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Abstract A new filter has been proposed with the aim of
eliminating speckle noise from 2D echocardiography images.
This speckle noise has to be eliminated to avoid the pseudo
prediction of the underlying anatomical facts. The proposed
filter uses entropy parameter to measure the disorganized
occurrence of noise pixel in each row and column and to
increase the image visibility. Straight kernels with 3 pixels
each are chosen for the filtering process, and the filter is slided
over the image to eliminate speckle. The peak signal-to-noise
ratio (PSNR) is obtained in the range of 147 dB, and the root
mean square error (RMSE) is very low of approximately 0.15.
The proposed filter is implemented on 36 echocardiography
images, and the filter has the competence to illuminate the
actual anatomical facts without degrading the edges.

Keywords Echocardiography . Speckle noise . Kernel .

Entropy . Additive noise . Variance

Introduction

Ultrasound has proven its importance to assess the heart
diseases in the form of echocardiography. This is one of the
most widely used diagnostic tests in cardiology, as it is non-
invasive, nonionizing, real time, portable, and low cost in
nature. But the ultrasound images are affected by artifacts

called speckle, produced by interfering echoes. This
multiplicative-natured speckle noise degrades spatial and con-
trast resolution and makes the underlying anatomy incompre-
hensible [1]. This curtails human interpretation of diagnosis
and computer-assisted detection techniques. Since speck-
le is a major limitation of ultrasound images, reducing or
eliminating speckle is of great importance in the process-
ing of ultrasound images and improving its visibility.
Image visibility is dependent on pixels with higher in-
tensity levels and their distribution [2].

A number of filtering schemes are available in the literature
which have their own uniqueness and setbacks. The filtering
techniques established so far include filters in spatial domain
and frequency domain. The frequency domain filters divide
the whole image into sub-bands and implement thresholds for
the bands for speckle removal. The wavelet transform tech-
niques are efficient as they capture the energy of the signal in
few transform coefficients. The spatial domain filters utilize a
fixed moving window to replace the noise pixels based on the
statistical properties of the image. The difficulty arises in the
selection of weighting coefficients and window size for the
varying properties of the image. The most predominant medi-
an filter chooses a sliding window for speckle reduction with
duration of less than half the window size [3]. The degree of
smoothing depends on the window size, and high-frequency
signals are also removed during speckle filtering which causes
edge blurring.When the speckle size is larger than the window
size, speckle remains as an artifact. Many approaches in the
literature take the advantage of converting the multiplicative
model of speckle noise into additive noise by performing
logarithmic transformation. The log transform eliminates the
phase relationship between the transducer element outputs
[4, 5]. The samples of additive noise are mutually uncorre-
lated, and they obey Gaussian distribution; hence, the noise
can be termed as additive white Gaussian noise [6]. Hence, the
filters which suppress additive noise can be taken under
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consideration for comparative assessment. Spatial-domain fil-
ters such as mean filter, tri-state median filter, alpha-trimmed
mean filter, Wiener filter, anisotropic diffusion filter, total
variation filter, Lee filter, Frost filter, bilateral filter, and non-
local means filter are in literature for suppression of additive
white Gaussian noise [7–16]. All the abovementioned filters
possess mathematical simplicity but include blurring effect,
instability due to numerous iterations and deterioration of
noise-free pixels. The circular spatial filter is suitable for high
noise variance conditions [17]. The circular spatial filter uses a
circular window, whose weights are derived from spatial
distance and gray level distance. The circular spatial filter uses
only the distance metrics, and it does not consider other image
statistics. This filter does not perform well under low noise
conditions. The wavelet-domain filters, namely, Visu Shrink,
Sure Shrink, Bayes Shrink, Neigh Shrink, and Smooth Shrink
[18–24] are proposed to suppress the additive noise effective-
ly. The wavelet thresholding methods need to calculate differ-
ent weights in a local window to distinguish the signal and
noise coefficients. The wavelet transform techniques are ap-
plication specific and suffer from contrast degradation of the
output image [25]. Also, the wavelet domain filters suffer
from the drawback of discarding some of the useful informa-
tion needed for study of the anatomical details.

