Skip to main content
Log in

Expressions for moments of order statistics and records from the skew-normal distribution in terms of multivariate normal orthant probabilities

  • Published:
Statistical Methods & Applications Aims and scope Submit manuscript

Abstract

In designs of experiments and reliability analyze, order statistics (OS) are used for various purposes including model checking, estimations of parameters and prediction. Most of these procedures are defined on the basis of expectations of OS problems. In this paper, explicit expressions for central moments of OS coming from the skew-normal (SN) distribution are derived. The SN model enjoys interesting properties from the normal distribution while captures asymmetric behavior in the parent population. Another important topic which is related to OS is record statistics. These data are arising in some practical situations including shock models, sports and epoch times of a non-homogeneous Poisson processes. Here, we derive moments of the upper and the lower record values arising from the skew normal distribution. The obtained results may be used for prediction purposes such as predictive maintenance in a repairable system and prediction of performance of a transmission oil pipeline. Some real data sets are analyzed using the results obtained for illustration purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aitchison J, Dunsmore IR (1975) Statistical prediction analysis. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Arellano-Valle RB, Azzalini A (2006) On the unification of families of skew-normal distributions. Scand J Stat 33:561–574

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold BC, Balakrishnan N, Nagaraja HN (1992) A first course in order statistics. Wiley, New York

    MATH  Google Scholar 

  • Arnold BC, Balakrishnan N, Nagaraja HN (1998) Records. Wiley, New York

    Book  MATH  Google Scholar 

  • Arnold BC, Balakrishnan N, Nagaraja HN (2008) A first course in order statistics. Unabridged republication of the 1992 original. Classics in Applied Mathematics, No. 54. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

  • Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MATH  MathSciNet  Google Scholar 

  • Azzalini A, Bacchieri A (2010) A prospective combination of phase II and phase III in drug development. METRON Int J Stat LXVIII(3):347–369

    MathSciNet  Google Scholar 

  • Azzalini A (2013) R package ‘sn’: The skew-normal and skew-\(t\) distributions (version 0.4-18). http://azzalini.stat.unipd.it/SN

  • Balakrishnan N, Chan PS (1995) On the normal record values and associated inference. Technical Report, McMaster University, Hamilton, Ontario, Canada

  • Balakrishnan N, Chan PS (1998) On the normal record values and associated inference. Stat Probab Lett 39:73–80

    Article  MATH  MathSciNet  Google Scholar 

  • Bose RC, Gupta SS (1959) Moments of order statistics from a normal population. Biometrika 46:433–440

    Article  MATH  MathSciNet  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference, a practical information-theoretic approach, 2nd edn. Springer, New York

    MATH  Google Scholar 

  • Capitanio A, Azzalini A, Stanghellini E (2003) Graphical models for skew-normal variates. Scand J Stat 30:129–144

    Article  MathSciNet  Google Scholar 

  • Castillo E, Hadi AS, Balakrishnan N, Sarabia JM (2005) Extreme value and related models with applications in engineering and science. Wiley, Hoboken, NJ

    MATH  Google Scholar 

  • Chiogna M (1998) Some results on the scalar skew-normal distribution. J Ital Stat Soc 1:1–13

    Article  Google Scholar 

  • Cook RD, Weisberg S (1994) An introduction to regression graphics. Wiley, New York

    Book  MATH  Google Scholar 

  • David HA, Nagaraja HN (2003) Order statistics, 3rd edn. Wiley, Hoboken, NJ

    Book  MATH  Google Scholar 

  • Doostparast M, Balakrishnan N (2011) Optimal statistical procedures on the basis of records in a two-parameter exponential distribution. J Stat Comput Simul 81(12):2003–2019

    Article  MATH  MathSciNet  Google Scholar 

  • Genz A (Fortran code), Azzalini A (R code) (2012) mnormt: the multivariate normal and \(t\) distributions. R package version 1.4-5. http://CRAN.R-project.org/package=mnormt

