References
Fritz H, García-Escudero LA, Mayo-Iscar A (2013) A fast algorithm for robust constrained clustering. Comput Stat Data Anal 61:124–136
Gallegos MT, Ritter G (2009) Trimmed ML estimation of contaminated mixtures. Sankhya (Ser A) 71:164–220
García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2008) A general trimming approach to robust cluster analysis. Ann Stat 36:1324–1345
García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2011) Exploring the number of groups in robust model-based clustering. Stat Comput 21:585–599
García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2013) A constrained robust proposal for mixture modeling avoiding spurious solutions, to appear in Adv Data Anal Classif
Hathaway RJ (1985) A constrained formulation of maximum likelihood estimation for normal mixture distributions. Ann Stat 13:795–800
Ingrassia S, Rocci R (2007) Constrained monotone EM algorithms for finite mixture of multivariate Gaussians. Comput Stat Data Anal 51:5339–5351
Lee SX, McLachlan GJ (2013) On mixtures of skew normal and skew t-distributions. Adv Data Anal Classif 7(3):241–266
Neykov N, Filzmoser P, Dimova R, Neytchev P (2007) Robust fitting of mixtures using the trimmed likelihood estimator. Comput Stat Data Anal 17:299–308
Acknowledgments
This research is partially supported by the Spanish Ministerio de Ciencia e Innovación, Grant MTM2011-28657-C02-01.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
García-Escudero, L.A., Gordaliza, A. & Mayo-Iscar, A. Comments on: model-based clustering and classification with non-normal mixture distributions. Stat Methods Appl 22, 459–461 (2013). https://doi.org/10.1007/s10260-013-0245-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10260-013-0245-4