The new entropy-based straight kernel filter has been de-
signed by considering the setbacks of the most renowned
spatial domain filters in the literature and has aimed to produce
a noise-free output. The filter is adaptable for all noise condi-
tions and concentrates on retaining the intricate anatomical
facts of the image. The filter uses a standard straight kernel
which considers the variance, mean, and entropy in a
constrained scope. The entropy parameter utilized in the filter
aids in improving the image visibility, which is always poor in
ultrasound images due to improper reception of echoes [26].
The foremost requirement of diagnosis from echocardiogra-
phy images lies in the identification of the heart walls and
defects in the left ventricle of the heart. The proposed filter
satisfies the needs of enhancing the edges and noise removal,
which will prove to be a quantitative aid for the diagnosis of
diseases related to heart.

Fig. 1 Speckle noise sample

Fig. 2 Noise intensity profile

Fig. 3 Flowchart of the proposed filter
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The work has been structured as follows: “Ultrasound
Imaging and Speckle Noise,” section, “Proposed Filter” section
which defines the image fidelity criteria and their need,
“Results and Discussion” which describes the features of
the new proposed filter and experimental results for the proposed
system, and finally, “Conclusion” which concludes the paper.

Ultrasound Imaging and Speckle Noise

Speckle in ultrasound image is seen as a granular structure.
This is caused by the constructive and destructive coherent
interferences of backscattered echoes from the scatterers that
are typically much smaller than the spatial resolution of med-
ical ultrasound system. The speckle accompanies all coherent
imaging techniques, namely LASER, SONAR, and synthetic
aperture radar imagery (SAR) [27]. They are produced by
interfering echoes of a transmitted wave form, which emanate
from heterogeneities of the objects being interrogated. In this
case, there is a possibility that a dark spot could be interpreted
by a medical doctor as corresponding to a blood vessel or a
cyst with relatively low reflectivity, while in fact, it might be
merely caused by echoes compensating each other at opposite
phases [28].

Speckle pattern is a form of multiplicative noise because
speckle noise is a signal-dependent noise; if the image pixel
magnitude is high, then the noise is also high. It depends on
the structure of imaged tissue and various imaging parameters.
As a result, image processing methods for curbing the speckle
noise have established constructive for enhancing image qual-
ity and, thereby, escalating the diagnostic potential of medical
ultrasound. The model of speckle [29] is given by

g m; nð Þ ¼ f m; nð Þ:u m; nð Þ þ ζ m; nð Þ ð2:1Þ

where, g (m, n) is the observed image, u (m, n) is the multi-
plicative component, and ζ (m, n) is the additive component of
the speckle noise. Here, m and n denote the axial and lateral
indices of the image samples.

The noise level in an echocardiography image is the
amount of speckle noise distribution in terms of variance.
The noise intensity differs from pixel to pixel, depending on
the echo scatterers. This noise distribution can be seen with
the help of noise intensity profile for any specific pixel range.
Figures 1 and 2 show apical four-chamber view of a normal
heart with speckle noise level of 0.06 and its corresponding
noise intensity profile. It is a 3D plot with intensity values
along z axis versus pixel range along x and y axes. The

Fig. 4 Straight kernel filter with
sample pixel values

Fig. 5 Sample pixel range before
application of proposed filter
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intensity profile clearly portrays the presence of noise by the
sharp, closer, spikes. This noise present in the image has to be
removed in order to enhance the clarity of visualization and
thus proper study of features from the image.

Image Metrics

Objective image quality measures play an imperative
role in various image processing applications. The math-
ematically defined image quality measures include mean
square error (MSE), root mean square error (RMSE),
peak signal-to-noise ratio (PSNR), and correlation coef-
ficient (CC). The image quality measures are very at-
tractive as they are very easy to compute and have low
computational complexity. The quality measures are in-
dependent of the viewing conditions and individual ob-
servers [30]. The image quality measures predicted be-
tween the original image f (m, n), and the reconstructed
image g (m, n) is given below.

Mean Square Error

The mean square error between the original image f (m, n) and
the reconstructed image g (m, n) is given by

MSE ¼ 1

M � N

X
m¼1

M X
n¼1

N

f m; nð Þ−g m; nð Þð Þ ð2:2Þ

where M×N represents the size of the image. MSE measures
the average of the squares of the errors. The error is the
amount by which the value implied by the estimator differs
from the quantity to be estimated. The mean square error is a
very useful measure of the energy lost in the lossy compres-
sion of the image f (m, n). A very small MSE can be taken to
mean that the image is very close to the original.