  • Harter HL (1961) Expected values of normal order statistics. Biometrika 48:151–165 (Correction 48, 476)

  • Harter HL (1970) Order statistics and their use in testing and estimation, vol 1 and 2. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Jamalizadeh A, Balakrishnan N (2008) On order statistics from bivariate skew-normal and skew-\(\text{ t }_{\nu }\) distributions. J Stat Plan Inference 138:4187–4197

    Article  MATH  MathSciNet  Google Scholar 

  • Jamalizadeh A, Balakrishnan N (2009) Order statistics from trivariate normal and \(t_{\nu }\)-distributions in terms of generalized skew-normal and skew-\(t_{\nu }\) distributions. J Stat Plan Inference 139:3799–3819

    Article  MATH  MathSciNet  Google Scholar 

  • Kotz S, Balakrishnan N, Johnson N (2000) Continuous multivariate distributions. Wiley, New York

    Book  MATH  Google Scholar 

  • Nadarajah S (2008) Explicit expressions for moments of order statistics. Stat Probab Lett 78:196–205

    Article  MATH  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. ISBN 3-900051-07-0

  • Salehi M, Ahmadi J (2014) Record ranked set sampling scheme. METRON Int J Stat 72(3):351–365

    MATH  MathSciNet  Google Scholar 

  • Salehi M, Ahmadi J, Balakrishnan N (2015) Prediction of order statistics and record values based on ordered ranked set sampling. J Stat Comput Sim 85(1):77–88

    Article  MathSciNet  Google Scholar 

  • Salehi M, Jamalizadeh A, Doostparast M (2014) A generalized skew two-piece skew-elliptical distribution. Stat Pap 55:409–429

    Article  MATH  MathSciNet  Google Scholar 

  • Tietjen GL, Kahaner DK, Beckman RJ (1977) Variances and covariances of the normal order statistics for sample sizes 2 to 50. Sel Tables Math Stat 5:1–73. 7:122–128

  • Henningsen A, Toomet O (2011) maxLik: a package for maximum likelihood estimation in R. Comput Stat 26(3):443–458

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank professor Adelchi Azzalini (Dipartimento di Scienze, Statistiche Universit di Padova, Italy) for his comments on the manuscript, specially on Lemma 1 and informing us about results of Chiogna (1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Doostparast.

Appendix

Appendix

Proof of Lemma 3

Assuming \(g(t)=\varPhi _{SN}^{k}(t)\), a simple integration yields [see also Chiogna (1998)]

$$\begin{aligned} kE\left[ \phi _{SN}(Z_{\lambda };\lambda )\varPhi _{SN}^{k-1}(Z_{\lambda };\lambda )\right] \le kE\left[ \phi _{SN}(Z_{\lambda };\lambda )\right] =\frac{2k}{\pi ^{1.5}}\tan ^{-1}\sqrt{1+\lambda ^2}<\infty .\nonumber \\ \end{aligned}$$
(43)

So, one can use Lemma 2 for computing the expectation \(E\left[ Z_{\lambda }\varPhi _{SN}^k(Z_{\lambda };\lambda )\right] \). Substituting \(\lambda _1=\lambda \) and \(\lambda _2=\rho =0\) into (11) and (12), we have (for \(k\ge 2\))

$$\begin{aligned} E\left[ Z_{\lambda }\varPhi _{SN}^k(Z_{\lambda };\lambda )\right]= & {} kE \left[ \phi _{SN}(Z_{\lambda };\lambda )\varPhi _{SN}^{k-1}(Z_{\lambda };\lambda )\right] \nonumber \\&\quad +\,\frac{2\alpha }{\sqrt{2\pi }} E\left[ \varPhi _{SN}^{k}\left( \frac{Z_{0}}{\sqrt{1+\lambda ^2}};\lambda \right) \right] , \end{aligned}$$
(44)

where \(\alpha =\frac{\lambda }{\sqrt{1+\lambda ^2}}\) and \(Z_0\sim N(0,1)\). The first term in right hand side (RHS) of (44) can be expressed as

