Abstract
As Information and Communication Technology (ICT) infrastructure has rapidly become commonplace in most countries worldwide, the development of ICT-related competence is now considered to be a key goal in Taiwan’s curriculum. Nowadays, society expects undergraduates to develop essential computer abilities before entering the workplace. In addition to possessing computing skills, students are also required to have problem-solving ability and teamwork competency. To equip students to meet these expectations, the researchers integrated two teaching approaches, using content-based knowledge awareness (CoKA) and team learning (TL) to enhance students’ programming skills in an online computing course, and to reduce students’ anxiety and regulate cognitive load in the cloud classroom involved in this study. In this research, the authors conducted a quasi-experiment to examine the influences of CoKA and TL. Therefore, the design for the experiment was a 2 (CoKA vs. non-CoKA) × 2 (TL vs. non-TL) factorial pretest/posttest design. There were 184 participants, who were neither information nor computer majors, from four classes, enrolled in a required course titled ‘Programming Design’. The first class (G1) simultaneously received the online CoKA and TL intervention, the second class (G2) received only the online CoKA intervention, and the third class (G3) received only the online TL intervention; these served as the experimental groups, while the last class (G4), which received a traditional teaching approach, served as the control group. According to the results, students who received online TL had significant increase in their computing skills, and significant decrease in their level of anxiety and cognitive load. However, the expected effects of CoKA on developing students’ skills in designing mobile applications, reducing anxiety level and regulating cognitive load were not found. The design of integrating CoKA and TL in an online course could be a reference for educators when conducting online, flipped, or blended courses, particularly for those focusing on developing skills in computer programming.



Similar content being viewed by others
References
Aldosemani, T.I., Shepherd, C.E., Gashim, I., Dousay, T.: Developing third places to foster sense of community in online instruction. Br. J. Edu. Technol. 47(6), 1020–1031 (2016)
Barajas, M., Owen, M.: Implementing virtual learning environments: looking for holistic approach. Edu. Tech. Soc. 3(3), 39–53 (2000)
Barrie, S.C.: A conceptual framework for the teaching and learning of generic graduate attributes. Stud. High. Edu. 32(4), 439–458 (2007)
Bell, B.S., Federman, J.E.: E-learning in postsecondary education. Future Child. 23(1), 165–185 (2013)
Bui, H.T.M., Baruch, Y., Chau, V.S., He, H.: Team learning: the missing construct from a cross-cultural examination of higher education. Asia Pac. J. Manag. 33(1), 29–51 (2016)
Carmichael, J.: Team-based learning enhances performance in introductory biology. J. Coll. Sci. Teach. 38(4), 54–61 (2009)
Carver, C.S., Scheier, M.F.: A control-process perspective of anxiety. Anxiety Res. 1, 17–22 (1988)
Castillo-Manzano, J.I., Castro-Nuño, M., Díaz, M.T.S., Yñiguez, R.: Does pressing a button make it easier to pass an exam? Evaluating the effectiveness of interactive technologies in higher education. Br. J. Edu. Technol. 47(4), 710–720 (2016)
Chang, C.C., Tseng, K.H., Lou, S.J.: A comparative analysis of the consistency and difference among teacher assessment, student self-assessment and peer-assessment in a Web-based portfolio assessment environment for high school students. Comput. Educ. 58(1), 303–320 (2012)
Chang, C.K.: Effects of using Alice and Scratch in an introductory programming course for corrective instruction. J. Edu. Comput. Res. 51(2), 185–204 (2014)
Chang, S.E.: Computer anxiety and perception of task complexity in learning programming-related skills. Comput. Hum. Behav. 21(5), 713–728 (2005)
Cheng, E.W.L., Chu, S.K.W., Ma, C.S.M.: Tertiary students’ intention to e-collaborate for group projects: exploring the missing link from an extended theory of planned behaviour model. Br. J. Edu. Technol. 47(5), 958–969 (2016)
Cheng, X., Li, Y., Sun, J., Huang, J.: Application of a novel collaboration engineering method for learning design: a case study. Br. J. Edu. Technol. 47(4), 803–818 (2016)
Cherepovskaya, E. N., Gorshkova, E. V., & Lyamin, A. V. (2017). Assessment of students’ programming skills by using multi-style code editor. In International Conference on Smart Education and Smart E-Learning (pp. 225–234). Springer, Cham.
