Skip to main content

Factors influencing the intention of children to use video-sharing tools in elementary integrated curriculum

  • Long Paper
  • Published:
Universal Access in the Information Society Aims and scope Submit manuscript

Abstract

In line with the upward trend of applying online video in education, this study examined factors influencing the behavioral intention of children to use video-sharing tools in an integrated elementary curriculum. A total of 222 children from Taiwan participated in this study, wherein a questionnaire survey extending a technology acceptance model was conducted to gather data after a cross-classroom video-sharing activity. Results showed that the three external factors of social presence, perception of enjoyment, and perception of visual attractiveness positively affect children’s behavior intention toward using video-sharing tools. The resultant joy and enhanced interest of this process will improve their learning experience and usage attitude. This study further examined the role of gender and digital divides in children’s adoption of video-sharing tools. The results of multigroup analysis revealed that perceived enjoyment is the dominant external predictor, especially for females and disadvantaged children. The implication of these three external factors and the influence of mobile devices are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chiu, T.K.F., Hew, T.K.F.: Factors influencing peer learning and performance in MOOC asynchronous online discussion forum. Australas. J. Educ. Technol. 34, 16–28 (2018). https://doi.org/10.14742/ajet.3240

    Article  Google Scholar 

  2. Sun, Z., Lin, C.-H., Wu, M., Zhou, J., Luo, L.: A tale of two communication tools: discussion-forum and mobile instant-messaging apps in collaborative learning. Br. J. Educ. Technol. 49, 248–261 (2018). https://doi.org/10.1111/bjet.12571

    Article  Google Scholar 

  3. Means, B., Toyama, Y., Murphy, R., Bakia, M., Jones, K.: Evaluation of evidence-based practices in online learning: a meta-analysis and review of online learning studies. US Department of Education (2009). https://eric.ed.gov/?id=ED505824

  4. Lee, J., Yoon, S.Y., Lee, C.H.: Exploring online learning at primary schools: students’ perspectives on cyber home learning system through video conferencing (CHLS-VC). Turk. Online J. Educ. Technol. 12, 68–76 (2013)

    Google Scholar 

  5. Giannakos, M.N., Chorianopoulos, K., Inkpen, K., Du, H., Johns, P.: Understanding children’s behavior in an asynchronous videomediated communication environment. Pers. Ubiquitous Comput. 17, 1621–1629 (2013). https://doi.org/10.1007/s00779-012-0525-2

    Article  Google Scholar 

  6. Lowenthal, P., Borup, J., West, R., Archambault, L.: Thinking beyond Zoom: using asynchronous video to maintain connection and engagement during the COVID-19 pandemic. J. Technol. Teach. Educ. 28, 383–391 (2020)

    Google Scholar 

  7. Lowenthal, P.R., Moore, R.L.: Exploring student perceptions of Flipgrid in online courses. Online Learn. 24, 28–41 (2020). https://doi.org/10.24059/olj.v24i4.2335

    Article  Google Scholar 

  8. Stoszkowski, J.R.: Using Flipgrid to develop social learning. Compass J. Learn. Teach. (2018). https://doi.org/10.21100/compass.v11i2.786

    Article  Google Scholar 

  9. Keiper, M.C., White, A., Carlson, C.D., Lupinek, J.M.: Student perceptions on the benefits of Flipgrid in a HyFlex learning environment. J. Educ. Bus. 96, 343–351 (2021). https://doi.org/10.1080/08832323.2020.1832431

    Article  Google Scholar 

  10. Miskam, N.N., Aminabibi, A., Saidalvi, S.: The use of flipgrid for teaching oral presentation skills to engineering students. Int. J. Recent Technol. Eng. 8, 636–641 (2019)

    Google Scholar 

  11. Edwards, C.R., Lane, P.N.: Facilitating student interaction: the role of Flipgrid in blended language classrooms. Comput. Assist. Lang. Learn. Electron. J. 22, 26–39 (2021)

    Google Scholar 

  12. Green, T.D., Besser, E.D., Donovan, L.C.: More than amplifying voice and providing choice: educator perceptions of Flipgrid use in the classroom. TechTrends 65, 785–795 (2021). https://doi.org/10.1007/s11528-021-00635-3

