Skip to main content

The geometric exponential Poisson distribution

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

Many if not most lifetime distributions are motivated only by mathematical interest. Here, a new three-parameter distribution motivated mainly by lifetime issues is introduced. Some properties of the new distribution including estimation procedures, univariate generalizations and bivariate generalizations are derived. Two real data applications are described to show superior performance versus some known lifetime models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamidis A, Loukas S (1998) A lifetime distribution with decreasing failure rate. Stat Probab Lett 39:35–42

    Article  MathSciNet  MATH  Google Scholar 

  • Barreto-Souza W, Cribari-Neto F (2009) A generalization of the exponential-Poisson distribution. Stat Probab Lett 79:2493–2500

    Article  MathSciNet  MATH  Google Scholar 

  • Conti M, Gregori E, Panzieri F (1999) Load distribution among replicated web servers: a QoS-based approach. ACM SIGMETRICS Perform Eval Rev 27:12–19

    Article  Google Scholar 

  • Cordeiro GM, de Castro M (2011) A new family of generalized distributions. J Stat Comput Simul 81:883–898

    Article  MathSciNet  MATH  Google Scholar 

  • Elhai JD, Calhoun PS, Ford JD (2008) Statistical procedures for analyzing mental health services data. Psychiatry Res 160:129–136

    Article  Google Scholar 

  • Eugene N, Lee C, Famoye F (2002) Beta-normal distribution and its applications. Commun Stat Theory Methods 31:497–512

    Article  MathSciNet  MATH  Google Scholar 

  • Fricker C, Gast N, Mohamed H (2012) Mean field analysis for inhomogeneous bike sharing systems. In: Proceedings of the 23rd international meeting on probabilistic, combinatorial, and asymptotic methods for the analysis of algorithms, pp 365–376

  • Ginebra J, Puig X (2010) On the measure and the estimation of evenness and diversity. Comput Stat Data Anal 54:2187–2201

    Article  MathSciNet  Google Scholar 

  • Kuş C (2007) A new lifetime distribution. Comput Stat Data Anal 51:4497–4509

    Article  MATH  Google Scholar 

  • Lawless JF (2003) Statistical models and methods for lifetime data. Wiley, New York

    MATH  Google Scholar 

  • Maller RA, Zhou X (1995) Testing for the presence of immune or cured individuals in censored survival data. Biometrics 51:1197–1205

    Article  MathSciNet  MATH  Google Scholar 

  • Ortega EMM, Cordeiro GM, Hashimoto EM (2011) A log-linear regression model for the beta-Weibull distribution. Commun Stat Simul Comput 40:1206–1235

    Article  MathSciNet  MATH  Google Scholar 

  • Prudnikov AP, Brychkov YA, Marichev OI (1986) Integrals and series, volumes 1, 2 and 3. Gordon and Breach Science, Amsterdam

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria

  • Silva RB, Barreto-Souza W, Cordeiro GM (2010) A new distribution with decreasing, increasing and upside-down bathtub failure rate. Comput Stat Data Anal 54:935–944

    Article  MathSciNet  MATH  Google Scholar 

  • Singh H, Misra N (1994) On redundancy allocations in systems. J Appl Probab 31:1004–1014

    Article  MathSciNet  MATH  Google Scholar 

  • van der Heijden PGM, Bustami R, Cruyff MJLF, Engbersen G, van Houwelingen HC (2003) Point and interval estimation of the population size using the truncated Poisson regression model. Stat Model 3:305–322

    Article  MathSciNet  MATH  Google Scholar 

  • Xu S, Hu Z (2011) Mapping quantitative trait loci using the MCMC procedure in SAS. Heredity 106:357–369

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two referees and the Editor for careful reading and for their comments which greatly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saralees Nadarajah.

Appendix

Appendix

The calculations of the paper require the following lemmas.

Lemma 1

If a random variable \(X\) has the GEP distribution then

$$\begin{aligned}&B (a, b, c)= E \left\{ \frac{\exp \left[ -a \lambda X - b \theta \exp (-\lambda X) \right] }{\left[ 1 - \exp (-\theta ) - \eta \left\{ 1 - \exp \left[ -\theta \exp (-\lambda X) \right] \right\} \right] ^c} \right\} \\&\quad = \frac{\theta (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] }{\left[ 1 - \exp (-\theta ) - \eta \right] ^{2 + c}} \sum _{k = 0}^\infty {-2 - c \atopwithdelims ()k} \frac{\eta ^k \gamma \left( a + 2, (1 + b + k) \theta \right) }{\left[ 1 - \exp (-\theta ) - \eta \right] ^k (1 + b + k)^{a + 2} \theta ^{a + 2}}. \end{aligned}$$

