Skip to main content
Log in

Measuring the association of stationary point processes using spectral analysis techniques

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this work we focus on relationships between stationary point process using spectral analysis techniques. The evaluation of these relationships is accomplished with the help of the product ratio of association (PRA), which is based on the cumulant densities of the point processes. The estimation procedure is obtained by smoothing the periodogram statistic, a function of the frequency domain. It is proved that the asymptotic distribution of the square root of the estimated PRA is Normal with a constant variance. Statistical tests for hypotheses concerning the independence of two point processes and the characterization of a Poisson process are proposed. Furthermore, approximate 95% pointwise confidence interval can be obtained for the estimated PRA. These results can be applied on stochastic systems involving as input and output stationary point processes. An illustrative example from the framework of neurophysiology is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert A, Anderson JA (1984) On the existence of maximum likelihood estimates in logistic models. Biometrika 71: 1–10

    Article  MathSciNet  MATH  Google Scholar 

  • Amjad AM, Halliday DM, Rosenberg JR, Conway BA (1997) An extended difference of coherence test for comparing and combining several independent coherence estimates: theory and application to the study of motor units and physiological tremor. J Neurosci Methods 73: 69–79

    Article  Google Scholar 

  • Apostol TM (1957) Mathematical analysis, a modern approach to advanced calculus. Addison-Wesley, Reading, Massachusetts

    MATH  Google Scholar 

  • Bartlett MS (1963) The spectral analysis of point processes. J Royal Stat Soc B 25: 264–296

    MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1972) The spectral analysis of stationary interval functions. In: Le Cam LM, Neyman J, Scott EL (eds) Proceedings of the sixth Berkeley symposium on mathematical statistics and probability, University of California press, Berkeley, pp 483–513

  • Brillinger DR (1975a) The identification of point process systems. Ann Probab 3: 909–929

    Article  MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1975b) Estimation of product densities. In: Frane JW (ed) Computer science and statistics: 8th annual symposium UCLA, Los Angeles, pp 431–438

  • Brillinger DR (1975c) Statistical inference for stationary point processes. In: Puri MI (ed) Stochastic processes and related topics, vol 1. Academic Press, New York, pp 55–99

    Google Scholar 

  • Brillinger DR (1976a) Measuring the association of point processes: a case history. Am Math Mon 83: 16–22

    Article  MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1976b) Estimation of the second-order intensities of a bivariate stationary point process. J Royal Stat Soc B 38: 60–66

    MathSciNet  MATH  Google Scholar 

  • Brillinger DR (1983) The finite Fourier transform of a stationary point process. In: Brillinger DR, Krishnaiah PR (eds) Handbook of statistics, vol 3. Elsevier, New York, pp 21–37

    Google Scholar 

  • Brillinger DR (1988) Maximum likelihood analysis of a spike trains of interactive nerve cells. Biol Cybern 59: 189–200

    Article  MATH  Google Scholar 

  • Brillinger DR (1992) Nerve cell spike train data analysis: a progression of technique. J Am Stat Assoc 87: 260–271

    Article  Google Scholar 

  • Brillinger DR (2001) Time series: data analysis and theory. SIAM, Philadelphia

    MATH  Google Scholar 

  • Brillinger DR, Lindsay KA, Rosenberg JR (2009) Combining frequency and time domain approaches to systems with multiple spike train input and output. Biol Cybern 100: 459–474

    Article  MathSciNet  MATH  Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Cox DR, Isham V (1980) Point processes. Chapman and Hall, London

    MATH  Google Scholar 

  • Daley DJ, Vere-Jones D (1988) An introduction to the theory of point processes. Springer, Berlin

    MATH  Google Scholar 

  • Eichler M (1995) Empirical spectral processes and their applications to stationary point processes. Ann Appl Probab 5(4): 1161–1176

    Article  MathSciNet  MATH  Google Scholar 

  • Eichler M (2007) Testing nonparametric and semiparametric hypotheses in vector stationary processes. J Multivar Anal 99(5): 968–1009

    Article  MathSciNet  Google Scholar 

  • Eichler M, Dahlhaus R, Sandkühler J (2003) Partial correlation analysis for the identification of synaptic connections. Biol Cybern 89: 289–302

    Article  MATH  Google Scholar 

  • Ellis SP (1991) Density estimation of point processes. Stoch Proc Appl 39: 345–358

    Article  MATH  Google Scholar 

  • Ghazal MA (2001) Statistical analysis of broadened periodogram for continuous time stationary processes. Appl Math Comput 124: 343–349

    Article  MathSciNet  MATH  Google Scholar 

  • Halliday DM (1998) Generation and characterization of correlated spike trains. Comput Biol Med 28: 143–152

    Article  Google Scholar 

  • Janson S (1988) Normal convergence by higher semiinvariants with applications to sums of dependent random variables and random graphs. Ann Probab 16(1): 305–312

