Skip to main content

On wavelet analysis of the nth order fractional Brownian motion

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In this paper, we investigate the use of wavelet techniques in the study of the nth order fractional Brownian motion (n-fBm). First, we exploit the continuous wavelet transform’s capabilities in derivative calculation to construct a two-step estimator of the scaling exponent of the n-fBm process. We show, via simulation, that the proposed method improves the estimation performance of the n-fBm signals contaminated by large-scale noise. Second, we analyze the statistical properties of the n-fBm process in the time-scale plan. We demonstrate that, for a convenient choice of the wavelet basis, the discrete wavelet detail coefficients of the n-fBm process are stationary at each resolution level whereas their variance exhibits a power-law behavior. Using the latter property, we discuss a weighted least squares regression based-estimator for this class of stochastic process. Experiments carried out on simulated and real-world datasets prove the relevance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abry P, Flandrin P, Taqqu MS, Veitch D (2000) Wavelets for the analysis, estimation, and synthesis of scaling data. In: Park K, Willinger W (eds) Self-similar network traffic and performance evaluation. Wiley, New York, pp 39–88

    Chapter  Google Scholar 

  • Abry P, Flandrin P, Taqqu MS, Veitch D (2003) Self-similarity and long-range dependence through the wavelet lens. In: Doukhan P, Oppenheim G, Taqqu MS (eds) Long-Range Dependence: Theory and Applications, Birkhäuser, Boston, pp 527–556

  • Bel L, Oppenheim G, Robbiano L, Viano MC (1998) Distribution processes with stationary fractional increments. In: Proceedings of the colloquium FDS’98: fractional differential systems: models, methods and applications ESAIM: Proceedings 5, pp 43–54

  • Beran J (1994) Statistics for long-memory processes, monographs on statistics and applied probability, vol 61. Chapman & Hall, New York

    Google Scholar 

  • Biermé H (2005) Champs Aléatoires, Autosimilarité, Anisotropie et Etude Directionnelle. Ph.D. thesis, Université d’Orléans

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2 edn. Springer, New York

    Book  Google Scholar 

  • Brouste A, Istas J, Lambert-Lacroix S (2007) On fractional gaussian random fields simulations. J Stat Softw 23: 1–23

    Google Scholar 

  • Coeurjolly J-F (2001) Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat Inference Stoch Process 4: 199–227

    Article  MathSciNet  MATH  Google Scholar 

  • Daubechies I (1992) Ten lectures on wavelets. CBMS-NSF regional conference series on applied mathematics, SIAM, Philadelphia, PA, p 61

  • Dickey DA, Fuller WA (1981) The likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49: 1057–1072

    Article  MathSciNet  MATH  Google Scholar 

  • Dietrich CR, Newsam GN (1997) Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix. SIAM J Sci Comput 18: 1088–1107

    Article  MathSciNet  MATH  Google Scholar 

  • Flandrin P (1992) Wavelet analysis and synthesis of fractional Brownian motion. IEEE Trans Inf Theory 38: 910–917

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta A, Joshi SD, Prasad S (2005) A new approach for estimation of statistically matched wavelet. IEEE Trans Signal Process 53: 1778–1793

    Article  MathSciNet  Google Scholar 

  • Handy CR, Murenzi R (1998) Moment-wavelet quantization: a first principles analysis of quantum mechanics through continuous wavelet transform theory. Phys Lett A 248: 7–15

    Article  MATH  Google Scholar 

  • Hwang W-L (1999) Estimation of fractional Brownian motion embedded in a noisy environment using nonorthogonal wavelets. IEEE Trans Signal Process 47: 2211–2219

    Article  MathSciNet  MATH  Google Scholar 

  • Istas J, Lang G (1997) Quadratic variations and estimation of the local Hölder index of a gaussian process. Annales de l’institut Henri Poincaré (B) Probabilités et Statistiques 33: 407–436

    Article  MathSciNet  MATH  Google Scholar 

  • Kwiatkowski D, Phillips P, Schmidt P, Shin Y (1992) Testing the null hypothesis of stationary against the alternative of a unit root: how sure are we that economic time series have a unit root?. J Econom 54: 159–178

    Article  MATH  Google Scholar 

  • Liu H-F, Yang Y-Z, Dai Z-H, Yu Z-H (2003a) The largest Lyapunov exponent of chaotic dynamical system in scale space and its application. Chaos 13: 839–844

    Article  MathSciNet  MATH  Google Scholar 

  • Liu H-F, Li W-F, Dai Z-H, Yu Z-H (2003b) The dimension of chaotic dynamical system in wavelet space and its application. Phys Lett A 316: 44–54