Cinquin, P.A., Guitton, P., Sauzéon, H.: Online e-learning and cognitive disabilities: a systematic review. Comput. Educ. 130, 152–167 (2019)
Chiou, G.F., Wu, C.C.: A computer curriculum guideline for junior high schools in Taiwan: Its impacts, and issues. ACM SIGCUE Outlook 25(1–2), 21–29 (1997)
Chyr, W.L., Shen, P.D., Chiang, Y.C., Lin, J.B., Tsai, C.W.: Exploring the effects of online academic help-seeking and flipped learning on improving students’ learning. Edu. Tech. Soc. 20(3), 11–23 (2017)
Clarke, L., Abbott, L.: Young pupils’, their teacher’s and classroom assistants’ experiences of iPads in a Northern Ireland school: “Four and five years old, who would have thought they could do that?” Br. J. Edu. Technol. 47(6), 1051–1064 (2016)
Clariana, R. B., Engelmann, T., & Kozlov, M. (2016). The influence of graphical or textual representations on team concept map form: further validation of a measure of knowledge structure. Retrieved from: http://cmc.ihmc.us/cmc2016papers/cmc2016-p82.pdf
Costley, J., Lange, C.: The mediating effects of germane cognitive load on the relationship between instructional design and students’ future behavioral intention. Electron. J e-Learn. 15(2), 174–187 (2017)
Cuban, L.: High access and low use of technologies in high school classrooms: explaining an apparent paradox. Am. Educ. Res. J. 38(4), 813–834 (2001)
Decuyper, S., Dochy, F., Van den Bossche, P.: Grasping the dynamic complexity of team learning: an integrative model for effective team learning in organisations. Edu. Res. Rev. 5(2), 111–133 (2010)
Denning, P.J.: The great principles of computing. Am. Sci. 98, 369–372 (2010)
Dillenbourg, P., Bétrancourt, M.: Collaboration Load. In: Elen, J., Clark, R.E. (eds.) Handling complexity in learning environments: research and theory, pp. 142–163. Advances in Learning and Instruction Series, Pergamon (2006)
Edmondson, A.C.: Psychological safety and learning behavior in work teams. Adm. Sci. Q. 44(2), 350–383 (1999)
Ellis, R.A., Pardo, A., Han, F.: Quality in blended learning environments - Significant differences in how students approach learning collaborations. Comput. Educ. 102, 90–102 (2016)
Ely, R.J., Padavic, I., Thomas, D.A.: Racial diversity, racial asymmetries, and team learning environment: effects on performance. Org.Stud. 33, 341–362 (2012)
Engelmann, T., Dehler, J., Bodemer, D., Buder, J.: Knowledge awareness in CSCL: a psychological perspective. Comput. Hum. Behav. 25, 949–960 (2009)
Engelmann, T., Hesse, F.W.: How digital concept maps about the collaborators’ knowledge and information influence computer-supported collaborative problem solving. Int. J. Comp.Support. Collab. Learn. 5, 299–320 (2010)
Engelmann, T., Hesse, F.W.: Fostering sharing of unshared knowledge by having access to the collaborators’ meta-knowledge structures. Comput. Hum. Behav. 27, 2078–2087 (2011)
Engelmann, T., Kozlov, M.D., Kolodziej, R., Clariana, R.B.: Fostering group norm development and orientation while creating awareness contents for improving Net-based collaborative problem solving. Comput. Hum. Behav. 37, 298–306 (2014)
Eren-Sisman, E.N., Cigdemoglu, C., Geban, O.: The effect of peer-led team learning on undergraduate engineering students’ conceptual understanding, state anxiety, and social anxiety. Chem. Edu. Res. Prac. 19(3), 694–710 (2018)
Essalmi, F., Ayed, L.J.B., Jemni, M., Graf, S., Kinshuk. : Generalized metrics for the analysis of E-learning personalization strategies. Comput. Hum. Behav. 48, 310–322 (2015)
Fischer, F., Kollar, I., Stegmann, K., Wecker, C.: Toward a script theory of guidance in computer-supported collaborative learning. Edu. Psychol. 48, 56–66 (2013)
Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., Zagami, J.: Arguing for computer science in the school curriculum. Edu. Tech. Soc. 19(3), 38–46 (2016)
Frederickson, L.: Anxiety transmission in the patient with myocardial infarction. Heart Lung 18, 17–22 (1989)