    Article  MathSciNet  MATH  Google Scholar 

  • Karavasilis GJ, Kotti VK, Tsitsis DS, Vassiliadis VG, Rigas AG (2005) Statistical methods and software for risk assessment: applications to a neurophysiological data set. Comput Stat Data Anal 49: 243–263

    Article  MathSciNet  MATH  Google Scholar 

  • Karavasilis GJ, Rigas AG (2007) Spectral analysis techniques of stationary point processes used for the estimation of cross-correlation: application to the study of a neurophysiological system. In: Domański M, Stasiński R, Bartkowiak M (eds) Proceedings of the 15th European signal processing conference, EUSIPCO 2007, Pozań-Poland, pp 2479–2483

  • Kass RE, Ventura V, Brown BN (2005) Statistical issues in the analysis of neuronal data. J Neurophysiol 94: 8–25

    Article  Google Scholar 

  • Kass RE, Ventura V, Cai C (2003) Statistical smoothing of neuronal data. Comput Neural Syst 14: 5–15

    Article  Google Scholar 

  • Kotti VK, Rigas AG (2003a) A nonlinear stochastic model used for the identification of a biological system. In: Capaso V (ed) Mathematical modeling and computing in biology and medicine, the Miriam project series, Bologna-Italy, pp 587–592

  • Kotti VK, Rigas AG (2003b) Identification of a complex neurophysiological system using the maximum likelihood approach. J Biol Syst 11(2): 189–204

    Article  MATH  Google Scholar 

  • Kotti VK, Rigas AG (2005) Logistic regression methods and their implementation. In: Edler L, Kitsos CP (eds) Recent advances in quantitative methods in cancer and human health risk assessment. Wiley, New York, pp 355–369

    Google Scholar 

  • Leonov VP, Shiryaev AN (1959) On a method of calculation of semi-invariants. Theory Probab Appl 4(3): 319–328

    Article  MATH  Google Scholar 

  • Lowery MM, Myers LJ, Erim Z (2007) Coherence between motor unit discharges in response to shared neural inputs. J Neurosci Meth 163: 384–391

    Article  Google Scholar 

  • Matthews PBC (1981) Review lecture: evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320: 1–30

    MathSciNet  Google Scholar 

  • Mehta CR, Patel NR (1995) Exact logistic regression: theory and examples. Stat Med 14: 2143–2160

    Article  Google Scholar 

  • Papoulis A (1962) The Fourier integral and its applications. McGraw-Hill, New York

    MATH  Google Scholar 

  • Priestley MB (1965) The role of bandwidth in spectral analysis. J Royal Stat Soc C 14: 33–47

    MATH  Google Scholar 

  • Proske U (2006) Kinesthesia: the role of muscle receptors. Muscle Nerve 34: 545–558

    Article  Google Scholar 

  • Proske U, Wise AK, Gregory JE (2000) The role of muscle receptors in the detection of movements. Prog Neurobiol 60: 85–96

    Article  Google Scholar 

  • Rao CR (1973) Linear statistical inference and its applications, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  • Rigas AG (1992) Spectral analysis of stationary point processes using the fast Fourier algorithm. J Time Ser Anal 13(5): 441–450

    Article  MathSciNet  MATH  Google Scholar 

  • Rigas AG (1996) Spectral analysis of a stationary bivariate point process with applications to neurophysiological problems. J Time Ser Anal 17(2): 171–187

    Article  MathSciNet  MATH  Google Scholar 

  • Rigas AG, Liatsis P (2000) Identification of a neuroelectric system involving a single input and a single output. Signal Process 80: 1883–1894

    Article  MATH  Google Scholar 

  • Rosenberg JR, Amjad AM, Breeze P, Brillinger DR, Halliday DM (1989) The Fourier approach to the identification of functional coupling between neuronal spike trains. Prog Biophys Mol Biol 53: 1–31

    Article  Google Scholar 

  • Stuart A, Ord JK, Arnold S (1999) Kendall’s advanced theory of statistics, vol 2A: Classical inference and the linear model, 6th edn. Hodder Arnold, London (1989) Wiley, New York

  • Taniguchi M, Puri ML, Kondo M (1996) Nonparametric approach for non-Gaussian vector stationary processes. J Multivar Anal 56: 259–283

    Article  MathSciNet  MATH  Google Scholar 

  • Windhorst U (2007) Muscle proprioceptive feedback and spinal networks. Brain Res Bull 73: 155–202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George J. Karavasilis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsitsis, D.S., Karavasilis, G.J. & Rigas, A.G. Measuring the association of stationary point processes using spectral analysis techniques. Stat Methods Appl 21, 23–47 (2012). https://doi.org/10.1007/s10260-011-0180-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-011-0180-1

Keywords

Navigation