$$\begin{aligned} E\left[ \phi _{SN}(Z_{\lambda };\lambda )\varPhi _{SN}^{k-1}(Z_{\lambda };\lambda )\right]= & {} \int _{-\infty }^{+\infty }\phi ^2_{SN}(z;\lambda )\varPhi _{SN}^{k-1}(z;\lambda )dz\nonumber \\= & {} \frac{2}{\sqrt{\pi }}\int _{-\infty }^{+\infty }\phi (z)\varPhi ^2\left( \frac{\lambda }{\sqrt{2}}z\right) \varPhi _{SN}^{k-1}\left( \frac{z}{\sqrt{2}};\lambda \right) dz\nonumber \\= & {} \frac{\cos ^{-1}\left( \frac{-\lambda ^2}{2+\lambda ^2}\right) }{\pi ^ {1.5}}\nonumber \\&\quad \!\times \!\, \int _{-\infty }^{+\infty }\phi _{GSN}\left( z;\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}},0\right) \varPhi _{SN}^{k-1}\left( \frac{z}{\sqrt{2}};\lambda \right) dz\nonumber \\= & {} \frac{\cos ^{-1}\left( \frac{-\lambda ^2}{2+\lambda ^2}\right) }{\pi ^ {1.5}} E\left[ \varPhi _{SN}^{k-1}\left( \frac{Z_{\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}}}}{\sqrt{2}};\lambda \right) \right] , \end{aligned}$$
(45)

where \(Z_{\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}}}\sim GSN\left( \frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}},0\right) \). Let \(Z_{\lambda }^{(n)}\)’s, \(1\le n \le k-1\) be iid random variables coming from the \(SN(\lambda )\)-distribution. Thus

$$\begin{aligned} E\left[ \varPhi _{SN}^{k-1}\left( \frac{Z_{\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}}}}{\sqrt{2}};\lambda \right) \right]= & {} \Pr \left\{ Z_{\lambda }^{(1)}\le Z_{\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}}}, {\ldots }, Z_{\lambda }^{(k-1)}\le Z_{\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}}} \right\} . \end{aligned}$$

From (2) and (5) with \(\gamma =\rho =0\), we have

$$\begin{aligned}= & {} \Pr \left\{ X_1\le \frac{X}{\sqrt{2}}, {\ldots }, X_{k-1}\le \frac{X}{\sqrt{2}} \bigg |~ \lambda X_1>Y_1, {\ldots }, \lambda X_{k-1}>Y_{k-1},\frac{\lambda }{\sqrt{2}} X>Y^{\star }_1,\right. \nonumber \\&\quad \left. \frac{\lambda }{\sqrt{2}} X>Y^{\star }_2\right\} ,\nonumber \\= & {} \Pr \left\{ \mathbf {V}_1\le \mathbf {0}|~\mathbf {W}_1>\mathbf {0}\right\} , \end{aligned}$$
(46)

where \(X,Y_1^{\star },Y_2^{\star },X_{n},Y_{n},1\le n \le k-1\), are iid random variables arising from \(N(0,1)\) and

$$\begin{aligned} \left( \begin{array}{l} \mathbf {W}_1\\ \mathbf {V}_1 \end{array}\right) \sim N_{2k}\left( \left( \begin{array}{l} \mathbf {0}\\ \mathbf {0} \end{array}\right) , \left( \begin{array}{ll} \mathbf {I}_{k+1}&{}\quad {\varvec{\Delta }}_1^T\\ {\varvec{\Delta }}_1&{}\quad {\varvec{\Sigma }}_{k-1,1} \end{array}\right) \right) , \end{aligned}$$
(47)