Root Mean Square Error

The root mean square error (RMSE) is the square root of mean
square error, and the value should be minimal for better
quality of image. The RMSE value can be calculated as,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð2:3Þ

Peak Signal-to-Noise Ratio

Peak signal-to-noise ratio (PSNR) is a subjective qualitative
measurement of distortion. The PSNR measure is superior to
other measures such as signal-to-noise ratio, as it uses a
constant value in which to compare the noise against instead
of a fluctuating signal as in signal-to-noise ratio. The measure
of PSNR can be treated as a more significant and irrefutable
measure as it depicts the image quality more astoundingly. It is
measured in decibels (dB). The value of PSNR can be obtain-
ed using,

PSNR ¼ 10log
2552

MSE
ð2:4Þ

Fig. 6 Sample pixel range after
application of proposed filter

Table 1 Simulated results for the proposed filter

Proposed filter with different noise levels PSNR (dB) RMSE CC

Linear summation with maximum intensity pixel

0.03 147.8310 0.1572 0.935

0.04 147.8088 0.1574 0.954

0.05 147.7607 0.1577 0.956

0.06 147.8030 0.1574 0.964

Linear summation with minimum intensity pixel

0.03 147.8093 0.1574 0.943

0.04 147.8321 0.1572 0.955

0.05 147.7668 0.1577 0.961

0.06 147.6965 0.1583 0.959
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Correlation Coefficient

Correlation indicates the strength and direction of linear
relationship between two images, and its value lies
between +1 to −1. The correlation is 1 in the case of
an increasing linear relationship, −1 in the case of a
decreasing linear relationship, and some value in be-
tween for all the other cases, including the degree of
linear dependence between the two images. The closer
the coefficient is to either −1 or +1, the stronger the
correlation between the images. The value of correlation
coefficient (CC) can be calculated using,

CC ¼
X

f m; nð Þ− f 0
m; nð Þ

� �
− f

0
m; nð Þ−g m; nð Þ

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

f m; nð Þ− f 0
m; nð Þ

� �2X
g m; nð Þ−g0

m; nð Þ
� �2

r
ð2:5Þ

where f′ (m, n) is the mean of the original image and g′ (m, n) is
the mean of the denoised image.

Proposed Filter

Speckle noise in the ultrasound images may lead to the mis-
interpretation of high- and low-contrast portions. The steps
carried out in the proposed filter are shown in the flowchart
(Fig. 3). The entropy-based straight kernel filter is proposed
with the advent of improving the image visibility of the
ultrasound image, thereby revealing the originality of the
pixels from noise.

Straight Kernel

The name straight kernel refers to a straight (1×3) window,
where 1 and 3 are the axial and lateral indices of the image
sample.

x y z 

This is a straight kernel with pixel elements x, y, and z. The
filter measures the signal content from the noise in each
straight kernel and replaces the pixels with noise-free intensi-
ty. For each kernel, variance and mean are evaluated and
combined with entropy. This improves the visibility of edges
present in the image. The process is repeated for all the kernels
in the image, and the quality measures are evaluated for
comparison.

Fig. 8 Noise intensity profile

Fig. 9 Apical four-chamber view with 0.04 noise level

Fig. 7 Apical four-chamber view with 0.03 noise level
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Filter Function

The proposed filter checks the unsystematic noise occurrence
in the image and eliminates the noise by shifting in a linear
fashion. Entropy is a statistical measure of randomness that
can be used to characterize the texture of the input image.
Each pixel is assumed to be the center of the neighboring
pixels, and that pixel is replaced by performing a linear
summation with a probability check of noise in each row
and column. It is estimated that always a pixel affected by
noise will be predicted as a maximum intensity pixel or a
minimum intensity pixel. The probability check of maximum
or minimum intensity pixel is utilized for entropy calculation.
The concept of entropy is utilized to enhance the luminance of
each pixel. A process of linear regression combined with a
measure of randomness of noise episode is performed to
modify each pixel. The proposed filter can be implemented
with following equations.

mean ¼ 1

K
∑
jþ1

j¼ j−1
J i; jð Þ

" #
ð3:1Þ

where K indicates the kernel size, which is 3 in the case of the
proposed work. J (i, j) represents the pixels in the kernel. The
variance of the proposed filter can be calculated as,

σ2
k ¼

1

K−1

Xjþ1

j¼ j−1
J i; jð Þ−meanð Þ2

" #
ð3:2Þ

where σk
2 is the variance of the kernel. The variance is

estimated to find the spread out of noise in the respective
kernel. These Eqs. (3.1) and (3.2) represent the statistical
measures needed to find the distribution of noise in the kernel.