    Article  Google Scholar 

  13. Batchelor, K.E., Cassidy, R.: The lost art of the book talk: what students want. Read. Teach. 73, 230–234 (2019). https://doi.org/10.1002/trtr.1817

    Article  Google Scholar 

  14. Colton, J.: Social, innovative and deep: exploring digital literacies in a year 9 English classroom. Chang. Engl. Stud. Cult. Educ. 27, 270–284 (2020). https://doi.org/10.1080/1358684X.2020.1766946

    Article  Google Scholar 

  15. Dousay, T.A., Weible, J.L.: Build-a-bug workshop: designing a learning experience with emerging technology to foster creativity. TechTrends 63, 41–52 (2019). https://doi.org/10.1007/s11528-018-0364-8

    Article  Google Scholar 

  16. Hashim, H.U., Yunus, M.M., Hashim, H.: 3-minutes pitching with flip grid: an antidote of innovation for speaking anxiety. Int. J. Innov. Technol. Explor. Eng. 8, 1798–1801 (2019)

    Google Scholar 

  17. Johnson, L., McHugh, S., Eagle, J.L., Spires, H.A.: Project-based inquiry (PBI) global in kindergarten classroom: Inquiring about the world. Early Child. Educ. J. 47, 607–613 (2019). https://doi.org/10.1007/s10643-019-00946-4

    Article  Google Scholar 

  18. Chaka, C., Nkhobo, T.: Online module login data as a proxy measure of student engagement: the case of myUnisa, MoyaMA, Flipgrid, and Gephi at an ODeL institution in South Africa. Int. J. Educ. Technol. High. Educ. (2019). https://doi.org/10.1186/s41239-019-0167-9

    Article  Google Scholar 

  19. Lam, C.N.C.: The use of mobile learning application in interview roleplay: a preliminary study. J. Adv. Res. Dyn. Control Syst. 12, 486–496 (2020). https://doi.org/10.5373/JARDCS/V12I3/20201215

    Article  Google Scholar 

  20. Mai, T.T.P., Wiest, G.M., Nguyen, N.D.: Asynchronous video-based discussion for the enhancement of intercultural competence among vietnamese non-english majors. CALL-EJ. 21, 159–174 (2020)

    Google Scholar 

  21. Serembus, J.F., Murphy, J.: Creating an engaging learning environment through video discussions. Nurse Educ. 45, 68–70 (2020). https://doi.org/10.1097/NNE.0000000000000701

    Article  Google Scholar 

  22. Stoszkowski, J., Hodgkinson, A., Collins, D.: Using Flipgrid to improve reflection: a collaborative online approach to coach development. Phys. Educ. Sport Pedagog. 26, 167–178 (2021). https://doi.org/10.1080/17408989.2020.1789575

    Article  Google Scholar 

  23. Spante, M., Karlsen, A.V., Nortvig, A.-M., Christiansen, R.B.: Cross-border collaboration in history among Nordic students: a case study about creating innovative ICT didactic models. IAFOR J. Educ. 2, 55–85 (2014)

    Article  Google Scholar 

  24. Shin, J.L.K., Yunus, M.M.: The attitudes of pupils towards using Flipgrid in learning English speaking skills. Int. J. Learn. Teach. Educ. Res. 20, 151–168 (2021). https://doi.org/10.26803/ijlter.20.3.10

    Article  Google Scholar 

  25. Marangunić, N., Granić, A.: Technology acceptance model: a literature review from 1986 to 2013. Univers. Access Inf. Soc. 14, 81–95 (2015). https://doi.org/10.1007/s10209-014-0348-1

    Article  Google Scholar 

  26. Granić, A., Marangunić, N.: Technology acceptance model in educational context: a systematic literature review. Br. J. Educ. Technol. 50, 2572–2593 (2019). https://doi.org/10.1111/bjet.12864

    Article  Google Scholar 

  27. Al-Emran, M., Mezhuyev, V., Kamaludin, A.: Technology acceptance model in m-learning context: a systematic review. Comput. Educ. 125, 389–412 (2018). https://doi.org/10.1016/j.compedu.2018.06.008