González, A., Fernández, M.V.C., Paoloni, P.V.: Hope and anxiety in physics class: Exploring their motivational antecedents and influence on metacognition and performance. J. Res. Sci Teach. 54(5), 558–585 (2017)
Gratz, E., Looney, L.: Faculty resistance to change: An examination of motivators and barriers to teaching online in higher education. Int. J. Online Pedag. Course Des. 10(1), 1–14 (2020)
Hare, J. (2011). Business takes dim view of academe. The Australian. Retrieved from www.theaustralian.com.au/higher-education/business-takes-dim-view-of-academe/story-e6frgcjx-1226030289897
Heitink, M., Voogt, J., Verplanken, L., van Braak, J., Fisser, P.: Teachers’ professional reasoning about their pedagogical use of technology. Comput. Educ. 101, 70–83 (2016)
Hirst, G., van Knippenberg, D., Zhou, J.: A cross-level perspective on employee creativity: Goal orientation, team learning behavior, and individual creativity. Acad. Manag. J. 52(2), 280–293 (2009)
Hsu, T.C.: Effects of a peer assessment system based on a grid-based knowledge classification approach on computer skills training. Edu. Technol. Soc. 19(4), 100–111 (2016)
Hwang, G.J., Yang, L.H., Wang, S.Y.: A concept map-embedded educational computer game for improving students’ learning performance in natural science courses. Comput. Educ. 69, 121–130 (2013)
Jakobsen, K.V., Knetemann, M.: Putting structure to flipped classrooms using team-based learning. Int. J. Teach. Learn. Higher Edu. 29(1), 177–185 (2017)
Kalelioglu, F., Gülbahar, Y.: The effects of teaching programming via Scratch on problem solving skills: a discussion from learners’ perspective. Inform. Edu. 13(1), 33–50 (2014)
Keebler, D.W., Huffman, J.: Effective eLearning and transformative pedagogical strategies: STEM programs. Int. J. Online Pedag. Course Des. 10(2), 61–70 (2020)
Kimmons, R., Veletsianos, G.: Education scholars’ evolving uses of twitter as a conference backchannel and social commentary platform. Br. J. Edu. Technol. 47(3), 445–464 (2016)
Kopcha, T.J., Rieber, L.P., Walker, B.B.: Understanding university faculty perceptions about innovation in teaching and technology. Br. J. Edu. Technol. 47(5), 945–957 (2016)
Korbach, A., Brünken, R., Park, B.: Measurement of cognitive load in multimedia learning: a comparison of different objective measures. Instr. Sci. 45(4), 515–536 (2017)
Kozlov, M.D., Buder, J., Thiemann, D.: Can knowledge awareness tools help find learning partners with complementary knowledge? IEEE Trans. Learn. Technol. 11(3), 334–341 (2017)
Kozlov, M.D., Engelmann, T., Buder, J., Hesse, F.W.: Is knowledge best shared or given to individuals? Expanding the Content-Based Knowledge Awareness paradigm. Comput. Hum. Behav. 51, 15–23 (2015)
Kozlov, M.D., Große, C.S.: Online collaborative learning in dyads: effects of knowledge distribution and awareness. Comput. Hum. Behav. 59, 389–401 (2016)
Kozlowski, S.W.J., Ilgen, D.R.: Enhancing the effectiveness of work groups and teams. Psychol. Sci.Public Interest 7(3), 77–124 (2006)
Lang, C., Craig, A., Casey, G.: A pedagogy for outreach activities in ICT: promoting peer to peer learning, creativity and experimentation. Br. J. Edu. Technol. 48(6), 1491–1501 (2017)
Lange, C., Costley, J., Han, S.L.: The effects of extraneous load on the relationship between self-regulated effort and germane load within an e-learning environment. Int. Rev. Res. Open Distribut. Learn. 18(5), 64–83 (2017)
Lehmann-Willenbrock, N.: Team learning: New insights through a temporal lens. Small Group Res. 48(2), 123–130 (2017)
Li, Y., Chun, H., Ashkanasy, N., Ahlstrom, D.: A multi-level study of emergent group leadership: effects of emotional stability and group conflict. Asia Pacif. J. Manag. 29(2), 351–366 (2012)
Lye, S.Y., Koh, J.H.L.: Review on teaching and learning of computational thinking through programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014)
Ma, W.W., Yuen, A.H.: Understanding online knowledge sharing: an interpersonal relationship perspective. Comput. Educ. 56(1), 210–219 (2011)
