Skip to main content

Advertisement

Log in

Functional Equivariance and Conservation Laws in Numerical Integration

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

Preservation of linear and quadratic invariants by numerical integrators has been well studied. However, many systems have linear or quadratic observables that are not invariant, but which satisfy evolution equations expressing important properties of the system. For example, a time-evolution PDE may have an observable that satisfies a local conservation law, such as the multisymplectic conservation law for Hamiltonian PDEs. We introduce the concept of functional equivariance, a natural sense in which a numerical integrator may preserve the dynamics satisfied by certain classes of observables, whether or not they are invariant. After developing the general framework, we use it to obtain results on methods preserving local conservation laws in PDEs. In particular, integrators preserving quadratic invariants also preserve local conservation laws for quadratic observables, and symplectic integrators are multisymplectic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. For some methods, such as implicit Runge–Kutta methods, \( \Phi _{ \Delta t , f } (y) \) might only be defined for sufficiently small \( \Delta t \). Including such integrators requires only the minor modification of viewing \( \Phi _f \) as a partial function.

References

  1. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, vol. 75 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1988.

  2. A. L. Araújo, A. Murua, and J. M. Sanz-Serna, Symplectic methods based on decompositions, SIAM J. Numer. Anal., 34 (1997), pp. 1926–1947.

    Article  MathSciNet  Google Scholar 

  3. U. M. Ascher and R. I. McLachlan, Multisymplectic box schemes and the Korteweg–de Vries equation, Appl. Numer. Math., 48 (2004), pp. 255–269.

    Article  MathSciNet  Google Scholar 

  4. Y. Berchenko-Kogan and A. Stern, Constraint-preserving hybrid finite element methods for Maxwell’s equations, Found. Comput. Math., 21 (2021), pp. 1075–1098.

    Article  MathSciNet  Google Scholar 

  5. P. B. Bochev and C. Scovel, On quadratic invariants and symplectic structure, BIT, 34 (1994), pp. 337–345.

    Article  MathSciNet  Google Scholar 

  6. T. J. Bridges and S. Reich, Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity, Phys. Lett. A, 284 (2001), pp. 184–193.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. K. Burrage and J. C. Butcher, Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal., 16 (1979), pp. 46–57.

    Article  ADS  MathSciNet  Google Scholar 

  8. J. C. Butcher, A stability property of implicit Runge–Kutta methods, BIT, 15 (1975), pp. 358–361.

    Article  Google Scholar 

  9. P. Chartier and A. Murua, Preserving first integrals and volume forms of additively split systems, IMA J. Numer. Anal., 27 (2007), pp. 381–405.

    Article  MathSciNet  Google Scholar 

  10. B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47 (2009), pp. 1319–1365.

    Article  MathSciNet  Google Scholar 

  11. T. de Donder, Théorie Invariantive du Calcul des Variations, Gauthier-Villars, second ed., 1935.

  12. G. Frasca-Caccia and P. E. Hydon, A new technique for preserving conservation laws, Foundations of Computational Mathematics, (2021). https://doi.org/10.1007/s10208-021-09511-1.

    Article  Google Scholar 

  13. M. Günther, A. Sandu, and A. Zanna, Symplectic GARK methods for Hamiltonian systems, 2021. Preprint, arXiv:2103.04110 [math.NA].

  14. E. Hairer, Order conditions for numerical methods for partitioned ordinary differential equations, Numer. Math., 36 (1980/81), pp. 431–445.

  15. E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration, vol. 31 of Springer Series in Computational Mathematics, Springer, Heidelberg, 2010.

  16. A. Iserles, G. R. W. Quispel, and P. S. P. Tse, B-series methods cannot be volume-preserving, BIT, 47 (2007), pp. 351–378.

    Article  MathSciNet  Google Scholar 

  17. R. McLachlan and M. Perlmutter, Conformal Hamiltonian systems, J. Geom. Phys., 39 (2001), pp. 276–300.

    Article  ADS  MathSciNet  Google Scholar 

  18. R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, B-series methods are exactly the affine equivariant methods, Numer. Math., 133 (2016), pp. 599–622.

    Article  MathSciNet  Google Scholar 

  19. R. I. McLachlan and G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14 (2001), pp. 1689–1705.

    Google Scholar 

  20. R. I. McLachlan and G. R. W. Quispel, Splitting methods, Acta Numer., 11 (2002), pp. 341–434.

    Article  MathSciNet  Google Scholar 

  21. R. I. McLachlan, B. N. Ryland, and Y. Sun, High order multisymplectic Runge–Kutta methods, SIAM Journal on Scientific Computing, 36 (2014), pp. A2199–A2226.

    Article  MathSciNet  Google Scholar 

  22. R. I. McLachlan and A. Stern, Multisymplecticity of hybridizable discontinuous Galerkin methods, Found. Comput. Math., 20 (2020), pp. 35–69.

    Article  MathSciNet  Google Scholar 

  23. H. Munthe-Kaas and O. Verdier, Aromatic Butcher series, Found. Comput. Math., 16 (2016), pp. 183–215.

    Article  MathSciNet  Google Scholar 

  24. J.-C. Nédélec, Mixed finite elements in \({{\mathbb{R}}}^{3}\), Numer. Math., 35 (1980), pp. 315–341.

    Article  MathSciNet  Google Scholar 

  25. P. J. Olver, Applications of Lie groups to differential equations, vol. 107 of Graduate Texts in Mathematics, Springer-Verlag, New York, second ed., 1993.

  26. S. Reich, Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations, J. Comput. Phys., 157 (2000), pp. 473–499.

    Article  ADS  MathSciNet  Google Scholar 

  27. B. N. Ryland and R. I. McLachlan, On multisymplecticity of partitioned Runge-Kutta methods, SIAM J. Sci. Comput., 30 (2008), pp. 1318–1340.

    Article  MathSciNet  Google Scholar 

  28. M. A. Sánchez, C. Ciuca, N. C. Nguyen, J. Peraire, and B. Cockburn, Symplectic Hamiltonian HDG methods for wave propagation phenomena, J. Comput. Phys., 350 (2017), pp. 951–973.

    Article  ADS  MathSciNet  Google Scholar 

  29. Z. Sun and Y. Xing, On structure-preserving discontinuous Galerkin methods for Hamiltonian partial differential equations: energy conservation and multi-symplecticity, J. Comput. Phys., 419 (2020), pp. 109662, 25.

    Article  MathSciNet  Google Scholar 

  30. H. Weyl, Geodesic fields in the calculus of variation for multiple integrals, Ann. of Math. (2), 36 (1935), pp. 607–629.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the program “Geometry, compatibility and structure preservation in computational differential equations,” when work on this paper was undertaken. This program was supported by EPSRC grant number EP/R014604/1. Robert McLachlan was supported in part by the Marsden Fund of the Royal Society of New Zealand and by a fellowship from the Simons Foundation. Ari Stern was supported in part by NSF grant DMS-1913272.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari Stern.

Additional information

Communicated by Arieh Iserles.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McLachlan, R.I., Stern, A. Functional Equivariance and Conservation Laws in Numerical Integration. Found Comput Math 24, 149–177 (2024). https://doi.org/10.1007/s10208-022-09590-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-022-09590-8

Keywords

Mathematics Subject Classification