    Article  Google Scholar 

  28. Lai, P.C.: The literature review of technology adoption models and theories for the novelty technology. JISTEM J. Inf. Syst. Technol. Manag. 14, 21–38 (2017). https://doi.org/10.4301/S1807-17752017000100002

    Article  Google Scholar 

  29. King, W.R., He, J.: A meta-analysis of the technology acceptance model. Inf. Manag. 43, 740–755 (2006). https://doi.org/10.1016/j.im.2006.05.003

    Article  Google Scholar 

  30. Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 13, 319–340 (1989). https://doi.org/10.2307/249008

    Article  Google Scholar 

  31. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: a comparison of two theoretical models. Manag. Sci. 35, 982–1003 (1989). https://doi.org/10.1287/mnsc.35.8.982

    Article  Google Scholar 

  32. Venkatesh, V., Davis, F.D.: A model of the antecedents of perceived ease of use: development and test. Decis. Sci. 27, 451–481 (1996). https://doi.org/10.1111/j.1540-5915.1996.tb00860.x

    Article  Google Scholar 

  33. Venkatesh, V., Davis, F.D.: A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46, 186 (2000). https://doi.org/10.1287/mnsc.46.2.186.11926

    Article  Google Scholar 

  34. Venkatesh, V., Bala, H.: Technology acceptance model 3 and a research agenda on interventions. Decis. Sci. 39, 273–315 (2008). https://doi.org/10.1111/j.1540-5915.2008.00192.x

    Article  Google Scholar 

  35. Ghapanchi, A.H., Purarjomandlangrudi, A., McAndrew, A., Miao, Y.: Investigating the impact of space design, visual attractiveness and perceived instructor presence on student adoption of learning management systems. Educ. Inf. Technol. 25, 5053–5066 (2020). https://doi.org/10.1007/s10639-020-10204-5

    Article  Google Scholar 

  36. Sarrab, M., Al Shibli, I., Badursha, N.: An empirical study of factors driving the adoption of mobile learning in Omani higher education. Int. Rev. Res. Open Distrib. Learn. 17, 331–349 (2016). https://doi.org/10.19173/irrodl.v17i4.2614

    Article  Google Scholar 

  37. Huang, Y.-M.: Exploring students’ acceptance of team messaging services: the roles of social presence and motivation. Br. J. Educ. Technol. 48, 1047–1061 (2017). https://doi.org/10.1111/bjet.12468

    Article  Google Scholar 

  38. Yi, Y., Wu, Z., Tung, L.L.: How individual differences influence technology usage behavior? Toward an integrated framework. J. Comput. Inf. Syst. 46, 52–63 (2005)

    Google Scholar 

  39. Nagy, J.T.: Evaluation of online video usage and learning satisfaction: an extension of the technology acceptance model. Int. Rev. Res. Open Distrib. Learn. 19, 56 (2018). https://doi.org/10.19173/irrodl.v19i1.2886

    Article  Google Scholar 

  40. Lemay, D.J., Morin, M.M., Bazelais, P., Doleck, T.: Modeling students’ perceptions of simulation-based learning using the technology acceptance model. Clin. Simul. Nurs. 20, 28–37 (2018). https://doi.org/10.1016/j.ecns.2018.04.004

    Article  Google Scholar 

  41. Esteban-Millat, I., Martínez-López, F.J., Pujol-Jover, M., Gázquez-Abad, J.C., Alegret, A.: An extension of the technology acceptance model for online learning environments. Interact. Learn. Environ. 26, 895–910 (2018). https://doi.org/10.1080/10494820.2017.1421560

    Article  Google Scholar 

  42. van der Heijden, H.: Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Inf. Manag. 40, 541–549 (2003). https://doi.org/10.1016/S0378-7206(02)00079-4

    Article  Google Scholar 

  43. Zhang, P., Zeng, Z., Pei, Z., Zhenxiang, Z.: A framework for personalized service website based on TAM. In: 2006 International Conference on Service Systems and Service Management. pp. 1598–1603 (2006)