with partitioned covariance matrix \({\varvec{\Delta }}_1\) as

$$\begin{aligned} {\varvec{\Delta }}^{(1)}_{{k,\lambda }}=\left( \begin{array}{lllll} \frac{\lambda }{\sqrt{1.5(1+\lambda ^2)}}\mathbf {I}_{k-1}&\vdots&-\frac{\lambda }{\sqrt{6+3\lambda ^2}}\mathbf {1}_{k-1}&\vdots&-\frac{\lambda }{\sqrt{6+3\lambda ^2}}\mathbf {1}_{k-1} \end{array}\right) _{(k-1)\times (k+1)} \end{aligned}$$
(48)

and

$$\begin{aligned} {\varvec{\Sigma }}_{k-1,1}=\left( \begin{array}{llll} 1&{}\quad &{}\quad &{}\quad \\ \frac{1}{3}&{}\quad 1&{}\quad &{}\quad \\ \vdots &{}\quad &{}\quad \ddots &{}\quad \\ \frac{1}{3}&{}\quad \cdots &{}\quad \frac{1}{3}&{}\quad 1 \end{array}\right) _{(k-1)\times (k-1)}. \end{aligned}$$
(49)

From (6), (7) and (46), we conclude that

$$\begin{aligned} E\left[ \varPhi _{SN}^{k-1}\left( \frac{1}{\sqrt{2}}Z_{\frac{\lambda }{\sqrt{2}},\frac{\lambda }{\sqrt{2}}};\lambda \right) \right] =\varPhi _{ SUN _{k-1,k+1}}\left( \mathbf {0}_{k-1};\mathbf {0}_{k-1},\mathbf {0}_{k+1}, {\varvec{\Sigma }}_{k-1,1},\mathbf {I}_{k+1},{\varvec{\Delta }}_1 \right) .\nonumber \\ \end{aligned}$$
(50)

Similarly, for the second expression in RHS of (44), we have

$$\begin{aligned} E\left[ \varPhi _{SN}^{k}\left( \frac{Z_{0}}{\sqrt{1+\lambda ^2}};\lambda \right) \right] = \Pr \left\{ \mathbf {V}_2\le \mathbf {0}_{k}~|~\mathbf {W}_2>\mathbf {0}_{k}\right\} \end{aligned}$$

where

$$\begin{aligned} \left( \begin{array}{l} \mathbf {W}_2\\ \mathbf {V}_2 \end{array}\right) \sim N_{2k}\left( \mathbf {0}_{2k},\left( \begin{array}{ll} \mathbf {I}_{k}&{}\quad {\varvec{\Delta }}_2^T\\ {\varvec{\Delta }}_2&{}\quad {\varvec{\Sigma }}_{k,\lambda } \end{array}\right) \right) ,\quad {\varvec{\Delta }}^{(2)}_{{k,\lambda }}=\frac{\lambda }{\sqrt{2+\lambda ^2}}\mathbf {I}_{k} \end{aligned}$$
(51)

and

$$\begin{aligned} {\varvec{\Sigma }}_{k,\lambda }=\left( \begin{array}{llll} 1&{}\quad &{}\quad &{}\quad \\ \frac{1}{2+\lambda ^2}&{}\quad 1&{}\quad &{}\\ \vdots &{}\quad &{}\quad \ddots &{}\quad \\ \frac{1}{2+\lambda ^2}&{}\quad \cdots &{}\quad \frac{1}{2+\lambda ^2}&{}\quad 1 \end{array}\right) _{k\times k}. \end{aligned}$$
(52)

Thus

$$\begin{aligned} E\left[ \varPhi _{SN}^{k}\left( \frac{Z_{0}}{\sqrt{1+\lambda ^2}};\lambda \right) \right] = \varPhi _{ SUN _{k,k}}\left( \mathbf {0}_{k};\mathbf {0}_{k},\mathbf {0}_{k}, {\varvec{\Sigma }}_{k,\lambda },\mathbf {I}_{k},{\varvec{\Delta }}^{(2)}_{{k,\lambda }} \right) .\quad \end{aligned}$$
(53)