    Article  MathSciNet  MATH  Google Scholar 

  • Loussot T, Harba R, Jacquet G, Benhamou CL, Lespesailles E, Julien A (1996) An oriented fractal analysis for the characterization of texture: application to bone radiographs. EUSIPCO Signal Process 1: 371–374

    Google Scholar 

  • Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Machine Intell 11: 674–693

    Article  MATH  Google Scholar 

  • Mallat S (1998) A wavelet tour of signal processing. Academic Press, New York

    MATH  Google Scholar 

  • Mallat S, Hwang WH (1992) Singularity detection and processing with wavelets. IEEE Trans Inf Theory 38: 617–643

    Article  MathSciNet  MATH  Google Scholar 

  • Mandelbrot BB (1999) Multifractals and 1/f noise: wild self-affinity in physics. Springer, New York

    Google Scholar 

  • Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motion, fractional noises and applications. SIAM Rev 10: 422–438

    Article  MathSciNet  MATH  Google Scholar 

  • Meyer Y (1992) Wavelets and operators (trans: DH Salinger). Cambridge University, Cambridge

    Google Scholar 

  • Mielniczuk J, Wojdyllo P (2007) Estimation of Hurst exponent revisited. Comput Stat Data Anal 51: 4510–4525

    Article  MathSciNet  MATH  Google Scholar 

  • Parra C, Iftekharuddin K, Rendon D (2003) Wavelet based estimation of the fractal dimension in fBm images. In: First International IEEE EMB Conference on Neural Engineering. Conference Proceedings, pp 533–536

  • Pérez DG, Zunino L, Garavaglia M, Rosso OA (2006) Wavelet entropy and fractional Brownian motion time series. Phys A 365: 282–288

    Article  Google Scholar 

  • Perrin E, Harba R, Berzin-Joseph C, Iribarren I, Bonami A (2001) Nth order fractional Brownian motion and fractional Gaussian noises. IEEE Trans Signal Process 49: 1049–1059

    Article  Google Scholar 

  • Perrin E, Harba R, Jennane R, Iribarren I (2002) Fast and exact synthesis for 1-D fractional Brownian motion and fractional gaussian noises. IEEE Signal Process Lett 9: 382–384

    Article  Google Scholar 

  • Pesquet-Popescu B, Larzabal P (1997) Higher order and lower order properties of the Wavelet decomposition of self similar process. IEEE signal processing workshop on higher-order statistics (SPW-HOS ’97), spwhos, pp 4–58

  • Phillips PCB, Perron P (1988) Testing for unit roots in time series regression. Biometrica 75: 335–346

    Article  MathSciNet  MATH  Google Scholar 

  • Power GJ, Turvey GC (2010) Long-range dependence in the volatility of commodity futures prices: wavelet-based evidence. Phys A 389: 79–90

    Article  Google Scholar 

  • Sembiring J, Soemintapoera K, Kobayachi T, Akizuki K (2003) Diffusive representation of Nth order fractional brownian motion. In: Proceedings of the 13th IFAC symposium on system identification, Rotterdam, the Netherlands, 1, pp 181–186

  • Shao X, Ma C (2003) A general approach to derivative calculation using wavelet transform. Chemom Intell Lab Syst 69: 157–165

    Article  Google Scholar 

  • Stoev S, Taqqu MS (2005) Path properties of the linear multifractional stable motion. Fractals 13: 157–178

    Article  MathSciNet  Google Scholar 

  • Tewfik AH, Kim M (1992) Correlation structure of the discrete wavelet coefficients of fractional Brownian motion. IEEE Trans Inf Theory 38: 904–909

    Article  MathSciNet  MATH  Google Scholar 

  • Trimech A, Kortas H, Benammou S, Benammou S (2009) Multiscale Fama-French model: application to the French market. J Risk Finance 10: 179–192

    Article  Google Scholar 

  • Veitch D. (2001) MATLAB code for estimation of scaling exponents. Available at: http://www.cubinlab.ee.mu.oz.au/~darryl/secondordercode.html

  • Veitch D, Abry P (1999) A wavelet-based joint estimator of the parameters of long-range dependence. IEEE Trans Inf Theory 45: 878–897

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang L, Bao P, Wu X (2004) Wavelet estimation of fractional Brownian motion embedded in a noisy environment. IEEE Trans Inf Theory 50: 2194–2200

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hedi Kortas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kortas, H., Dhifaoui, Z. & Ben Ammou, S. On wavelet analysis of the nth order fractional Brownian motion. Stat Methods Appl 21, 251–277 (2012). https://doi.org/10.1007/s10260-012-0187-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0187-2

Keywords