Skip to main content

Advertisement

Log in

Multilevel dimensionality-reduction methods

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

When data sets are multilevel (group nesting or repeated measures), different sources of variations must be identified. In the framework of unsupervised analyses, multilevel simultaneous component analysis (MSCA) has recently been proposed as the most satisfactory option for analyzing multilevel data. MSCA estimates submodels for the different levels in data and thereby separates the “within”-subject and “between”-subject variations in the variables. Following the principles of MSCA and the strategy of decomposing the available data matrix into orthogonal blocks, and taking into account the between- and the within data structures, we generalize, in a multilevel perspective, multivariate models in which a matrix of response variables can be used to guide the projections (formed by responses predicted by explanatory variables or by a limited number of their combinations/composites) into choices of meaningful directions. To this end, the current paper proposes the multilevel version of the multivariate regression model and dimensionality-reduction methods (used to predict responses with fewer linear composites of explanatory variables). The principle findings of the study are that the minimization of the loss functions related to multivariate regression, principal-component regression, reduced-rank regression, and canonical-correlation regression are equivalent to the separate minimization of the sum of two separate loss functions corresponding to the between and within structures, under some constraints. The paper closes with a case study of an application focusing on the relationships between mental health severity and the intensity of care in the Lombardy region mental health system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham B, Merola G (2005) Dimensionality reduction approach to multivariate prediction. Comput Stat Data Anal 48: 5–16

    Article  MathSciNet  MATH  Google Scholar 

  • Anderson TW (1951) Estimating linear restrictions on regression coefficients for multivariate normal distributions. Ann Math Stat 22: 327–351

    Article  MATH  Google Scholar 

  • Anderson TW (2003) An introduction to multivariate statistical analysis. Wiley-Interscience, Hoboken, NJ

    MATH  Google Scholar 

  • Bryk AS, Raudenbush SW (1992) Hierarchical linear models, applications and data analysis methods. Sage, Newbury Park, CA

    Google Scholar 

  • Burnham AJ, Viveros R, MacGregor JF (1996) Frameworks for latent variable multivariate regression. J Chemom 10: 31–45

    Article  Google Scholar 

  • Davies PT, Tso MK (1982) Procedures for reduced-rank regression. Appl Stat 3: 244–255

    Article  MathSciNet  Google Scholar 

  • de Jong S, Kiers HA (1992) Principal covariates regression: part I theory. Chemom Intell Lab Syst 14: 155–164

    Article  Google Scholar 

  • de Noord OE, Theobald EH (2005) Multilevel component analysis and multilevel PLS of chemical process data. J Chemom 19: 301–307

    Article  Google Scholar 

  • Erlicher A, Lora A (2002) Pattern di trattamento e costi dei dipartimenti di salute mentale della regione Lombardia. Progetto di ricerca HoNOS 2. Pensiero Scientifico Editore, Milan, Italy

  • Goldstein H, McDonald RP (1988) A general model for the analysis of multilevel data. Psychometrika 53: 455–468

    Article  MathSciNet  MATH  Google Scholar 

  • Gower JC (1975) Generalized procrustes analysis. Psychometrika 40: 33–51

    Article  MathSciNet  MATH  Google Scholar 

  • Hox J (2002) Multilevel analysis. Erlbaum, Mahwah, NJ

    MATH  Google Scholar 

  • Hwang H, Takane Y (2004) Generalized structured component analysis. Psychometrika 69: 81–99

    Article  MathSciNet  Google Scholar 

  • Hwang H, Takane Y, Malhotra N (2007) Multilevel generalized structured component analysis. Behaviormetrika 34: 95–109

    Article  MathSciNet  MATH  Google Scholar 

  • Izenman AJ (1975) Reduced-rank regression for the multivariate bilinear model. J Multivar Anal 5: 248–264

    Article  MathSciNet  MATH  Google Scholar 

  • Jansen JJ, Hoefsloot HCJ, van der Greef J, Timmerman ME, Smilde AK (2005) Multilevel component analysis of time-resolved metabolic fingerprinting data. Analytica Chimica Acta 530: 173–183

    Article  Google Scholar 

  • Jansen JJ, Hoefsloot HCJ, Westerhuis JA, van der Greef J, Timmerman ME, Smilde AK (2005) ASCA: analysis of multivariate data obtained from an experimental design. J Chemom 19: 469–481

    Article  Google Scholar 

  • Joreskog KG (1993) Testing structural equation models. In: Bollen KA, Long SJ (eds) Testing structural equation models. Sage Publications, London, pp 294–316

    Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23: 187–200

    Article  MATH  Google Scholar 

  • Lora A, Bai G, Bianchi S, Bolongaro G, Civenti G, Erlicher A et al (2001) La versione italiana della HoNOS (Health of the Nation Outcome Scales), una scala per la valutazione della gravità à e dell’esito nei servizi di salute mentale. Epidemiologia e Psichiatria Sociale 10: 198–212

    Article  Google Scholar 

  • Lovaglio PG, Monzani E (2012, in press) Health of the nation outcome scales evaluation in a community setting population. Qual Life Res. doi:10.1007/s11136-011-0071-9

  • Massey WF (1965) Principal components regression in exploratory statistical research. J Am Stat Assoc 60: 234–246

    Article  MathSciNet  Google Scholar 

  • Meredith W, Millsap RE (1985) On component analysis. Psychometrika 50: 495–507

    Article  MathSciNet  MATH  Google Scholar 

  • Merola GM, Abraham B (2001) Dimensionality reduction approach to multivariate prediction. Can J Stat 29: 191–200

    Article  MathSciNet  MATH  Google Scholar 

  • Muthén BO (1991) Multilevel factor analysis of class and student achievement components. J Educ Meas 28: 338–354

    Article  Google Scholar 

  • Muthén BO (1994) Multilevel covariance structure analysis. Sociol Methods Res 22: 376–398

    Article  Google Scholar 

  • Neuhaus JM, Kalbfleisch JD (1998) Between- and within-cluster covariate effects in the analysis of clustered data. Biometrics 54: 638–645

    Article  MATH  Google Scholar 

  • Reise SP, Duan N (2003) Multilevel modelling. Methodological advances, issues, and applications. Erlbaum, Mahwah, NJ

    Google Scholar 

  • Schönemann PH, Steiger JH (1976) Regression component analysis. Br J Math Stat Psychol 29: 175–189

    Article  MATH  Google Scholar 

  • Scott AJ, Holt D (1982) The effect of two-stage sampling on ordinary least-squares methods. J Am Stat Assoc 77: 848–854

    Article  MATH  Google Scholar 

  • Smilde AK, Jansen JJ, Hoefsloot HCJ, Lamers RJ, van der Greef J, Timmerman ME (2005) ANOVA simul- taneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics 21: 3043–3048

    Article  Google Scholar 

  • Snijders TAB, Bosker RJ (1999) Multilevel analysis: an introduction to basic and advanced multilevel modelling. Sage, London

    Google Scholar 

  • Takane Y, Hunter MA (2001) Constrained principal component analysis: a comprehensive theory. Appl Algebra Eng Commun Comput 12: 391–419

    Article  MathSciNet  MATH  Google Scholar 

  • Thissen U, Wopereis S, van den Berg SAA, Bobeldijk I, Kleemann R, Kooistra T et al (2009) Improving the analysis of designed studies by combining statistical modelling with study design information. BMC Bioinformatics 10: 52

    Article  Google Scholar 

  • Timmerman ME (2006) Multilevel component analysis. Br J Math Stat Psychol 59: 301–320

    Article  MathSciNet  Google Scholar 

  • Timmerman ME, Kiers HAL, Smilde AK, Ceulemans E, Stouten J (2009) Bootstrap confidence intervals in multilevel simultaneous component analysis. Br J Math Stat Psychol 62: 299–318

    Article  MathSciNet  Google Scholar 

  • Timmerman ME, Kiers HL (2003) Four simultaneous component models of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika 86: 105–122

    Article  MathSciNet  Google Scholar 

  • Van den Wollenberg R (1977) Redundancy analysis: an alternative for canonical correlation analysis. Psychometrica 42: 207–219

    Article  MATH  Google Scholar 

  • van der Burg E, de Leeuw J, Dijksterhuis G (1994) Nonlinear canonical correlation with k sets of variables. Comput Stat Data Anal 18: 141–163

    Article  MATH  Google Scholar 

  • Wing J, Curtis RH, Beevor AS, Park BG, Hadden S, Burns A (1998) Health of the nation outcome scales (HoNOS): research and development. Br J Psychiatry 172: 11–18

    Article  Google Scholar 

  • Wold H (1982) Soft modeling: the basic design and some extensions. In: Joreskog KG, Wold H (eds) System under indirect observation: causality, structure, prediction. North-Holland, Amsterdam, pp 1–54

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Giorgio Lovaglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lovaglio, P.G., Vittadini, G. Multilevel dimensionality-reduction methods. Stat Methods Appl 22, 183–207 (2013). https://doi.org/10.1007/s10260-012-0215-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-012-0215-2

Keywords

Navigation