Probability and Modified Shannon Entropy

The probability of the occurrence of maximum intensity pixel
along the row and column of the current pixel is found using
Eq. (3.3), and that for minimum intensity pixel is calculated
using Eq. (3.4).

Pmax ¼ 1

2

maxi
m

þ max j

n

h i
ð3:3Þ

Pmin ¼ 1

2

mini
m

þ min j

n

� �
ð3:4Þ

Fig. 10 Noise intensity profile

Fig. 11 Output of the proposed filter with noise level of 0.03 for Pmin Fig. 12 Output of the proposed filter with noise level of 0.03 for Pmax
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wherem and n represent the number of elements along the row
and column, respectively, maxi and mini are the maximum and
minimum intensity pixels along row (i), and maxj and minj are
the maximum and minimum intensity pixels along column (j).
The value 2 indicates the two vector consideration.Equations
(3.5) and (3.6) represent a modified Shannon entropy equa-
tion. This utilizes the probability values found using Eqs. (3.3)
and (3.4).

Hmax ¼ −
1

σ
Pmax � log2Pmaxð Þ ð3:5Þ

Hmin ¼ −
1

σ
Pmin � log2Pminð Þ ð3:6Þ

where σ indicates the standard deviation of the noise level in
the image. The modified entropy is determined using the
probability of maximum intensity pixel Pmax and the mini-
mum intensity pixel Pmin. This provides a measure of noise
that is distributed in the respective kernel. The entropy

function measures the random existence of noise in each
kernel with respect to the standard deviation σ.

The proposed filter can then be implemented using the
following equation. Eqs. (3.7) and (3.8) represent the pro-
posed filter equations with J (i, j) as the current pixel of the
chosen kernel.

J i; jð Þ ¼ 1

elogσ
2
k þ Hmax

Xjþ1

j¼ j−1; j≠ j
J i; jð Þ

" #
ð3:7Þ

J i; jð Þ ¼ 1

elogσ
2
k þ Hmin

Xjþ1

j¼ j−1; j≠ j
J i; jð Þ

" #
ð3:8Þ

The kernel selected is a straight 3 elements kernel. The
center pixel is the current pixel that is to be replaced by the
linear summation of the neighborhood pixels (Fig. 4). Speckle
noise is a signal-dependent noise which can bemodeled by the
exponential function. The use of the exponential function in
the kernel combined with logarithmic function of kernel var-
iance σk

2 provides a proportionate noise removal in the re-
spective kernel. This function, when it is pooled with the
modified Shannon entropy function Hmax or Hmin (modified
Shannon entropy equation), explores the kernel signal content
from noise and improves image visibility. The proposed filter
has the ability to remove the speckle noise, since nearby points

Fig. 13 Noise intensity profile

Fig. 14 Output of the proposed filter with noise level of 0.04 for Pmin Fig. 15 Output of the proposed filter with noise level of 0.04 for Pmax
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compute very nearly the same underlying value, and entropy
estimation can reduce the level of noise without biasing the
value obtained. The filtering technique manages to provide
smoothing without loss of resolution. The entropy parameter
also has the significance of improving the luminance of the
dull regions of the ultrasound image, which may be lost due to
improper echoes. The filter mainly quantifies the luminance of
the dead zone pixels and suppresses the dominating noise
pixels. The hypothesis of noise removal is that a noise pixel
has either a maximum or minimum value that always differs
from the neighboring linear elements. The tarnished pixel is
replaced by finding the probability of the maximum or mini-
mum row pixel and column pixel with an attempt of removing
noise from the current pixel.

Figures 5 and 6 represent the range of pixel values from the
ultrasound image used for analysis. The pixel region shown is
a small portion of the image used for illustration of the
proposed filter.

Figure 5 indicates the pixel values, before the application of
the proposed filter. The values are randomly distributed with
mixture of noisy pixels. After the application of the proposed
filter, the image is smoothened with the elimination of noisy
pixels. This is illustrated in Fig. 6.

