Skip to main content
Log in

Machine learning for enterprise modeling assistance: an investigation of the potential and proof of concept

  • Special Section Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

Though modeling tools are developing fast, today, enterprise modeling is still a highly manual task that requires substantial human effort. Today, human modelers are not only assigned the creative component of the process, but they also need to perform routine work related to comparing the being developed model with existing ones. Larger amount of information available today makes it possible for a modeler to analyze more information and existing models when developing own models. However, it also complicates the process since the modeler is often not able to analyze all of them. In this work, we discuss the potential of the novel idea of using machine learning methods for enterprise modeling assistance that would benefit from their ability to discover tacit knowledge/regularities in the available data. Graph neural networks have been chosen as the main technique. The contribution lies in the proposed modeling assistance scenarios as well as carried out evaluation of the potential benefits for the modeler. The presented illustrative case study scenario is aimed to demonstrate the feasibility of the proposed approach. The viability and potential of the idea are proved via experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Riss, U.V., Maus, H., Javaid, S., Jilek, C.: Digital twins of an organization for enterprise modeling. In: PoEM 2020: The Practice of Enterprise Modeling. Lecture Notes in Business Information Processing, pp 25–40. Springer (2020)

  2. Weske, M., Decker, G., Dumas, M., et al.: Model collection of the business process management academic initiative. https://zenodo.org/record/3758705 (2020). Accessed 8 Aug 2022

  3. Fayoumi, A.: Toward an adaptive enterprise modelling platform. Lect. Notes Bus. Inf. Process. 335, 362–371 (2018). https://doi.org/10.1007/978-3-030-02302-7_23

    Article  Google Scholar 

  4. Awadid, A., Bork, D., Karagiannis, D., Nurcan, S.: Toward generic consistency patterns in multi-view enterprise modelling. In: ECIS 2018 Proceedings, p 146. Association for Information Systems (AIS) (2018)

  5. Fellmann, M., Koschmider, A., Laue, R., et al.: Business process model patterns: classification and repository of published work. In: EMISA 2019. Bonn, pp 67–75 (2020)

  6. Fellmann, M., Koschmider, A., Laue, R., et al.: Business process model patterns: state-of-the-art, research classification and taxonomy. Bus. Process. Manag. J. 25, 972–994 (2019). https://doi.org/10.1108/BPMJ-01-2018-0021

    Article  Google Scholar 

  7. Snoeck, M., Stirna, J., Weigand, H., Proper, H.A.: Panel discussion: artificial intelligence meets enterprise modelling. In: The 12th IFIP Working Conference on the Practice of Enterprise Modeling, PoEM 2019. CEUR (2019)

  8. Sandkuhl, K., Fill, H.-G., Hoppenbrouwers, S., et al.: From expert discipline to common practice: a vision and research agenda for extending the reach of enterprise modeling. Bus. Inf. Syst. Eng. 60, 69–80 (2018). https://doi.org/10.1007/s12599-017-0516-y

    Article  Google Scholar 

  9. Shilov, N., Othman, W., Fellmann, M., Sandkuhl, K.: Machine learning-based enterprise modeling assistance: approach and potentials. Lect. Notes Bus. Inf. Process. 432, 19–33 (2021). https://doi.org/10.1007/978-3-030-91279-6_2

    Article  Google Scholar 

  10. Sandkuhl, K.: Capturing product development knowledge with task patterns: approach and economic effects. IFAC Proc. 41, 58–63 (2008). https://doi.org/10.3182/20081205-2-CL-4009.00012

    Article  Google Scholar 

  11. Bērziša, S., Bravos, G., Gonzalez, T.C., et al.: Capability driven development: an approach to designing digital enterprises. Bus. Inf. Syst. Eng. 57, 15–25 (2015). https://doi.org/10.1007/s12599-014-0362-0

    Article  Google Scholar 

  12. Martens, A., Fettke, P., Loos, P.: Smart enterprise engineering: 12. Internationale Tagung Wirtschaftsinformatik. In: International Conference on Wirtschaftsinformatik (2015)

  13. Timm, F., Sandkuhl, K.: A reference enterprise architecture for holistic compliance management in the financial sector. In: Thirty Ninth International Conference on Information Systems, p 17 (2018)

  14. Krogstie, J.: Quality of Conceptual Models in Model Driven Software Engineering. In: Conceptual Modeling Perspectives, pp 185–198. Springer International Publishing, Cham (2017)

  15. Krogstie, J.: Model-Based Development and Evolution of Information Systems. Springer, London (2012)

    Book  Google Scholar 

  16. Sandkuhl, K., Seigerroth, U.: Method engineering in information systems analysis and design: a balanced scorecard approach for method improvement. Softw. Syst. Model. 18, 1833–1857 (2019). https://doi.org/10.1007/s10270-018-0692-3

