Skip to main content
Log in

On the extension of sliced average variance estimation to multivariate regression

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Many sufficient dimension reduction methods for univariate regression have been extended to multivariate regression. Sliced average variance estimation (SAVE) has the potential to recover more reductive information and recent development enables us to test the dimension and predictor effects with distributions commonly used in the literature. In this paper, we aim to extend the functionality of the SAVE to multivariate regression. Toward the goal, we propose three new methods. Numerical studies and real data analysis demonstrate that the proposed methods perform well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragon Y (1997) A gauss implementation of multivariate sliced inverse regression. Comput Statist 12: 355–372

    MATH  MathSciNet  Google Scholar 

  • Chiaromonte F, Cook RD, Li B (2002) Sufficient dimension reduction in regressions with categorical predictors. Ann Statist 30: 475–497

    Article  MATH  MathSciNet  Google Scholar 

  • Cook RD (1998) Regression graphics : ideas for studying regressions through graphics. Wiley, New York

    MATH  Google Scholar 

  • Cook RD (2003) Dimension reduction and graphical exploration in regression including survival analysis. Stat Med 22: 1399–1413

    Article  Google Scholar 

  • Cook RD, Weisberg S (1991) Discussion of a paper by K. C. Li. J Amer Statist Assoc 86: 328–332

    Article  Google Scholar 

  • Hsing T (1999) Nearest-neighborhood inverse regression. Ann Statist 27: 697–731

    Article  MATH  MathSciNet  Google Scholar 

  • Li B, Wen S, Zhu L (2008) On a projective resampling method for dimension reduction with multivariate responses. J Amer Statist Assoc 103: 1177–1186

    Article  MathSciNet  Google Scholar 

  • Li KC (1991) Sliced inverse regression for dimension reduction. J Amer Statist Assoc 86: 316–342

    Article  MATH  MathSciNet  Google Scholar 

  • Li KC, Aragon Y, Shedden K, Agnan CT (2003) Dimension reduction for multivariate response data. J Amer Statist Assoc 98: 99–109

    Article  MATH  MathSciNet  Google Scholar 

  • Li Y, Zhu L (2007) Asymptotics for sliced average variance estimation. Ann Statist 35: 41–69

    Article  MathSciNet  Google Scholar 

  • Schwarz G. (1978) Estimating the dimension of a model. Ann Math Statist 30: 461–464

    Google Scholar 

  • Setodji CM, Cook RD (2004) K-means inverse regression. Technometrics 46: 421–429

    Article  MathSciNet  Google Scholar 

  • Shao Y, Cook RD, Weisberg S (2007) Marginal tests with sliced average variance estimation. Biometrika 94: 285–296

    Article  MATH  MathSciNet  Google Scholar 

  • Yin X, Bura E (2006) Moment-based dimension reduction for multivariate response regression. J Statist Plann Inference 136: 3675–3688

    Article  MATH  MathSciNet  Google Scholar 

  • Yin X, Seymour L (2005) Asymptotic distributions for dimension reduction in the SIR-II method. Statistica Sinica 15: 1069–1079

    MATH  MathSciNet  Google Scholar 

  • Yoo JK, Cook RD (2007) Optimal sufficient dimension reduction for the conditional mean in multivariate regression. Biometrika 94: 231–242

    Article  MATH  MathSciNet  Google Scholar 

  • Yoo JK (2008a) A novel moment-based dimension reduction approach in multivariate regression. Comput Statist Data Anal 52: 3843–3851

    Article  MATH  MathSciNet  Google Scholar 

  • Yoo JK (2008b) Sufficient dimension reduction for the conditional mean in multivariate regression with categorical predictors. J Multivariate Anal 99: 1825–1839

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu L, Zhu L (2007) On kernel method for sliced average variance estimation. J Multivariate Anal 98: 970–991

    Article  MATH  MathSciNet  Google Scholar 

  • Zhu L, Zhu L, Li X (2007) Transformed partial seast squares for multivariate data. Statistica Sinica 17: 1657–1676

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Keun Yoo.

Additional information

The views expressed in this paper are the author own but do not necessarily represent the views of Fannie Mae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoo, J.K., Lee, K. & Wu, S. On the extension of sliced average variance estimation to multivariate regression. Stat Methods Appl 19, 529–540 (2010). https://doi.org/10.1007/s10260-010-0145-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-010-0145-9

Keywords

Navigation