Figure 5 shows the range of pixel values after the filter
application. It is observed that Fig. 6 shows that the image is
smoothened with a uniform distribution of pixel range, where-
as Fig. 5 shows the nonuniform distribution of noise. This can
be enunciated with the pixel value allocation.

Results and Discussion

The performance of the proposed filter has been analyzed
using different noise levels with various parameters which
are listed in Table 1. It shows the simulated results for four
levels of speckle noise, and the proposed filter can perform
better for higher levels of noise also. The proposed filter
maintains a constant for changes in the noise level.

The raw images that are considered for the simulation
purpose are obtained from GE Vivid 7 Dimension Ultrasound
machine. The echocardiography images used are apical four-
chamber view and parasternal short axis view images. A total
of 36 different frame images are used to substantiate the
quality of the proposed filter, and the results for one such
frame is presented in this paper. The simulations of these
echocardiographic images were performed in Matlab 7, on a

Fig. 16 Noise intensity profile

Fig. 17 Apical four-chamber views of heart with noise level 0.05 Fig. 18 Apical four-chamber views of heart with noise level 0.06
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personal computer with Intel Core 2 Duo processor,
2.93 GHz, 2 Gb random-access memory (RAM).

Figures 7 and 9 show the apical four-chamber views of
normal heart with a noise level of 0.03 and 0.04, respectively.
The original input images have the drawback of poor clarity in
the heart walls, which play a significant role in the diagnosis
of heart diseases. The noise intensity profile of the input

images is shown in Figs. 8 and 10, respectively. The spiky
portions in the intensity profile enunciate the density of noise
in the image (Figs. 9 and 10).

This problem can be eliminated using the proposed filter
which is shown in Figs. 11 and 12. It shows the output of the
proposed filter with probability minimum and maximum in-
tensity pixel considered, respectively, for noise level 0.03. The

Fig. 19 Noise profile for 0.05

Fig. 20 Noise profile for 0.06

Fig. 21 Output of the proposed filter for noise level 0.05 (Pmin) Fig. 22 Output of the proposed filter for noise level 0.05 (Pmax )
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change over from the input image with noise can be witnessed
clearly. The output images show a very good clarity with
enhanced edges and good image visibility. The four chambers
of the heart can be seen with good contrast in the gray scale.
Figure 13 shows the intensity profile of the output image. The
spiky regions present in the intensity profile of the input image
are smoothened without degrading its anatomical facts.

Figures 14 and 15 show the output of the proposed filter
with probability minimum and maximum intensity pixel
considered, respectively, with the noise level 0.04. This
clearly provides evidence that as the noise level increases,
there is no degradation of the filter performance. The raw
image with speckle noise shows that the lower parts of the
left ventricle (LV) and left atrium (LA) are completely
distorted. This left ventricle, which takes the prevailing
responsibility in the diagnosis of many critical diseases,
is illuminated and enhanced with the help of the entropy-
based straight kernel filter. The filter has clearly shown a
bifurcation between the four chambers and is best suitable
for diagnosis at both systolic and diastolic periods. The
noise intensity profile for the output of the proposed filter
is shown in (Fig. 16).

The results shown in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25,
and 26 illustrate the performance of the filter for higher levels
of noise. Figures 17 and 18 show the apical four-chamber
views of a normal heart with a noise level of 0.05 and 0.06
variance, respectively.

Figures 21 and 22 explain the output of the proposed filter
with probability minimum and maximum intensity pixel con-
sidered, respectively, for noise level of 0.05. Figures 24 and 25
show the output of the proposed filter with probability mini-
mum and maximum intensity pixel considered, respectively,
for noise level of 0.06.

All the outputs presented above prove that the four
chambers of the heart are best visualized and help in
presenting the anatomical facts more evidently. This may
be very helpful in elucidating the area of the chambers,
thickness of the heart wall, and blocks if any for the
blood passage. The proposed filter is very useful in
diagnosing aortic stenosis and hypertrophic cardiomyop-
athy. The parasternal short axis view for aortic stenosis
and apical four-chamber view for hypertrophic cardiomy-
opathy are shown below with the results of speckle
denoising using the proposed filter.