    Article  Google Scholar 

  17. Melville, P., Sindhwani, V.: Recommender systems. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 829–838. Springer, Boston (2011)

    Google Scholar 

  18. Fellmann, M., Metzger, D., Jannaber, S., et al.: Process modeling recommender systems: a generic data model and its application to a smart glasses-based modeling environment. Bus. Inf. Syst. Eng. 60, 21–38 (2018)

    Article  Google Scholar 

  19. Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for business process modeling. Data Knowl. Eng. 70, 483–503 (2011). https://doi.org/10.1016/j.datak.2011.02.002

    Article  Google Scholar 

  20. Kuschke, T., Mäder, P.: Pattern-based auto-completion of UML modeling activities. In: Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering, pp 551–556. ACM, New York (2014)

  21. Wieloch, K., Filipowska, A., Kaczmarek, M.: Autocompletion for business process modelling. Lect. Notes Bus. Inf. Process. 97, 30–40 (2011). https://doi.org/10.1007/978-3-642-25370-6_4

    Article  Google Scholar 

  22. Li, Y., Cao, B., Xu, L., et al.: An efficient recommendation method for improving business process modeling. IEEE Trans. Ind. Inform. 10, 502–513 (2014). https://doi.org/10.1109/TII.2013.2258677

    Article  Google Scholar 

  23. Born, M., Brelage, C., Markovic, I., et al.: Auto-completion for executable business process models. Lect. Notes Bus. Inf. Process. 17, 510–515 (2009). https://doi.org/10.1007/978-3-642-00328-8_51

    Article  Google Scholar 

  24. Mazanek, S., Minas, M.: Business process models as a showcase for syntax-based assistance in diagram editors. Lect. Notes Comput. Sci. 5795, 322–336 (2009). https://doi.org/10.1007/978-3-642-04425-0_24

    Article  Google Scholar 

  25. Clever, N., Holler, J., Shitkova, M., Becker, J.: Towards auto-suggested process modeling: prototypical development of an auto-suggest component for process modeling tools. In: Enterprise Modelling and Information Systems Architectures (EMISA 2013). Gesellschaft für Informatik e.V., pp 133–145 (2013)

  26. Fellmann, M., Zarvić, N., Thomas, O.: Business processes modelling assistance by recommender functionalities: a first evaluation from potential users. Lect. Notes Bus. Inf. Process. 295, 79–92 (2017). https://doi.org/10.1007/978-3-319-64930-6_6

    Article  Google Scholar 

  27. Sola, D., Meilicke, C., van der Aa, H., Stuckenschmidt, H.: A rule-based recommendation approach for business process modeling. Lect. Notes Comput. Sci. 12751, 328–343 (2021). https://doi.org/10.1007/978-3-030-79382-1_20

    Article  Google Scholar 

  28. Goldstein, M., González-Álvarez, C.: Augmenting modelers with semantic autocompletion of processes. Lect. Notes Bus. Inf. Process. 427, 20–36 (2021). https://doi.org/10.1007/978-3-030-85440-9_2

    Article  Google Scholar 

  29. Agt-Rickauer, H., Kutsche, R.-D., Sack, H.: DoMoRe: a recommender system for domain modeling. In: Proceedings of the 6th International Conference on Model-Driven Engineering and Software Development, pp 71–82. SciTePress (2018)

  30. Peters, N., Weidlich, M.: Automatic generation of glossaries for process modelling support. Int. J. Concept Model. 6, 30–46 (2011). https://doi.org/10.18417/emisa.6.1.3

    Article  Google Scholar 

  31. Havel, J.-M., Steinhorst, M., Dietrich, H.-A., Delfmann, P.: Supporting terminological standardization in conceptual models: a plugin for a meta-modelling tool. In: European Conference on Information Systems (ECIS). Association for Information Systems (AIS) (2014)

  32. Ternes, B., Rosenthal, K., Strecker, S.: Automated assistance for data modelers: a heuristics-based natural language processing approach. In: European Conference on Information Systems (ECIS). Association for Information Systems (AIS) (2021)

  33. Scholta, H., Niemann, M., Delfmann, P., et al.: Semi-automatic inductive construction of reference process models that represent best practices in public administrations: a method. Inf. Syst. 84, 63–87 (2019). https://doi.org/10.1016/j.is.2019.03.001

    Article  Google Scholar 

  34. Huber, S., Fietta, M., Hof, S.: Next step recommendation and prediction based on process mining in adaptive case management. In: Proceedings of the 7th International Conference on Subject-Oriented Business Process Management, pp 1–9. ACM, New York (2015)

  35. Nair, A., Ning, X., Hill, J.H.: Using recommender systems to improve proactive modeling. Softw. Syst. Model. (2021). https://doi.org/10.1007/s10270-020-00841-2