Medalie, J.H., Goldbourt, U.: Angina pectoris among 10,000 men: II. Psychosocial and other risk factors as evidenced by a multivariate analysis of a five year incidence study. Am. J. Med. 60(6), 910–921 (1976)
Moons, J., De Backer, C.: The design and pilot evaluation of an interactive learning environment for introductory programming influenced by cognitive load theory and constructivism. Comput. Educ. 60(1), 368–384 (2013)
Mow, I.C.: Issues and difficulties in teaching novice computer programming. In: Innovative techniques in instruction technology, e-learning, e-assessment, and education, pp. 199–204. Springer, Berlin (2008)
Myers, C.G., Sateia, H.F., Desai, S.V.: Association between team learning behavior and reduced burnout among medicine residents. J. Gen. Intern. Med. 33(12), 2037–2039 (2018)
Novak, J.D., Canas, A.J.: The origins of the concept mapping tool and the continuing evolution of the tool. Inf. Vis. 5(3), 175–184 (2006)
Owens, M., Stevenson, J., Hadwin, J.A., Norgate, R.: Anxiety and depression in academic performance: an exploration of the mediating factors of worry and working memory. School Psychol. Int. 33(4), 433–449 (2012)
Özmen, B., Altun, A.: Undergraduate students’ experiences in programming: difficulties and obstacles. Turkish Online J. Qualitative Inquiry 5(3), 1–27 (2014)
Paas, F.: Training strategies for attaining transfer of problem-solving skill in statistics: a cognitive load approach. J. Educ. Psychol. 84(4), 429–434 (1992)
Paas, F.G., van Merriënboer, J.J.G.: The efficiency of instructional conditions: an approach to combine mental effort and performance measures. Hum. Factors 35(4), 737–743 (1993)
Paas, F.G., van Merriënboer, J.J.G.: Variability of worked examples and transfer of geometrical problem-solving skills: a cognitive load approach. J. Educ. Psychol. 86(1), 122–133 (1994)
Palvia, S., Aeron, P., Gupta, P., Mahapatra, D., Parida, R., Rosner, R., Sindhi, S.: Online education: worldwide status, challenges, trends, and implications. J. Global Information Technol. Manag. 21(4), 233–241 (2018)
Pekrun, R., Perry, R.P. Control-value theory of achievement emotions. In: International Handbook of Emotions in Education, pp. 120–141. Taylor & Francis (2014)
Pugh, C.M., Obadina, E.T., Aidoo, K.A.: Fear of causing harm: use of mannequin-based simulation to decrease student anxiety prior to interacting with female teaching associates. Teach. Learn. Med. 21(2), 116–120 (2009)
Rehling, L., Hollaar, L., Bailis, S.: Co-teaching engineering and writing: learning about programming, teamwork, and communication. Issues Interdiscip. Stud. 15, 125–147 (1997)
Rockman, I.F.: Introduction: The importance of information literacy. In: Rockman, I.F. (ed.) Integrating information literacy into the higher education curriculum: Practical models for transformation, pp. 1–28. Jossey-Bass, San Francisco, CA (2004)
Rogerson, C., Scott, E.: The fear factor: how it affects students learning to program in a tertiary environment. J. Information Tech. Educ. 9, 147–171 (2010)
Rowe, M.: Developing graduate attributes in an open online course. Br. J. Educ. Technol. 47(5), 873–882 (2016)
Santos, C.M., Passos, A.M., Uitdewilligen, S.: When shared cognition leads to closed minds: temporal mental models, team learning, adaptation and performance. Eur. Manag. J. 34, 258–268 (2016)
Savelsbergh, C.M.J.H., van der Heijden, B.I.J.M., Poel, R.F.: The development and empirical validation of a multidimensional measurement instrument for team learning behaviors. Small Group Res. 40, 578–607 (2009)
Scherer, R. (2016). Learning from the past-The need for empirical evidence on the transfer effects of computer programming skills. Frontiers in Psychology, 7. Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021694/
Schreiber, M., Engelmann, T.: KIA for initiating Transactive Memory System processes of computer-supported collaborating ad hoc groups. Comput. Hum. Behav. 26, 1701–1709 (2010)
