Skip to main content
Log in

A modeling-based approach for dependability analysis of a constellation of satellites

  • Regular Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

Satellite constellations play critical roles across various sectors, encompassing communication, Earth observation and space exploration. Ensuring the dependable operation of these constellations is of utmost importance. This paper introduces a dependability modeling approach using stochastic Petri nets to analyze satellite constellations. The primary focus is on improving operational efficiency through the assessment of availability, reliability and maintainability. The approach helps satellite designers make informed decisions when selecting constellation configurations by assessing various dependability metrics. Using a global navigation satellite system as a case study, we conduct extensive numerical experiments to evaluate the feasibility of our approach. The results demonstrate quantitatively the significant impact of redundant components on both reliability and availability. They also illustrate how utilizing satellites in repair and operational orbits can influence these metrics and highlight the direct correlation between reliability and maintainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kodheli, O., Lagunas, E., Maturo, N., Sharma, S.K., Shankar, B., Montoya, J.F.M., Duncan, J.C.M., Spano, D., Chatzinotas, S., Kisseleff, S.: Satellite communications in the new space era: a survey and future challenges. IEEE Commun. Surv. Tutor. 23(1), 70–109 (2020)

    Article  Google Scholar 

  2. Bakhtiari, M., Abbasali, E., Daneshjoo, K.: Minimum cost perturbed multi-impulsive maneuver methodology to accomplish an optimal deployment scheduling for a satellite constellation. J. Astronaut. Sci. 70(3), 18 (2023)

    Article  MATH  Google Scholar 

  3. Maral, G., Bousquet, M.: Satellite Communications Systems: Systems, Techniques and Technology. Wiley, New York (2002)

    MATH  Google Scholar 

  4. Mariappan, A., Crassidis, J.: Kessler’s syndrome: a challenge to humanity. Front. Space Technol. 4, 1309940 (2023)

    Article  MATH  Google Scholar 

  5. Zhai, Y., Joerger, M., Pervan, B.: Continuity and availability in dual-frequency multi-constellation araim. In: Proceedings of the 28th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2015), pp. 664–674 (2015)

  6. Zhai, Y., Zhan, X., Joerger, M., Pervan, B.: Impact quantification of satellite outages on air navigation continuity. IET Radar Sonar Navig. 13(3), 376–383 (2019)

    Article  MATH  Google Scholar 

  7. Avizienis, A., Laprie, J.-C., Randell, B.: Fundamental concepts of dependability. Department of Computing Science Technical Report Series (2001)

  8. Laprie, J.-C.: Dependability: Basic Concepts and Terminology. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  9. Hapgood, M., Liu, H., Lugaz, N.: SpaceX-Sailing Close to the Space Weather? Wiley, New York (2022)

    Google Scholar 

  10. Henri, Y.: The OneWeb Satellite System. Springer, Berlin (2020)

    MATH  Google Scholar 

  11. Peng, Z., Lu, Y., Miller, A., Zhao, T., Johnson, C.: Formal specification and quantitative analysis of a constellation of navigation satellites. Qual. Reliab. Eng. 32, 345–361 (2016). https://doi.org/10.1002/qre.1754

    Article  MATH  Google Scholar 

  12. Del Portillo, I., Cameron, B.G., Crawley, E.F.: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronaut. 159, 123–135 (2019)

    Article  MATH  Google Scholar 

  13. Miller, S., Walker, M.L., Agolli, J., Dankanich, J.: Survey and performance evaluation of small-satellite propulsion technologies. J. Spacecr. Rocket. 58(1), 222–231 (2021)

    Article  Google Scholar 

  14. Lee, Y.-W., Suh, Y.-C., Shibasaki, R.: A simulation system for GNSS multipath mitigation using spatial statistical methods. Comput. Geosci. 34(11), 1597–1609 (2008)

    Article  MATH  Google Scholar 

  15. Shi, L., Du, S., Miao, Y., Lan, S.: Modeling and performance analysis of satellite network moving target defense system with petri nets. Remote Sens. (2021). https://doi.org/10.3390/rs13071262

    Article  MATH  Google Scholar 

  16. Polli, E.M., Gonzalo, J.L., Colombo, C.: Analytical model for collision probability assessments with large satellite constellations. Adv. Space Res. 72(7), 2515–2534 (2023). https://doi.org/10.1016/j.asr.2022.07.055

    Article  MATH  Google Scholar 

  17. Kelley, C., Dessouky, M.: Minimizing the cost of availability of coverage from a constellation of satellites: evaluation of optimization methods. Syst. Eng. 7(2), 113–122 (2004). https://doi.org/10.1002/sys.10059

    Article  MATH  Google Scholar 

  18. Lu, Y., Miller, A., Johnson, C., Peng, Z., Zhao, T.: Availability analysis of satellite positioning systems for aviation using the prism model checker. In: 2014 IEEE 17th International Conference on Computational Science and Engineering, pp. 704–713. IEEE (2014)

  19. Castet, J.-F., Saleh, J.H.: Satellite and satellite subsystems reliability: statistical data analysis and modeling. Reliab. Eng. Syst. Saf. 94(11), 1718–1728 (2009)

    Article  MATH  Google Scholar 

  20. Hiriart, T., Castet, J.-F., Lafleur, J.M., Saleh, J.H.: Comparative reliability of GEO, LEO, and MEO satellites. In: Proceedings of the International Astronautical Congress, IAC-09 D, vol. 1 (2009)

  21. Trivedi, K., Andrade, E., Machida, F.: Combining performance and availability analysis in practice. In: Advances in Computers, vol. 84, pp. 1–38. Elsevier, Amsterdam (2012)

  22. Hegarty, C.J., Chatre, E.: Evolution of the global navigation satellitesystem (GNSS). Proc. IEEE 96(12), 1902–1917 (2008)

    Article  MATH  Google Scholar 

  23. Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E.: GNSS-global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More. Springer, Berlin (2007)

    MATH  Google Scholar 

  24. Molloy, M.K.: Performance analysis using stochastic petri nets. IEEE Trans. Comput. 31(09), 913–917 (1982)

    Article  MATH  Google Scholar 

  25. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. (TOCS) 2(2), 93–122 (1984)

  26. Maciel, P., Matos, R., Silva, B., Figueiredo, J., Oliveira, D., Fé, I., Maciel, R., Dantas, J.: Mercury: performance and dependability evaluation of systems with exponential, expolynomial, and general distributions. In: 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 50–57. IEEE (2017)

  27. Renfro, B.A., Stein, M., Reed, E.B., Villalba, E.: An analysis of global positioning system standard positioning service performance for 2020. Space and Geophysics Laboratory Applied Research Laboratories. The University of Texas at Austin, Austin (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ermeson Andrade.

Additional information

Communicated by Robert Pettit.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farias, D., Nogueira, B., Júnior, I.F. et al. A modeling-based approach for dependability analysis of a constellation of satellites. Softw Syst Model 24, 209–224 (2025). https://doi.org/10.1007/s10270-024-01197-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-024-01197-7

Keywords