    Article  Google Scholar 

  36. Kögel, S.: Recommender system for model driven software development. In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering, pp 1026–1029. ACM, New York (2017)

  37. Almonte, L., Pérez-Soler, S., Guerra, E., et al.: Automating the synthesis of recommender systems for modelling languages. In: Proceedings of the 14th ACM SIGPLAN International Conference on Software Language Engineering, pp 22–35. ACM, New York (2021)

  38. Mehdiyev, N., Evermann, J., Fettke, P.: A novel business process prediction model using a deep learning method. Bus. Inf. Syst. Eng. 62, 143–157 (2020). https://doi.org/10.1007/s12599-018-0551-3

    Article  Google Scholar 

  39. van Gils, B., Proper, H.A.: Enterprise modelling in the age of digital transformation. Lect. Notes Bus. Inf. Process. 335, 257–273 (2018). https://doi.org/10.1007/978-3-030-02302-7_16

    Article  Google Scholar 

  40. Khider, H., Hammoudi, S., Meziane, A.: Business process model recommendation as a transformation process in MDE: conceptualization and first experiments. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development, pp 65–75. SciTePress (2020)

  41. Rasmussen, J.B., Hvam, L., Kristjansdottir, K., Mortensen, N.H.: Guidelines for structuring object-oriented product configuration models in standard configuration software. J. Univers. Comput. Sci. 26, 374–401 (2020)

    Article  Google Scholar 

  42. Smirnov, A., Shchekotov, M., Shilov, N., Ponomarev, A.: Decision support service based on dynamic resource network configuration in human-computer cloud. In: 2018 23rd Conference of Open Innovations Association (FRUCT), pp 362–368. IEEE (2018)

  43. Pereira, J.A., Schulze, S., Krieter, S., et al.: A context-aware recommender system for extended software product line configurations. In: Proceedings of the 12th International Workshop on Variability Modelling of Software-Intensive Systems, pp 97–104. ACM, New York (2018)

  44. Hildebrandt, M., Sunder, S.S., Mogoreanu, S., et al.: Configuration of industrial automation solutions using multi-relational recommender systems. Lect. Notes Comput. Sci. 11053, 271–287 (2019). https://doi.org/10.1007/978-3-030-10997-4_17

    Article  Google Scholar 

  45. Borozanov, V., Hacks, S., Silva, N.: Using machine learning techniques for evaluating the similarity of enterprise architecture models. In: International Conference on Advanced Information Systems Engineering (CAiSE). Lecture Notes in Computer Science, vol. 11483, pp. 563–578. https://doi.org/10.1007/978-3-030-21290-2_35 (2019)

  46. Tarasov, V., Seigerroth, U., Sandkuhl, K.: Ontology development strategies in industrial contexts. Lect. Notes Bus. Inf. Process. 339, 156–167 (2019). https://doi.org/10.1007/978-3-030-04849-5_14

    Article  Google Scholar 

  47. Elkindy, A.I.A.: Survey of Business Process Modeling Recommender Systems. University of Koblenz - Landau, Mainz (2019)

    Google Scholar 

  48. Vernadat, F.: Enterprise modelling: research review and outlook. Comput. Ind. 122, 103265 (2020). https://doi.org/10.1016/j.compind.2020.103265

    Article  Google Scholar 

  49. Wang, J., Gui, S., Cao, B.: A process recommendation method using bag-of-fragments. Int. J. Intell. Internet Things Comput. 1, 32 (2019). https://doi.org/10.1504/IJIITC.2019.104734

    Article  Google Scholar 

  50. Jangda, A., Polisetty, S., Guha, A., Serafini, M.: Accelerating graph sampling for graph machine learning using GPUs. In: Proceedings of the Sixteenth European Conference on Computer Systems, pp 311–326. ACM, New York (2021)

  51. Valera, M., Guo, Z., Kelly, P., et al.: Machine learning for graph-based representations of three-dimensional discrete fracture networks. Comput. Geosci. 22, 695–710 (2018). https://doi.org/10.1007/s10596-018-9720-1

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen, C., Ye, W., Zuo, Y., et al.: Graph networks as a universal machine learning framework for molecules and crystals. Chem. Mater. 31, 3564–3572 (2019). https://doi.org/10.1021/acs.chemmater.9b01294

    Article  Google Scholar 

  53. Na, G.S., Chang, H., Kim, H.W.: Machine-guided representation for accurate graph-based molecular machine learning. Phys. Chem. Chem. Phys. 22, 18526–18535 (2020). https://doi.org/10.1039/D0CP02709J

    Article  Google Scholar 

  54. Nielsen, R.F., Nazemzadeh, N., Sillesen, L.W., et al.: Hybrid machine learning assisted modelling framework for particle processes. Comput. Chem. Eng. 140, 106916 (2020). https://doi.org/10.1016/j.compchemeng.2020.106916