Fig. 23 Noise intensity profile

Fig. 24 Output of the proposed filter for noise level 0.06 (Pmin) Fig. 25 Output of the proposed filter for noise level 0.06 (Pmax)
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Figures 27 and 28 show the apical four-chamber views of
the heart with hypertrophic cardiomyopathy with a noise level
of 0.04 and its corresponding denoised image, respectively.
The myocardium thickness in the case of hypertrophic cardio-
myopathy is also effectively elucidated using the proposed
filter. The speckle noise has the property of scattering the gray
level intensity randomly, which may have the possibility of
beingmisinterpreted as block in blood vessels. Hence, speckle
noise removal takes a major role in ultrasound images, for
proper analysis of the features present in the image.

Figures 29 and 30 show the parasternal short axis views of
the heart with aortic stenosis with a noise level of 0.04 and its
corresponding denoised image, respectively. The aortic valve
and the mitral valve closed due to aortic stenosis are very
clearly out skirted using the proposed filter. The proposed
filter will act as a preprocessing step for the image segmenta-
tion, which can be used for the diagnosis of hypertrophic
cardiomyopathy and aortic stenosis. The heart muscle that is
very much thickened in the case of hypertrophic cardiomyop-
athy can be clearly envisaged, which may be beneficial for
future reference and treatments. In the case of aortic stenosis,

the aortic and mitral valves are almost closed which in turn
reduces the blood outlet and thickens the left ventricle. This is
also best witnessed using the proposed filter. Hence, the
proposed filter is suitable in speckle denoising the echocar-
diograms in all the required diagnostic views, namely apical
four-chamber view, parasternal short and long axis view, and
subcostal chamber view.

Comparison of the Proposed Filter with Circular Spatial Filter
and Bayes Function Filter

The proposed filter is compared with two known spatial
domain and frequency domain filters namely, circular spatial
filter and wavelet filter with Bayes function. The circular
spatial filter is a spatial domain filter, and it uses a circular
filter to eliminate speckle noise. The window weights are
calculated based on spatial distance and gray level distance.
The circular filter has failed to consider other image statistics,
namely, mean, variance, and entropy. This filter does not
perform well under low noise conditions. The wavelet filter
is a frequency domain filter, and it uses wavelet coefficients to
remove speckle noise. The weighted variance is calculated
from the weights of a local window, and the current coefficient
is calculated from the vertical neighbors. Hence, this becomes
a tedious procedure to calculate weights, which may be help-
ful in distinguishing the signal and noise coefficients. These
drawbacks have been overcome with the help of the proposed
filter, which has eliminated the speckle noise by incorporating

Fig. 26 Noise intensity profile

Fig. 27 Apical four-chamber view of heart with hypertrophic cardiomy-
opathy for noise level of 0.04 Fig. 28 Output of the proposed filter
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a modified Shannon entropy function. The elimination of
speckle noise has been proved and compared with the image
metrics.

Table 2 shows a comparison of the proposed filter with the
circular spatial filter in spatial domain and a wavelet filter with
Bayes function in wavelet domain. The values of the proposed
filter shown above for comparison have taken into account
only the results obtained for probability of maximum intensity
pixel. The results illustrated below clearly explain that
the proposed filter has a better performance than the
filters under comparison. The peak signal-to-noise ratio
(PSNR) of the proposed filter has a remarkable increase
which shows that the noise in the image is removed in a
profound way. The root mean square error (RMSE),
which has to be reduced, is comparatively high in the
other two filters. The correlation coefficient (CC), which
exhibits the correlation between the input image and the
filtered image, acts as a tool to verify that the anatomical
details are preserved.

The proposed filter shows a close correlation, whereas the
filters under comparison do not have a close correlation. As
mentioned, the wavelet domain filters are application specific
and are not suitable for all cases. The circular spatial filter is
suitable only for high noise levels, whereas the proposed filter

exhibits a constant range of image metrics for all range of
noise levels.

Figures 31 and 32 show the apical four-chamber view of
hypertrophic cardiomyopathy with the output of the proposed
filter and circular spatial filter, respectively. The proposed
filter presents the output in a more feasible way than the
circular spatial filter.