  44. Zhang, P., Zeng, Z., Huang, C.: An extended TAM model for Chinese B2C websites design. J. Glob. Inf. Technol. Manag. 10, 51–66 (2007). https://doi.org/10.1080/1097198X.2007.10856438

    Article  Google Scholar 

  45. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: Extrinsic and intrinsic motivation to use computers in the workplace. J. Appl. Soc. Psychol. 22, 1111–1132 (1992). https://doi.org/10.1111/j.1559-1816.1992.tb00945.x

    Article  Google Scholar 

  46. Alshammari, S.H., Ali, M.B., Rosli, M.S.: The influences of technical support, self efficacy and instructional design on the usage and acceptance of LMS: a comprehensive review. Turk. Online J. Educ. Technol. TOJET 15, 116–125 (2016)

    Google Scholar 

  47. Park, B., Chang, H., Park, S.: Adoption of digital devices for children education: Korean case. Telemat. Inform. 38, 247–256 (2019). https://doi.org/10.1016/j.tele.2018.11.002

    Article  Google Scholar 

  48. Ibáñez, M.B., Serio, Á.D., Villarán, D., Delgado-Kloos, C.: The acceptance of learning augmented reality environments: a case study. In: 2016 IEEE 16th International Conference on Advanced Learning Technologies (ICALT). pp. 307–311 (2016)

  49. Tsai, B.-Y., Yen, J.-N.: The influence of self-efficacies on readers’ intention to use e-reading devices: an empirical study. Int. J. Distance Educ. Technol. 12, 41–61 (2014). https://doi.org/10.4018/ijdet.2014070104

    Article  Google Scholar 

  50. Tsai, Y.-Y., Chao, C.-M., Lin, H.-M., Cheng, B.-W.: Nursing staff intentions to continuously use a blended e-learning system from an integrative perspective. Qual. Quant. 52, 2495–2513 (2018). https://doi.org/10.1007/s11135-017-0540-5

    Article  Google Scholar 

  51. Teo, T., Noyes, J.: An assessment of the influence of perceived enjoyment and attitude on the intention to use technology among pre-service teachers: a structural equation modeling approach. Comput. Educ. 57, 1645–1653 (2011). https://doi.org/10.1016/J.COMPEDU.2011.03.002

    Article  Google Scholar 

  52. Wu, X., Gao, Y.: Applying the extended technology acceptance model to the use of clickers in student learning: some evidence from macroeconomics classes. Am. J. Bus. Educ. 4, 43–50 (2011). https://doi.org/10.19030/ajbe.v4i7.4674

    Article  Google Scholar 

  53. Park, E., Baek, S., Ohm, J., Chang, H.: Determinants of player acceptance of mobile social network games: an application of extended technology acceptance model. Telemat. Inform. 31, 3–15 (2014). https://doi.org/10.1016/j.tele.2013.07.001

    Article  Google Scholar 

  54. Hassanein, K., Head, M.: Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. Int. J. Hum.-Comput. Stud. 65, 689–708 (2007). https://doi.org/10.1016/j.ijhcs.2006.11.018

    Article  Google Scholar 

  55. Shen, J.: Social comparison, social presence, and enjoyment in the acceptance of social shopping websites. J. Electron. Commer. Res. 13, 198–212 (2012)

    Google Scholar 

  56. Hair, J.F., Hult, G.T.M., Ringle, C., Sarstedt, M.: A Primer on Partial Least Squares Structural Equation Modeling (PLS–SEM). SAGE Publications (2016)

    Google Scholar 

  57. Bao, Y., Xiong, T., Hu, Z., Kibelloh, M.: Exploring gender differences on general and specific computer self-efficacy in mobile learning adoption. J. Educ. Comput. Res. 49, 111–132 (2013). https://doi.org/10.2190/EC.49.1.e

    Article  Google Scholar 

  58. Lin, P.C., Lu, H.K., Liu, S.C.: Towards an education behavioral intention model for e-learning systems: an extension of UTAUT. J. Theor. Appl. Inf. Technol. 47, 1200–1207 (2013)