    Article  Google Scholar 

  55. Wu, Z., Pan, S., Chen, F., et al.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021). https://doi.org/10.1109/TNNLS.2020.2978386

    Article  MathSciNet  Google Scholar 

  56. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering (2016)

  57. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks (2016)

  58. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs (2017)

  59. Xu, K., Li, C., Tian, Y., et al.: Representation learning on graphs with jumping knowledge networks (2018)

  60. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks (2017)

  61. Thekumparampil KK, Wang C, Oh S, Li L-J (2018) Attention-based Graph Neural Network for Semi-supervised Learning

  62. Kipf, T.N., Welling, M.: Variational graph auto-encoders (2016)

  63. Zhang, M., Chen, Y.: Weisfeiler–Lehman neural machine for link prediction. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 575–583. ACM, New York (2017)

  64. Zhang, M., Chen, Y.: Link prediction based on graph neural networks (2018)

  65. Wang, M., Qiu, L., Wang, X.: A survey on knowledge graph embeddings for link prediction. Symmetry (Basel) 13, 485 (2021). https://doi.org/10.3390/sym13030485

    Article  Google Scholar 

  66. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases and their compositionality (2013)

  67. Bordes, A., Usunier, N., Garcia-Duran, A., et al.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems 26 (NIPS 2013), vol. 26 (2013)

  68. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI’14: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp 1112–1119 (2014)

  69. Fan, M., Zhou, Q., Chang, E., Zheng, T.F.: Transition-based knowledge graph embedding with relational mapping properties. In: Proceedings of the 28th Pacific Asia Conference on Language, Information and Computing. Department of Linguistics, Chulalongkorn University, pp 328–337 (2014)

  70. Lin, Y., Liu, Z., Sun, M., et al.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp 2181–2187 (2015)

  71. Yang, B., Yih, W., He, X., et al.: Embedding entities and relations for learning and inference in knowledge bases (2014)

  72. Trouillon, T., Welbl, J., Riedel, S., et al.: Complex embeddings for simple link prediction (2016)

  73. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings (2017)

  74. Balažević, I., Allen, C., Hospedales, T.M.: Hypernetwork knowledge graph embeddings. Lect. Notes Comput. Sci. 11731, 553–565 (2019). https://doi.org/10.1007/978-3-030-30493-5_52

    Article  Google Scholar 

  75. Jagvaral, B., Lee, W.-K., Roh, J.-S., et al.: Path-based reasoning approach for knowledge graph completion using CNN-BiLSTM with attention mechanism. Expert Syst. Appl. 142, 112960 (2020). https://doi.org/10.1016/j.eswa.2019.112960

    Article  Google Scholar 

  76. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks (2019)

  77. Wang, Y., Sun, Y., Liu, Z., et al.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38, 1–12 (2019). https://doi.org/10.1145/3326362

    Article  Google Scholar 

  78. Ying, R., You, J., Morris, C., et al.: Hierarchical graph representation learning with differentiable pooling. In: NIPS’18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp 4805–4815. ACM (2018)

  79. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? (2018)

  80. Zhou, J., Cui, G., Hu, S., et al.: Graph neural networks: a review of methods and applications. AI Open 1, 57–81 (2020). https://doi.org/10.1016/j.aiopen.2021.01.001

    Article  Google Scholar 

  81. Sonntag, A., Hake, P., Fettke, P., Loos, P.: An approach for semantic business process model matching using supervised machine learning. In: European Conference on Information Systems (ECIS) (2016)

  82. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise Modeling: Tackling Business Challenges with the 4EM Method. Springer, Berlin (2014)

    Book  Google Scholar 

  83. PyTorch Contributors: NLLLoss. https://pytorch.org/docs/stable/generated/torch.nn.NLLLoss.html (2022). Accessed 17 Nov 2022

  84. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

  85. PyTorch Contributors Softmax. https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html. Accessed 17 Nov 2022

  86. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the International Conference on Learning Representations (ICLR 2013) (2013)

  87. Bojanowsky, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. arXiv:1607.04606 (2016). https://doi.org/10.48550/arXiv.1607.04606

Download references

Acknowledgements

The research is funded by the Russian Science Foundation (Project # 22-21-00790).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Shilov.

Additional information

Communicated by E. Serral Asensio, J. Stirna, J. Ralyté, and J. Grabis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilov, N., Othman, W., Fellmann, M. et al. Machine learning for enterprise modeling assistance: an investigation of the potential and proof of concept. Softw Syst Model 22, 619–646 (2023). https://doi.org/10.1007/s10270-022-01077-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-022-01077-y

Keywords

Navigation