Figures 33 and 34 exhibit the parasternal short axis
view of aortic stenosis with output of proposed filter and
wavelet filter with Bayes function, respectively. The out-
put of the wavelet filter is missing the image clarity,
which predicts that the wavelet filter is not suitable for
the diagnosis of the mentioned heart diseases. The output
of the wavelet filter is also missing the related features
present in the image, whereas those features can be
clearly witnessed in the proposed filter output.

The circular spatial filter and the wavelet filter using Bayes
shrinkage function failed in providing information regarding

Fig. 29 Parasternal short axis view of heart with aortic stenosis for noise
level of 0.04

Fig. 30 Output of the proposed filter

Table 2 Comparison with circular spatial filter and wavelet filter using
Bayes function

Noise level Image
quality

Proposed
filter

Circular
spatial filter

Wavelet
(Bayes)

0.03 PSNR (dB) 147.8310 71.221 65.453

RMSE 0.1572 8.002 8.256

CC 0.935 0.868 0.775

0.04 PSNR (dB) 147.8088 71.972 64.332

RMSE 0.1574 7.982 8.478

CC 0.954 0.855 0.765

0.05 PSNR (dB) 147.7607 72.452 60.983

RMSE 0.1577 7.643 8.679

CC 0.956 0.851 0.712

0.06 PSNR (dB) 147.8030 73.543 65.673

RMSE 0.1574 7.256 8.034

CC 0.964 0.823 0.698

Fig. 31 Output of the proposed filter
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Fig. 32 Output of the circular spatial filter

Fig. 33 Parasternal short axis view of aortic stenosis with output of
proposed filter

Fig. 34 Parasternal short axis view of aortic stenosis with output of
wavelet filter with Bayes function

Fig. 35 Comparison of RMSE

Fig. 36 Comparison of PSNR (dB)

Fig. 37 Comparison of CC
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the edges and aortic and mitral valves of the heart. It is clearly
evident from the results that, as the noise level increases, the
performance of the wavelet filter using Bayes shrinkage func-
tion declines very sharply, whereas the proposed filter endows
with an enhanced output for diseases, namely hypertrophic
cardiomyopathy and aortic stenosis, in spite of the changes in
the noise. The circular spatial filter is not suitable for low
levels of noise. The correlation coefficient (CC) of the pro-
posed filter shows a close relationship (Table 2) between the
original image and the output of the proposed filter image,
whereas a reduction in the correlation is notified in the circular
spatial filter image and the wavelet filter using Bayes shrink-
age function.

Figures 35, 36, and 37 show the graphical comparison of
RMSE, PSNR (dB), and CC of the proposed filter compared
with circular spatial filter and wavelet Filter. The proposed
filter (entropy-based straight kernel (ESK) filter) shows a
better performance than the circular spatial filter and wavelet
filter. It exhibits that, for the wavelet filter using Bayes shrink-
age function, PSNR decreases for increase in noise level and
RMSE increases for increase in noise. As mentioned, PSNR
of the circular spatial filter is better for high levels of noise
than lower levels. The root mean square error approximately is
maintained a constant for the entropy-based straight kernel
filter (proposed filter). The CC of the proposed filter shows a
close correlation between the original image and the filtered
image. This means that the proposed filter has retained the
anatomical facts without blurring of the original details,
whereas the other two filters have reduced in their CC. The
proposed filter outperforms and provides a stable output,
irrespective of changes in noise without compromising the
structural data.

Conclusion

The proposed method is verified with approximately 36 echo-
cardiography images. A sample result for apical four-chamber
view image of a normal heart, apical four-chamber view of
hypertrophic cardiomyopathy, and parasternal short axis view
of aortic stenosis images are presented in this paper. The
proposed method has proven to be outstanding with respect
to the objective fidelity criteria, namely, PSNR, RMSE, and
CC. The paper has illustrated the constant performance of the
proposed filter with respect to the level of speckle noise. It can
be witnessed that the proposed filter performs in an optimal
manner for all levels of noise when compared to circular
spatial filter and wavelet filter using Bayes shrinkage function.
There is no uncertainty in the performance of the proposed
filter, which has enhanced the quality of the echocardiography
image, without blemishing the characteristics of the image and
also illuminating the latent anatomy of the heart. Thus, the

proposed filter is more suitable for the diagnosis of the rele-
vant parameters needed for aortic stenosis and hypertrophic
cardiomyopathy. In the future, the method can be implement-
ed for any ultrasound images and the results can be verified.
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