Seipp, B.: Anxiety and academic performance: a meta-analysis of findings. Anxiety Res. 4(1), 27–41 (1991)
Senge, P.M.: The fifth discipline: The art and practice of the learning organization. Broadway Business. Doubleday (2006)
Siddiq, F., Hatlevik, O.E., Olsen, R.V., Throndsen, I., Scherer, R.: Taking a future perspective by learning from the past-a systematic review of assessment instruments that aim to measure primary and secondary school students’ ICT literacy. Educ. Res. Rev. 19, 58–84 (2016)
Sinatra, G.M., Broughton, S.H., Lombardi, D.: Emotions in science education. In: International Handbook of Emotions in Education, pp. 415–436. Routlege (2014)
Smith, G.G., Sorensen, C., Gump, A., Heindel, A.J., Caris, M., Martinez, C.D.: Overcoming student resistance to group work: online versus face-to-face. Internet Higher Educ. 14(2), 121–128 (2011)
Spielberger, C.D.: Manual for the State-Trait Anxiety Inventory STAI (Form Y). Consulting Psychologists Press, Palo Alto, CA (1983)
Stachel, J., Marghitu, D., Brahim, T.B., Sims, R., Reynolds, L., Czelusniak, V.: Managing cognitive load in introductory programming courses: a cognitive aware scaffolding tool. J. Integrat. Des. Process Sci. 17(1), 37–54 (2013)
Stoyanov, S. R., Hides, L., Kavanagh, D. J., Zelenko, O., Tjondronegoro, D., & Mani, M. (2015). Mobile app rating scale: A new tool for assessing the quality of health mobile apps. JMIR mHealth and uHealth, 3(1), e27. Retrieve from http://mhealth.jmir.org/article/viewFile/mhealth_v3i1e27/2
Su, C.H.: The effects of students’ learning anxiety and motivation on the learning achievement in the activity theory based gamified learning environment. EURASIA J. Math. Sci. Technol. Educ. 13(5), 1229–1258 (2017)
Su, Y.N., Kao, C.C., Hsu, C.C., Pan, L.C., Cheng, S.C., Huang, Y.M.: How does Mozart’s music affect children’s reading? The evidence from learning anxiety and reading rates with e-books. Educ. Tech. Soc. 20(2), 101–112 (2017)
Suarez, M.J., Quimbo, M.A.T.: Test anxiety and selected personal factors as determinants of academic performance of undergraduate online learners. Malays. J. Distance Educ. 18(1), 29–51 (2016)
Sun, J.: Multi-dimensional alignment between online instruction and course technology: a learner-centered perspective. Comput. Educ. 101, 102–114 (2016)
Sweller, J.: Cognitive load during problem solving: Effects on learning. Cognit. Sci. 12, 257–285 (1988)
Sweller, J., van Merriënboer, J.J.G., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998)
Szulewski, A., Gegenfurtner, A., Howes, D.W., Sivilotti, M.L., van Merriënboer, J.J.G.: Measuring physician cognitive load: Validity evidence for a physiologic and a psychometric tool. Adv. Health Sci. Educ. 22(4), 951–968 (2017)
Tan, K.E.: Using online discussion forums to support learning of paraphrasing. Br. J. Educ. Technol. 48(6), 1239–1249 (2017)
Tlili, A., Essalmi, F., Jemni, M., Kinshuk, & Chen, N. S. : Role of personality in computer based learning. Comput. Hum. Behav. 64, 805–813 (2016)
Tsai, C.W.: The role of teacher’s initiation in online pedagogy. Educ. + Train. 54(6), 456–471 (2012)
Tsai, C.W.: An effective online teaching method: the combination of collaborative learning with initiation and self-regulation learning with feedback. Behav. Inform. Tech. 32(7), 712–723 (2013)
Tsai, C.W.: A quasi-experimental study of a blended course integrated with refined web-mediated pedagogy of collaborative learning and self-regulated learning. Interact. Learn. Environ. 22(6), 737–751 (2014)
Tsai, C.W.: Exploring the effects of online team-based learning and co-regulated learning on students’ development of computing skills. Interact. Learn. Environ. 24(4), 665–680 (2016)
Tsai, C.W., Shen, P.D., Chiang, I.C., Chen, W.Y., Chen, Y.F.: Exploring the effects of web-mediated socially-shared regulation of learning and experience-based learning on improving students’ learning. Interact. Learn. Environ. 26(6), 815–826 (2018)
