–234.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Rivin, How to pick a random integer matrix? (and other questions), Math. Computation 85 (2016), 783–797.

    Article  MathSciNet  MATH  Google Scholar 

  33. C.A. Rogers, The moments of the number of points of a lattice in a bounded set, Phil. Trans. R. Soc. Lond. A 248 (1955), 225–251.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Selberg, Bemerkninger om et multipelt integral, Norsk. Mat. Tidsskr. 24 (1944), 71–78.

    Google Scholar 

  35. I. Semaev, A 3-dimensional lattice reduction algorithm, Proc. of CALC ’01 (P. Huber and M. Rosenblatt, eds.), Lecture notes in computer science, vol. 2146, Springer-Verlag, 2001, pp. 183–193.

  36. S. Shlosman and M.A. Tsfasman, Random lattices and random sphere packings: typical properties, Moscow Math. Journal 1 (2001), 73–89.

    Article  MathSciNet  MATH  Google Scholar 

  37. C.L. Siegel, A mean value theorem in geometry of numbers, Ann. Math. 46 (1945), 340–347.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Södergren, On the Poisson distribution of lengths of lattice vectors in a random lattice, Mathematische Zeitschrift 269 (2011), 945–954.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Södergren, On the distribution of angles between the  \(N\) shortest vectors in a random lattice, J. London Math. Soc. 84 (2011), 749–764.

  40. A. Strömbergsson and A. Venkatesh, Small solutions to linear congruences and Hecke equidistribution, Acta Arith., 118 (2005), 41-78.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Terras, Harmonic analysis on symmetric spaces and applications, vol. 2, Springer-Verlag, Birlin, 1988.

    Book  MATH  Google Scholar 

  42. K. Zyczkowski and H.-J. Sommers, Induced measures in the space of mixed quantum states, J. Phys. A 34 (2001), 7111–7125.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research Project is part of the programme of study supported by the ARC Centre of Excellence for Mathematical and Statistical Frontiers. Additional partial support from the Australian Research Council through the Grant DP140102613 is also acknowledged. Helpful and appreciated remarks on an earlier draft of this work have been made by J. Marklof and A. Strömbergsson, with the latter being responsible for the comments in Remark 4.6 relating to [40]. Useful comments of a referee are also to be thanked.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Forrester.

Additional information

Communicated by Ian Sloan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forrester, P.J. Volumes for \({\mathrm{SL}}_N({\mathbb {R}})\), the Selberg Integral and Random Lattices. Found Comput Math 19, 55–82 (2019). https://doi.org/10.1007/s10208-018-9376-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-018-9376-1

Keywords

Mathematics Subject Classification