Skip to main content

A bivariate regression model for matched paired survival data: local influence and residual analysis

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

The use of bivariate distributions plays a fundamental role in survival and reliability studies. In this paper, we consider a location scale model for bivariate survival times based on the proposal of a copula to model the dependence of bivariate survival data. For the proposed model, we consider inferential procedures based on maximum likelihood. Gains in efficiency from bivariate models are also examined in the censored data setting. For different parameter settings, sample sizes and censoring percentages, various simulation studies are performed and compared to the performance of the bivariate regression model for matched paired survival data. Sensitivity analysis methods such as local and total influence are presented and derived under three perturbation schemes. The martingale marginal and the deviance marginal residual measures are used to check the adequacy of the model. Furthermore, we propose a new measure which we call modified deviance component residual. The methodology in the paper is illustrated on a lifetime data set for kidney patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carrasco JMF, Ortega EMM, Paula GA (2008) Log-modified Weibull regression models with censored data: sensitivity and residual analysis. Comput Stat Data Anal 52: 4021–4029

    Article  MATH  MathSciNet  Google Scholar 

  • Clayton DG (1978) A model for association in bivariate life-tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65: 141–151

    Article  MATH  MathSciNet  Google Scholar 

  • Collett D (2003) Modelling survival data in medical research. Chapman & Hall, London

    Google Scholar 

  • Conway DA (1979) Farlie–Gumbel–Morgenstern distributions. In: Kotz S, Johnson NL (eds) Encyclopedia of statistical sciences, vol 3. Wiley, New York, pp 28–31

    Google Scholar 

  • Cook RD (1986) Assessment of local influence (with discussion). J R Stat Soc B 48: 133–169

    MATH  Google Scholar 

  • Cox DR, Hinkley DV (1974) Theorical statistics. Chapman and Hall, London

    Google Scholar 

  • Cox DR, Oakes D (1984) Analysis of survival data. Chapman and Hall, New York

    Google Scholar 

  • Cox DR, Snell EJ (1968) A general definition of residuals. J R Stat Soc B 30: 248–275

    MathSciNet  Google Scholar 

  • Doornik J (2001) Ox: an object-oriented matrix programming language. International Thomson Bussiness Press, UK

    Google Scholar 

  • Embrechts P, Linskog F, McNiel A (2003) Modelling dependence with copulas and applications to risks management. http://www.math.ethz.ch/baltes/ftp/papers.html

  • Escobar LA, Meeker WQ (1992) Assessing influence in regression analysis with censored data. Biometrics 48: 507–528

    Article  MATH  MathSciNet  Google Scholar 

  • Fachini JB, Ortega EMM, Louzada-Neto F (2008) Influence diagnostics for polyhazard models in the presence of covariates. Stat Methods Appl 17: 413–433

    Article  MATH  Google Scholar 

  • Galea M, Riquelme M, Paula GA (2000) Diagnostics methods in elliptical linear regression models. Braz J Probab Stat 14: 167–184

    MATH  MathSciNet  Google Scholar 

  • Gustafson P, Aeschliman D, Levy AR (2003) A simple approach to fitting Bayesian survival models. Lifetime Data Anal 9: 5–19

    Article  MATH  MathSciNet  Google Scholar 

  • He W, Lawless JF (2005) Bivariate location-scale models for regression analysis, with applications to lifetime data. J R Stat Soc 67: 63–78

    Article  MATH  MathSciNet  Google Scholar 

  • Hougaard P (1986) A class of multivariate failure time distributions. Biometrika 73: 671–678

    MATH  MathSciNet  Google Scholar 

  • Hougaard P (1989) Fitting a multivariate failure time distribution. IEEE Trans Reliab 38: 444–448

    Article  MATH  Google Scholar 

  • Jin Z, Lin DY, Wei LJ, Ying Z (2003) Rank-based inference for the accelerated failure time model. Biometrika 90: 341–353

    Article  MATH  MathSciNet  Google Scholar 

  • Klein JP, Moeschberger ML (1997) Survival analysis: techniques for censored and truncated data. Springer, New York

    MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    MATH  Google Scholar 

  • Lesaffre E, Verbeke G (1998) Local influence in linear mixed models. Biometrics 54: 570–582

    Article  MATH  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models, 2nd edn. Chapman and Hall, London

    MATH  Google Scholar 

  • McGilchrist CA, Aisbett CW (1991) Regression with frailty is survival analysis. Biometrics 47: 461–466

    Article  Google Scholar 

  • Nelsen R (1999) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Oakes D (1989) Bivariate survival models induced by frailties. J Am Stat Assoc 84: 487–493

    Article  MATH  MathSciNet  Google Scholar 

  • Ortega EMM, Bolfarine H, Paula GA (2003) Influence diagnostics in generalized log-gamma regression models. Comput Stat Data Anal 42: 165–186

    Article  MATH  MathSciNet  Google Scholar 

  • Ortega EMM, Cancho VG, Bolfarine H (2006) Influence diagnostics in exponentiated—Weibull regression models with censored data. Stat Oper Res Trans 30: 172–192

    MathSciNet  Google Scholar 

  • Ortega EMM, Rizzato FB, Demétrio CGB (2008a) The generalized log-gamma mixture model with covariates: local influence and residual analysis. Stat Methods Appl. doi:10.1007/s10260-008-0104-x

  • Ortega EMM, Paula GA, Bolfarine H (2008b) Deviance resiadual in generalized log-gamma regression models. J Stat Comput Simul 78: 747–764

    Article  MATH  MathSciNet  Google Scholar 

  • Ortega EMM, Paula GA, Bolfarine H (2009) Generalized log-gamma regression models with cure fraction. Lifetime Data Anal 15: 79–106

    Article  MATH  MathSciNet  Google Scholar 

  • Paula GA (1993) Assessing local influence in restricted regression models. Comput Stat Data Anal 16: 63–79

    Article  MATH  MathSciNet  Google Scholar 

  • Paula GA (1995) Influence and residuals in restricted generalized linear models. J Stat Comput Simul 51: 315–352

    Article  MathSciNet  Google Scholar 

  • Pettitt AN, Bin Daud I (1989) Case-weight measures of influence for proportional hazards regression. Appl Stat 38: 51–67

    Article  Google Scholar 

  • Romeo JSN, Tanaka NI, Pedroso de Lima AC (2006) Bivariate survival modeling: a Bayesian approach based on Copulas. Lifetime Data Anal 12: 205–222

    Article  MATH  MathSciNet  Google Scholar 

  • Sahu SK, Dey DK (2000) A comparison of frailty and other models for bivariate survival data. Lifetime Data Anal 6: 207–228

    Article  MATH  Google Scholar 

  • Shih JH, Louis TA (1995) Inferences on the association parameter in copula models for bivariate survival data. Biometrics 51: 1384–1399

    Article  MATH  MathSciNet  Google Scholar 

  • Silva GO, Ortega EMM, Cancho VG, Barreto ML (2008) Log-Burr XII regression models with censored data. Comput Stat Data Anal 52: 3820–3842

    Article  MATH  MathSciNet  Google Scholar 

  • Vaupel JW, Manton KG, Stallard E (1979) The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16: 439–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin M. M. Ortega.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barriga, G.D.C., Louzada-Neto, F., Ortega, E.M.M. et al. A bivariate regression model for matched paired survival data: local influence and residual analysis. Stat Methods Appl 19, 477–495 (2010). https://doi.org/10.1007/s10260-010-0140-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-010-0140-1

Keywords