By substituting (45)–(53) into (44) and using Lemma 1, the desired result follows provided that \(k\ge 2\). For \(k=1\), with a similar manner we have

$$\begin{aligned} E\left[ Z_{\lambda }\varPhi _{SN}(Z_{\lambda };\lambda )\right]= & {} \frac{2}{\pi ^{1.5}}\tan ^{-1}\sqrt{1+\lambda ^2}\nonumber \\&\quad +\,\frac{2\lambda }{\sqrt{2\pi (1+\lambda ^2)}}\varPhi _{ SUN _{1,1}}\left( 0;0,0,1,1,\frac{\lambda }{\sqrt{2+\lambda ^2}}\right) . \end{aligned}$$
(54)

Finally, using Lemma 1 and the fact that \(\varPhi _2\left( \mathbf {0};\left( \begin{array}{ll} 1&{}\quad \rho \\ \rho &{}\quad 1\\ \end{array}\right) \right) =\frac{1}{4}+\frac{1}{2\pi }\sin ^{-1}\rho \) [see for example Kotz et al. (2000)], the proof is completed. \(\square \)

Proof of Proposition 1

Set \(d+i-1=j\), and from the density (13), we have

$$\begin{aligned} M_{Z_{(i{:}n),\lambda }}(s;\lambda )= & {} i\left( \begin{array}{l} n\\ i \end{array}\right) \sum \limits _{d=0}^{n-i}\left( \begin{array}{l} n-i\\ d \end{array}\right) (-1)^dI(s,j;\lambda ), \end{aligned}$$
(55)

where

$$\begin{aligned} I(s,j;\lambda )=\int _{-\infty }^{\infty }e^{sz}\phi _{SN}(z;\lambda )\varPhi _{SN}^{j}(z;\lambda )dz. \end{aligned}$$
(56)

From (1) and a change of variable, the integration \(I(s,j;\lambda )\) in (56) simplifies to

$$\begin{aligned} I(s,j;\lambda )= & {} 2e^{\frac{s^2}{2}}\varPhi \left( \frac{\lambda s}{\sqrt{1+\lambda ^2}}\right) \int _{-\infty }^{\infty }\phi _{ ESN }(u;\lambda ,\lambda s)\varPhi _{SN}^{j}(u+s;\lambda )du\nonumber \\= & {} 2e^{\frac{s^2}{2}}\varPhi \left( \frac{\lambda s}{\sqrt{1+\lambda ^2}}\right) E\left[ \varPhi _{SN}^{j}\left( Z^{\star }_{\lambda ,\lambda s}+s;\lambda \right) \right] , \end{aligned}$$
(57)

where \(Z^{\star }_{\lambda ,\lambda s}\sim ESN (\lambda ,\lambda s)\). Let \(Z_{\lambda }^{(1)}, {\ldots },Z_{\lambda }^{(j)}\mathop {\sim }\limits ^{iid}SN(\lambda )\) and be independent of the random variable \(Z^{\star }_{\lambda ,\lambda s}\) in (57). Then

$$\begin{aligned} E\left[ \varPhi _{SN}^{j}\left( Z^{\star }_{\lambda ,\lambda s}+s;\lambda \right) \right] = \Pr \left\{ Z_{\lambda }^{(1)}-Z^{\star }_{\lambda ,\lambda s}\le s, {\ldots },Z_{\lambda }^{(j)}-Z^{\star }_{\lambda ,\lambda s}\le s\right\} , \end{aligned}$$

and the stochastic representation (2) imply

$$\begin{aligned} E\left[ \varPhi _{SN}^{j}\left( Z^{\star }_{\lambda ,\lambda s}+s;\lambda \right) \right] = \Pr \left\{ \mathbf {V}\le \frac{s}{\sqrt{2}}\mathbf {1}_{j}~|~\mathbf {W}\ge \mathbf {0}_{j+1}\right\} , \end{aligned}$$