    Google Scholar 

  59. Pramana, E.: Determinants of the adoption of mobile learning systems among university students in Indonesia. J. Inf. Technol. Educ. Res. 17, 365–398 (2018). https://doi.org/10.28945/4119

    Article  Google Scholar 

  60. Tarhini, A., Hone, K., Liu, X.: Measuring the moderating effect of gender and age on e-learning acceptance in England: a structural equation modeling approach for an extended technology acceptance model. J. Educ. Comput. Res. 51, 163–184 (2014). https://doi.org/10.2190/EC.51.2.b

    Article  Google Scholar 

  61. Terzis, V., Economides, A.A.: Computer based assessment: gender differences in perceptions and acceptance. Comput. Hum. Behav. 27, 2108–2122 (2011). https://doi.org/10.1016/j.chb.2011.06.005

    Article  Google Scholar 

  62. Navarro, C.X., Molina, A.I., Redondo, M.A.: Factors influencing students’ acceptance in m-learning: a literature review and proposal of a taxonomy. In: 2016 International Symposium on Computers in Education (SIIE). pp. 1–6 (2016)

  63. Education, M. of: curriculum guidelines of 12-year basic education. Ministry of Education Taipei (2014)

  64. Chou, Y.-C., Chiu, C.-H.: The development and validation of a digital fluency scale for preadolescents. Asia-Pac. Educ. Res. 29, 541–551 (2020). https://doi.org/10.1007/s40299-020-00505-1

    Article  Google Scholar 

  65. Hinkin, T.R.: A review of scale development practices in the study of organizations. J. Manag. 21, 967–988 (1995). https://doi.org/10.1177/014920639502100509

    Article  Google Scholar 

  66. OECD: are the new millennium learners making their grade? Technology use and educational performancein PISA 2006. Educational Research and Innovation, OECD Publishing, Paris (2010)

  67. Verhoeven, J.C., Heerwegh, D., De Wit, K.: ICT learning experience and research orientation as predictors of ICT skills and the ICT use of university students. Educ. Inf. Technol. (2016). https://doi.org/10.1007/s10639-014-9310-3

    Article  Google Scholar 

  68. Chiao, C., Chiu, C.H.: The mediating effect of ICT usage on the relationship between students’ socioeconomic status and achievement. Asia-Pac. Educ. Res. 27, 109–121 (2018). https://doi.org/10.1007/s40299-018-0370-9

    Article  Google Scholar 

  69. McBain, B., Drew, A., James, C., Phelan, L., Harris, K.M., Archer, J.: Student experience of oral communication assessment tasks online from a multi-disciplinary trial. Educ. Train. 58, 134–149 (2016). https://doi.org/10.1108/ET-10-2014-0124

    Article  Google Scholar 

  70. Huang, Y.-M.: Exploring the factors that affect the intention to use collaborative technologies: the differing perspectives of sequential/global learners. Australas. J. Educ. Technol. 31, 278–292 (2015). https://doi.org/10.14742/ajet.1868

    Article  Google Scholar 

  71. Huang, T.K.: Exploring the antecedents of screenshot-based interactions in the context of advanced computer software learning. Comput. Educ. 80, 95–107 (2015). https://doi.org/10.1016/j.compedu.2014.08.011

    Article  Google Scholar 

  72. Shin, D.-H.: Defining sociability and social presence in social TV. Comput. Hum. Behav. 29, 939–947 (2013). https://doi.org/10.1016/j.chb.2012.07.006

    Article  Google Scholar 

  73. Quintana, S.M., Maxwell, S.E.: Implications of recent developments in structural equation modeling for counseling psychology. Couns. Psychol. 27, 485–527 (1999). https://doi.org/10.1177/0011000099274002

    Article  Google Scholar 

  74. Hair, J.F., Jr., Matthews, L.M., Matthews, R.L., Sarstedt, M.: PLS–SEM or CB–SEM: updated guidelines on which method to use. Int. J. Multivar. Data Anal. 1, 107–123 (2017). https://doi.org/10.1504/IJMDA.2017.10008574

