Abstract
This article investigates using recommender systems within graphical domain-specific modeling languages (DSMLs). The objective of using recommender systems within a graphical DSML is to overcome a shortcoming of proactive modeling where the modeler must inform the model intelligence engine how to progress when it cannot automatically determine the next modeling action to execute (e.g., add, delete, or edit). To evaluate our objective, we implemented a recommender system into the Proactive Modeling Engine, which is an add-on for the Generic Modeling Environment. We then conducted experiments to subjectively and objectively evaluate enhancements to the Proactive Modeling Engine. The results of our experiments show that extending proactive modeling with a recommender system results in an average reciprocal hit-rank of 0.871. Likewise, the enhancements yield a System Usability Scale rating of 77. Finally, user feedback shows that integrating recommender systems into DSMLs increases usability and learnability.














Similar content being viewed by others
Notes
The tutorial for installing the software is located at the following location: https://github.com/SEDS/GAME/wiki/GAME-for-GME-Installation
The tutorial about the recommender system is located at https://github.com/SEDS/GAME/wiki/Tutorial-on-Working-with-GAME-Model-Intelligence
References
Adbc framework. https://github.com/DOCGroup/ADBC. Last Accessed Feb 2017
Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recommender Systems Handbook, pp. 191–226. Springer, Berlin (2015)
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, SIGMOD ’93, pp. 207–216. ACM, New York (1993). https://doi.org/10.1145/170035.170072
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Advances in knowledge discovery and data mining. chap. Fast Discovery of Association Rules, pp. 307–328. American Association for Artificial Intelligence, Menlo Park (1996). http://dl.acm.org/citation.cfm?id=257938.257975
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of the 20th International Conference on Very Large Data Bases, VLDB ’94, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1994). http://dl.acm.org/citation.cfm?id=645920.672836
Balasubramanian, K., Balasubramanian, J., Parsons, J., Gokhale, A., Schmidt, D.C.: A platform-independent component modeling language for distributed real-time and embedded systems. In: Proceedings of the 11th IEEE Real Time on Embedded Technology and Applications Symposium (RTAS05). San Francisco, CA (2005)
Bangor, A., Kortum, P., Miller, J.: Determining what individual sus scores mean: adding an adjective rating scale. J. Usability Stud. 4(3), 114–123 (2009)
Barriga, A., Rutle, A., Heldal, R.: Personalized and automatic model repairing using reinforcement learning. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 175–181. IEEE (2019)
Brooke, J.: Sus: a retrospective. J. Usability Stud. 8(2), 29–40 (2013)
Brooke, J., et al.: Sus-a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)
Burgueño, L., Cabot, J., Gérard, S.: An lstm-based neural network architecture for model transformations. In: 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), pp. 294–299. IEEE (2019)
Burke, R.: Hybrid Web Recommender Systems, pp. 377–408. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-72079-9_12
Clegg, B.A., DiGirolamo, G.J., Keele, S.W.: Sequence learning. Trends Cognit. Sci. 2(8), 275–281 (1998)
Cook, S., Jones, G., Kent, S., Wills, A.: Domain-Specific Development with Visual Studio DSL tools, 1st edn. Addison-Wesley Professional (2007)
Cosentino, V., Gérard, S., Cabot Sagrera, J.: A model-based approach to gamify the learning of modeling. In: CEUR Workshop Proceedings (2017)
Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. 22(1), 143–177 (2004)
Dietterich, T.G.: Ensemble methods in machine learning. In: International Workshop on Multiple Classifier Systems, pp. 1–15. Springer, Berlin (2000)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997). https://doi.org/10.1006/jcss.1997.1504
Freund, Y., Schapire, R.E., et al.: Experiments with a new boosting algorithm. In: ICML, vol. 96, pp. 148–156 (1996)
Gray, J., Neema, S., Tolvanen, J.P., Gokhale, A.S., Kelly, S., Sprinkle, J.: Domain-specific modeling. In: Handbook of Dynamic System Modeling 7, 7–1 (2007)
Hessellund, A., Czarnecki, K., Wa̧sowski, A.: Guided development with multiple domain-specific languages. In: Model Driven Engineering Languages and Systems, pp. 46–60 (2007)
Hill, J.H.: Measuring and reducing modeling effort in domain-specific modeling languages with examples. In: 2011 18th IEEE International Conference and Workshops on Engineering of Computer-Based Systems, pp. 120–129 (2011). https://doi.org/10.1109/ECBS.2011.22
Jamali, M., Ester, M.: A matrix factorization technique with trust propagation for recommendation in social networks. In: Proceedings of the Fourth ACM Conference on Recommender Systems, pp. 135–142. ACM (2010)
Janota, M., Kuzina, V., Wa̧sowski, A.: Model construction with external constraints: an interactive journey from semantics to syntax. In: Model Driven Engineering Languages and Systems, pp. 431–445 (2008)
Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wimmer, M.: Conceptual modelling and its theoretical foundations. chap. In: Model Transformation By-example: A Survey of the First Wave, pp. 197–215. Springer, Berlin (2012). http://dl.acm.org/citation.cfm?id=2184207.2184222
Koren, Y.: Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 447–456. ACM, New York (2009). https://doi.org/10.1145/1557019.1557072
Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment (2001)
Lewis, J.R., Sauro, J.: The factor structure of the system usability scale. In: International Conference on Human Centered Design, pp. 94–103. Springer, Berlin (2009)
Mahmood, T., Ricci, F.: Improving recommender systems with adaptive conversational strategies. In: Proceedings of the 20th ACM Conference on Hypertext and Hypermedia, HT ’09, pp. 73–82. ACM, New York (2009). https://doi.org/10.1145/1557914.1557930
Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., Koper, R.: Recommender systems in technology enhanced learning. In: Recommender Systems Handbook, pp. 387–415. Springer, Berlin (2011)
Ning, X., Karypis, G.: Slim: Sparse linear methods for top-n recommender systems. In: Data Mining (ICDM), 2011 IEEE 11th International Conference on, pp. 497–506. IEEE (2011)
Object Management Group: Object Constraint Language (2006)
O’Donovan, J., Smyth, B.: Trust in recommender systems. In: Proceedings of the 10th International Conference on Intelligent User Interfaces, IUI ’05, pp. 167–174. ACM, New York (2005). https://doi.org/10.1145/1040830.1040870
O’neil, E.J., O’neil, P.E., Weikum, G.: The lru-k page replacement algorithm for database disk buffering. In: ACM SIGMOD Record 22(2), 297–306 (1993)
Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)
Pati, T.: Auto-generating models from their semantics and constraints. Master’s thesis, Purdue University (2012)
Pati, T., Feiock, D.C., Hill, J.H.: Proactive modeling: auto-generating models from their semantics and constraints. In: Proceedings of the 2012 Workshop on Domain-Specific Modeling, DSM ’12, pp. 7–12. ACM, New York (2012). https://doi.org/10.1145/2420918.2420921
Polikar, R.: Ensemble based systems in decision making. IEEE Circuits Syst. Mag. 6(3), 21–45 (2006). https://doi.org/10.1109/MCAS.2006.1688199
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming, 1st edn. Wiley, New York (1994)
Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997). https://doi.org/10.1145/245108.245121
Resnick, P., Varian, H.R.: Recommender systems. Commun. ACM 40(3), 56–58 (1997)
Ricci, F., Rokach, L., Shapira, B.: Introduction to Recommender Systems Handbook. Springer, Berlin (2011)
Rokach, L.: Ensemble-based classifiers. Artif. Intell. Rev. 33(1), 1–39 (2010). https://doi.org/10.1007/s10462-009-9124-7
Santos, O.C.: Educational Recommender Systems and Technologies: Practices and Challenges: Practices and Challenges. IGI Global (2011)
Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International Conference on World Wide Web, pp. 285–295. ACM (2001)
Schafer, J.B., Konstan, J., Riedl, J.: Recommender systems in e-commerce. In: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 158–166. ACM (1999)
Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S., et al.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)
Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated predictions. Mach. Learn. 37(3), 297–336 (1999)
Sen, S., Baudry, B., Vangheluwe, H.: Domain-specific model editors with model completion. Models in Software Engineering, pp. 259–270 (2008)
Shani, G., Brafman, R.I., Heckerman, D.: An mdp-based recommender system. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, UAI’02, pp. 453–460. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2002). http://dl.acm.org/citation.cfm?id=2073876.2073930
Stephan, M.: Towards a cognizant virtual software modeling assistant using model clones. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), pp. 21–24. IEEE (2019)
Sun, Y., White, J., Gray, J.: Model Transformation by Demonstration. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-04425-0_58
Terveen, L., Hill, W.: Beyond recommender systems: helping people help each other. HCI New Millenn. 1(2001), 487–509 (2001)
Töscher, A., Jahrer, M., Bell, R.M.: The bigchaos solution to the netflix grand prize. Netflix prize documentation, pp. 1–52 (2009)
Tullis, T.S., Stetson, J.N.: A comparison of questionnaires for assessing website usability. In: Usability Professional Association Conference, pp. 1–12 (2004)
Vangheluwe, H., Sun, X., Bodden, E.: Domain-Specific Modelling with \({AToM}^{3}\). In: Proceedings of the th OOPSLA Workshop on Domain-Specific Modeling (2004)
Varró, D.: Model Transformation by Example. Springer, Berlin (2006). https://doi.org/10.1007/11880240_29
White, J., Schmidt, D.C., Mulligan, S.: The generic eclipse modeling system. In: Model-Driven Development Tool Implementers Forum, Tools, vol. 7 (2007)
White, J., Schmidt, D.C., Nechypurenko, A., Wuchner, E.: Domain-Specific Intelligence Frameworks for Assisting Modelers in Combinatorically Challenging Domains. GPCE4QoS (2006)
White, J., Schmidt, D.C., Nechypurenko, A., Wuchner, E.: Model intelligence: an approach to modeling guidance. UPGRADE 9(2), 22–28 (2008)
Woerndl, W., Brocco, M., Eigner, R.: Context-aware recommender systems in mobile scenarios. Int. J. Inf. Technol. Web Eng. 4(1), 67–85 (2009)
Wu, S., Liu, Q., Wang, L., Tan, T.: Contextual operation for recommender systems. IEEE Trans. Know. Data Eng. 28(8), 2000–2012 (2016)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Jordi Cabot.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nair, A., Ning, X. & Hill, J.H. Using recommender systems to improve proactive modeling. Softw Syst Model 20, 1159–1181 (2021). https://doi.org/10.1007/s10270-020-00841-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10270-020-00841-2