Tsai, M.C., Tsai, C.W.: Applying online externally-facilitated regulated learning and computational thinking to improve students’ learning. Univ. Access Inf. Soc. 17(4), 811–820 (2018)
Tsai, M.C., Shen, P.D., Chen, W.Y., Hsu, L.C., Tsai, C.W.: Exploring the effects of web-mediated activity-based learning and meaningful learning on improving students’ learning effects, learning engagement, and academic motivation. Univ. Access Inf. Soc. 19(4), 783–798 (2020)
Türel, Y.K.: Relationships between students’ perceived team learning experiences, team performances, and social abilities in a blended course setting. Internet Higher Educ. 31, 79–86 (2016)
Van der Haar, S., Segers, M.S.R., Jehn, K.A.: Towards a contextualized model of team learning processes and outcomes. Educ. Res. Rev. 10, 1–12 (2013)
van Merriënboer, J.J.G., Kirschner, P.A.: Ten steps to complex learning: A systematic approach to four-component instructional design, 2nd edn. Routledge, New York, NY (2013)
Vickers, J.N., Williams, A.M.: Performing under pressure: The Effects of physiological arousal, cognitive anxiety, and gaze control in biathlon. J. Mot. Behav. 39, 381–394 (2007)
Voet, M., De Wever, B.: Towards a differentiated and domain-specific view of educational technology: an exploratory study of history teachers’ technology use. Br. J. Educ. Technol. 48(6), 1402–1413 (2017)
Wang, X.M., Hwang, G.J.: A problem posing-based practicing strategy for facilitating students’ computer programming skills in the team-based learning mode. Educ. Tech. Res. Dev. 65(6), 1655–1671 (2017)
Watzek, V., Anselmann, V., Mulder, R.H.: Team learning and emotions during teamwork: a qualitative study. Res. Papers Educ. 34(6), 769–789 (2019)
Wells, C.E.: Teaching teamwork in information systems. In: Challenges of information technology education in the 21st century, pp. 1–24. IGI Global (2002)
Wiese, C.W., Burke, C.S.: Understanding team learning dynamics over time. Front. Psychol. (2019). https://doi.org/10.3389/fpsyg.2019.01417
Williams, E.A., Duray, R., Reddy, V.: Teamwork orientation, group cohesiveness, and student learning: a study of the use of teams in online distance education. J. Manag. Educ. 30(4), 592–616 (2006)
Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C.: In support of pair programming in the introductory computer science course. Comput. Sci. Educ. 12(3), 197–212 (2002)
Wine, J.D.: Cognitive attentional theory of test anxiety. In: Sarason, I.G. (ed.) Test anxiety, pp. 349–385. Erlbaum, Hillsdale, N.J. (1980)
Woo, M., Chu, S., Ho, A., Li, X.: Using a Wiki to scaffold primary-school students’ collaborative writing. Educ. Tech. Soc. 14(1), 43–54 (2011)
Xiao, L. (2011). A shared rationale space for supporting knowledge awareness in collaborative learning activities: an empirical study. In 2011 IEEE 11th international conference on advanced learning technologies (pp. 71–75). IEEE
Yang, T.C., Hwang, G.J., Yang, S.J., Hwang, G.H.: A two-tier test-based approach to improving students’ computer-programming skills in a web-based learning environment. Educ. Tech. Soc. 18(1), 198–210 (2015)
Yang, Y.T.C.: Virtual CEOs: A blended approach to digital gaming for enhancing higher order thinking and academic achievement among vocational high school students. Comput. Educ. 81, 281–295 (2015)
Yukselturk, E., Altiok, S.: An investigation of the effects of programming with Scratch on the preservice IT teachers’ self-efficacy perceptions and attitudes towards computer programming. Br. J. Educ. Technol. 48(3), 789–801 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cheng, YP., Shen, PD., Hung, ML. et al. Applying Online Content-Based Knowledge Awareness and Team Learning to Develop Students’ Programming Skills, Reduce their Anxiety, and Regulate Cognitive Load in a Cloud Classroom. Univ Access Inf Soc 21, 557–572 (2022). https://doi.org/10.1007/s10209-020-00789-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10209-020-00789-6