where

$$\begin{aligned} \mathbf {V}= & {} \frac{1}{\sqrt{2}}\left( X_1-X^{\star }, {\ldots },X_j-X^{\star }\right) ^T,\\ \mathbf {W}= & {} \frac{1}{\sqrt{1+\lambda ^{2}}} \left( \lambda X_1-Y_1, {\ldots },\lambda X_j-Y_j, \lambda X^{\star }-Y^{\star }+\lambda s \right) ^T, \end{aligned}$$

and \(X^{\star },Y^{\star },X_{n},Y_{n},1\le n \le j\), are copies from the standard normal distribution. Finally, by (6) and (7) we get

$$\begin{aligned} M_{Z_{(i{:}n),\lambda }}(s;\lambda )= & {} 2i\left( \begin{array}{l} n\\ i \end{array}\right) e^{\frac{s^2}{2}}\varPhi \left( \frac{\lambda s}{\sqrt{1+\lambda ^2}}\right) \sum \limits _{d=0}^{n-i}(-1)^{d}\left( \begin{array}{l}n-i \\ d \end{array}\right) \nonumber \\&\quad \times \,\varPhi _{ SUN _{j,j+1}}\left( \frac{s}{\sqrt{2}}\mathbf {1}_{j}; \mathbf {0}_j,{\varvec{\gamma }},\frac{1}{2}[\mathbf {1}_{j}\mathbf {1}_{j}^{T}+ \mathbf {I}_{j}],\mathbf {I}_{j+1},{\varvec{\Delta }}\right) . \end{aligned}$$
(58)

By applying Lemma 1, the required result follows. \(\square \)

Proof of Eq. (36)

From (30) and (35), the expectation of the \(m\)th lower record from the \(SN(\lambda )\)-distribution is

$$\begin{aligned} E[L_{(m),\lambda }]= & {} \frac{1}{(m-1)!}\int _{-\infty }^{+\infty }u\left[ \sum \limits _{i=1}^{+\infty }\frac{\bar{\varPhi }_{SN}^{i}(u;\lambda )}{i}\right] ^{m-1}\phi _{SN}(u;\lambda )du\nonumber \\= & {} \frac{1}{(m-1)!}\sum \limits _{i_1=1}^{+\infty }\ldots \sum \limits _{i_{m-1}=1}^{+\infty }\sum \limits _{l_1=0}^{i_1}\ldots \sum \limits _{l_{m-1}=0}^{i_{m-1}}\frac{1}{i_1\ldots i_{m-1}}\prod \limits _{r=1}^{m-1}\left[ \left( \begin{array}{l} {i_r}\\ {l_r} \end{array}\right) (-1)^{l_r}\right] \nonumber \\&\quad \times \,\int _{-\infty }^{+\infty }u\phi _{SN}(u;\lambda )\left[ \varPhi _{SN}(u;\lambda )\right] ^{l_1+\cdots +l_{m-1}}du\nonumber \\= & {} \frac{1}{(m-1)!}\sum \limits _{i_1=1}^{+\infty }\ldots \sum \limits _{i_{m-1}=1}^{+\infty }\sum \limits _{l_1=0}^{i_1}\ldots \sum \limits _{l_{m-1}=0}^{i_{m-1}}\frac{1}{i_1\ldots i_{m-1}}\prod \limits _{r=1}^{m-1}\left[ \left( \begin{array}{l} {i_r}\\ {l_r} \end{array}\right) (-1)^{l_r}\right] \nonumber \\&\quad \times \,E\left( Z_{\lambda }[\varPhi _{SN}(Z_{\lambda };\lambda )]^{l_1+\cdots +l_{m-1}}\right) , \end{aligned}$$

where \(Z_{\lambda }\sim SN(\lambda )\). So, the proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, M., Doostparast, M. Expressions for moments of order statistics and records from the skew-normal distribution in terms of multivariate normal orthant probabilities. Stat Methods Appl 24, 547–568 (2015). https://doi.org/10.1007/s10260-015-0306-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10260-015-0306-y

Keywords

Navigation