Skip to main content
Log in

Local stationarity in small area estimation models

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

Small area estimators are often based on linear mixed models under the assumption that relationships among variables are stationary across the area of interest (Fay–Herriot models). This hypothesis is patently violated when the population is divided into heterogeneous latent subgroups. In this paper we propose a local Fay–Herriot model assisted by a Simulated Annealing algorithm to identify the latent subgroups of small areas. The value minimized through the Simulated Annealing algorithm is the sum of the estimated mean squared error (MSE) of the small area estimates. The technique is employed for small area estimates of erosion on agricultural land within the Rathbun Lake Watershed (IA, USA). The results are promising and show that introducing local stationarity in a small area model may lead to useful improvements in the performance of the estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ben-Ameur W (2004) Computing the initial temperature of simulated annealing. Comput Optim Appl 29: 369–385

    Article  MathSciNet  MATH  Google Scholar 

  • Benedetti R, Catenaro R, Postiglione P (2006) Local stationarity of spatial regression models. In: Spatial data methods for environmental and ecological processes

  • Fay R, Herriot R (1979) Estimates of income for small places: an application of james-stein procedures to census data. J Am Stat Assoc 74: 269–277

    Article  MathSciNet  Google Scholar 

  • Fouskakis D, Draper D (2002) Stochastic optimization: a review. Int Stat Rev 70: 315–349

    Article  MATH  Google Scholar 

  • Geman D, Geman S (1984) Stochastic relaxation, gibbs distributions and bayesian restoration of images. IEEE PAMI 6: 721–741

    Article  MATH  Google Scholar 

  • Geman D, Geman S, Graffigne C, Dong P (1990) Boundary detection by constrained optimization. IEEE PAMI 12: 609–628

    Article  Google Scholar 

  • Giusti C, Marchetti S, Pratesi M, Salvati N (2012) Semiparametric fay? Herriot model using penalized splines. J Indian Soc Agric Stat 66: 1–14

    MathSciNet  Google Scholar 

  • Kirkpatrick S, Gelatt C, Vecchi M (1983) Optimization by simulated annealing. Science 220: 671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Opsomer JD, Miller CP (2005) Selecting the amount of smoothing in nonparametric regression estimation for complex surveys. J Nonparametr Stat 17: 593–611

    Article  MathSciNet  MATH  Google Scholar 

  • Opsomer JD, Botts C, Kim JY (2003) Small area estimation in watershed erosion assessment survey. J Agric Biol Enviro Stat 2: 139–152

    Article  Google Scholar 

  • Páez A, Uchida T, Miyamoto K (2002) A general framework for estimation and inference of geographically weighted regression models: 1. Location-specific kernel bandwidths and a test for locational heterogeneity. Enviro Plan A 34: 733–754

    Article  Google Scholar 

  • Páez A, Uchida T, Miyamoto K (2002) A general framework for estimation and inference of geographically weighted regression models: 2. Spatial association and model specification test. Environ Plan A 34: 883–904

    Article  Google Scholar 

  • Petrucci A, Salvati N (2006) Small area estimation for spatial correlation in watershed erosion assessment. J Agric Biol Environ Stat 11: 169–182

    Article  Google Scholar 

  • Prasad N, Rao JN (1990) The estimation of the mean squared error of small-area estimators. J Am Stat Assoc 85: 163–171

    Article  MathSciNet  MATH  Google Scholar 

  • Pratesi M, Salvati N (2008) Small area estimation: the eblup estimator based on spatially correlated random area effects. Stat Methods Appl 17: 114–131

    Article  Google Scholar 

  • Pratesi M, Salvati N (2009) Small area estimation in the presence of correlated random area effects. J Off Stat 25: 37–53

    Google Scholar 

  • Rao J (2003) Small area estimation. Wiley, London

    Book  MATH  Google Scholar 

  • Sebastiani M (2003) Markov random-field models for estimating local labour markets. Appl Stat 52: 201–211

    MathSciNet  MATH  Google Scholar 

  • Singh B, Shukla K, Kundu D (2005) Spatial-temporal models in small area estimation. Surv Methodol 31: 183–195

    MATH  Google Scholar 

  • Stander J, Silverman BW (1994) Temperature schedules for simulated annealing. Stat Comput 4: 21–32

    Article  Google Scholar 

  • Strenski PN, Kirkpatrick S (1991) Analysis of finite length annealing schedules. Algorithmica 6: 346–366

    Article  MathSciNet  MATH  Google Scholar 

  • Tibshirani R, Walter G, Hastie T (2001) Estimating the number of clusters in a dataset via the gap statistic. J R Stat Soc B 32: 411–423

    Article  Google Scholar 

  • van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. D. Reidel, Dordrecht

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Benedetti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benedetti, R., Pratesi, M. & Salvati, N. Local stationarity in small area estimation models. Stat Methods Appl 22, 81–95 (2013). https://doi.org/10.1007/s10260-012-0208-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0208-1

Keywords

Navigation