Proof

Using the series expansion, (5), we can write

$$\begin{aligned} B (a, b, c)&= \theta \lambda (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] \int \limits _0^\infty \frac{\exp \left[ -(a + 1) \lambda x - (b + 1) \theta \exp (-\lambda x) \right] }{\left[ 1 - \exp (-\theta ) - \eta \left\{ 1 - \exp \left[ -\theta \exp (-\lambda x) \right] \right\} \right] ^{2 + c}} dx \\&= \theta (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] \int \limits _{0}^{1} \frac{y^{a + 1} \exp \left[ -(b + 1) \theta y \right] }{\left[ 1 - \exp (-\theta ) - \eta + \eta \exp (-\theta y) \right] ^{2 + c}} dy\\&= \frac{\theta (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] }{\left[ 1 - \exp (-\theta ) - \eta \right] ^{2 + c}} \sum _{k = 0}^\infty {-2 - c \atopwithdelims ()k} \left[ \frac{\eta }{1 - \exp (-\theta ) - \eta } \right] ^{k} \\&\times \int \limits _{0}^{1} y^{a + 1} \exp \left[ -(b + k + 1) \theta y \right] dy. \end{aligned}$$

The result follows by the definition of the incomplete gamma function. \(\square \)

Lemma 2

If a random variable \(X\) has the GEP distribution then

$$\begin{aligned} D (a, b, c, d)&= E \left\{ \frac{X^{d} \exp \left[ -a \lambda X - b \theta \exp (-\lambda X) \right] }{\left[ 1 - \exp (-\theta ) - \eta \left\{ 1 - \exp \left[ -\theta \exp (-\lambda X) \right] \right\} \right] ^{c}} \right\} \\&= \frac{\theta (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] }{(-\lambda )^d \left[ 1 - \exp (-\theta ) - \eta \right] ^{2 + c}} \sum _{k = 0}^\infty {-2 - c \atopwithdelims ()k}\nonumber \\&\times \left. \frac{\partial ^d}{\partial s^d} \frac{\eta ^{k} \gamma \left( s + a + 2, (1 + b + k) \theta \right) }{\left[ 1 - \exp (-\theta ) - \eta \right] ^{k} (1 + b + k)^{a + 2} \theta ^{a + 2}} \right| _{s = 0}. \end{aligned}$$

Proof

Using the series expansion, (5), we can write

$$\begin{aligned} D (a, b, c, d)&= \theta \lambda (1 - \eta ) \left[ 1 \!-\! \exp (-\theta ) \right] \int \limits _{0}^{\infty } \frac{x^{d} \exp \left[ -(a \!+\! 1) \lambda x \!-\! (b\! + \!1) \theta \exp (-\lambda x) \right] }{\left[ 1 \!-\! \exp (-\theta ) \!-\! \eta \left\{ 1 \!-\! \exp \left[ -\theta \exp (-\lambda x) \right] \right\} \right] ^{2 \!+\! c}} dx \\&= \theta (-\lambda )^{-d} (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] \int \limits _{0}^{1} \frac{(\log y)^d y^{a + 1} \exp \left[ -(b + 1) \theta y \right] }{\left[ 1 - \exp (-\theta ) - \eta + \eta \exp (-\theta y) \right] ^{2 + c}} dy \\&= \frac{\theta (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] }{(-\lambda )^d \left[ 1 - \exp (-\theta ) - \eta \right] ^{2 + c}} \sum _{k = 0}^\infty {-2 - c \atopwithdelims ()k} \left[ \frac{\eta }{1 - \exp (-\theta ) - \eta } \right] ^{k} \\&\times \int \limits _0^1 (\log y)^d y^{a + 1} \exp \left[ -(b + k + 1) \theta y \right] dy \\&= \frac{\theta (1 - \eta ) \left[ 1 - \exp (-\theta ) \right] }{(-\lambda )^d \left[ 1 - \exp (-\theta ) - \eta \right] ^{2 + c}} \sum _{k = 0}^\infty {-2 - c \atopwithdelims ()k} \left[ \frac{\eta }{1 - \exp (-\theta ) - \eta } \right] ^{k} \\&\times \left. \frac{\partial ^{d}}{\partial s^{d}} \int \limits _{0}^{1} y^{s + a + 1} \exp \left[ -(b + k + 1) \theta y \right] dy \right| _{s = 0}. \end{aligned}$$

The result follows by the definition of the incomplete gamma function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadarajah, S., Cancho, V.G. & Ortega, E.M.M. The geometric exponential Poisson distribution. Stat Methods Appl 22, 355–380 (2013). https://doi.org/10.1007/s10260-013-0230-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-013-0230-y

Keywords