    Article  Google Scholar 

  75. Lowry, P.B., Gaskin, J.: Partial least squares (PLS) structural equation modeling (SEM) for building and testing behavioral causal theory: when to choose it and how to use it. IEEE Trans. Prof. Commun. 57, 123–146 (2014). https://doi.org/10.1109/TPC.2014.2312452

    Article  Google Scholar 

  76. Dash, G., Paul, J.: CB–SEM vs PLS–SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Change 173, 121092 (2021). https://doi.org/10.1016/j.techfore.2021.121092

    Article  Google Scholar 

  77. Hair, J.F., Ringle, C.M., Sarstedt, M.: PLS–SEM: indeed a silver bullet. J. Mark. Theory Pract. 19, 139–152 (2011). https://doi.org/10.2753/MTP1069-6679190202

    Article  Google Scholar 

  78. Shackman, J.D.: The use of partial least squares path modeling and generalized structured component analysis in international business research: a literature review. Int. J. Manag. 30, 78 (2013)

    Google Scholar 

  79. Fornell, C., Larcker, D.F.: Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. JMR 18, 39–50 (1981). https://doi.org/10.1177/002224378101800104

    Article  Google Scholar 

  80. Henseler, J., Ringle, C.M., Sarstedt, M.: A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 43, 115–135 (2015). https://doi.org/10.1007/s11747-014-0403-8

    Article  Google Scholar 

  81. Gold, A.H., Malhotra, A., Segars, A.H.: Knowledge management: an organizational capabilities perspective. J. Manag. Inf. Syst. 18, 185–214 (2001). https://doi.org/10.1080/07421222.2001.11045669

    Article  Google Scholar 

  82. Henseler, J., Dijkstra, T.K., Sarstedt, M., Ringle, C.M., Diamantopoulos, A., Straub, D.W., Ketchen, D.J., Hair, J.F., Hult, G.T.M., Calantone, R.J.: Common beliefs and reality about PLS: comments on Rönkkö and Evermann (2013). Organ. Res. Methods 17, 182–209 (2014). https://doi.org/10.1177/1094428114526928

    Article  Google Scholar 

  83. Hong, J.-C., Hwang, M.-Y., Liu, M.-C., Ho, H.-Y., Chen, Y.-L.: Using a “prediction–observation–explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their Internet cognitive failure. Comput. Educ. 72, 110–120 (2014). https://doi.org/10.1016/j.compedu.2013.10.004

    Article  Google Scholar 

  84. Li, Y., Ranieri, M.: Educational and social correlates of the digital divide for rural and urban children: a study on primary school students in a provincial city of China. Comput. Educ. 60, 197–209 (2013). https://doi.org/10.1016/j.compedu.2012.08.001

    Article  Google Scholar 

  85. Palczyńska, M., Rynko, M.: ICT skills measurement in social surveys: can we trust self-reports? Qual. Quant. (2021). https://doi.org/10.1007/s11135-020-01031-4

    Article  Google Scholar 

  86. Lee, H., Ahn, H., Nguyen, T.G., Choi, S.W., Kim, D.J.: Comparing the self-report and measured smartphone usage of college students: a pilot study. Psychiatr. Investig. 14, 198–204 (2017). https://doi.org/10.4306/pi.2017.14.2.198

    Article  Google Scholar 

  87. Grieger, K., Leontyev, A.: Promoting student awareness of green chemistry principles via student-generated presentation videos. J. Chem. Educ. 97, 2657–2663 (2020). https://doi.org/10.1021/acs.jchemed.0c00639

    Article  Google Scholar 

  88. Jeno, L.M., Vandvik, V., Eliassen, S., Grytnes, J.A.: Testing the novelty effect of an m-learning tool on internalization and achievement: a self-determination theory approach. Comput. Educ. 128, 398–413 (2019). https://doi.org/10.1016/j.compedu.2018.10.008

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology in Taiwan under Grant No. MOST 109-2511-H-003-012-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiung-Hui Chiu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiao, C., Chiu, CH. & Hu, HW. Factors influencing the intention of children to use video-sharing tools in elementary integrated curriculum. Univ Access Inf Soc 23, 1765–1778 (2024). https://doi.org/10.1007/s10209-023-01002-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10209-023-01002-0

Keywords