Skip to main content

Advertisement

Log in

The Keratectasia Volume (KEV) in Corneal Topography to Evaluate the Effect of Corneal Collagen Cross-linking in Pediatric Keratoconus

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

The study aimed to evaluate the keratectasia volume (KEV) before and after corneal cross-linking (CXL) in pediatric patients. This study included 40 eyes of 25 pediatric patients (10–19 years) undergoing standard CXL. The support vector machine (SVM) algorithm was applied to transform mass pixels in corneal topography into a three-dimensioned model to calculate the KEV. The KEV, Kmax, K1, K2, Kave, keratectasia area (KEA), and thinnest corneal thickness (TCT) were determined before CXL and at 3, 6, and 12 months after surgery. The correlation between KEV and other parameters (Kmax, TCT, max decentration, eccentricity, and so on) was calculated. The KEV was 4.75 ± 0.74 preoperatively and 4.43 ± 1.22 postoperatively at last follow-up (p < 0.002). There was strong positive correlation between the KEV and Kmax (r = 0.806, p < 0.0005). The preoperat ive KEV was 4.32 ± 0.69 in mild to moderate keratoconus (Kmax < 58D) and 5.27 ± 0.37 in advanced keratoconus (Kmax > 58D) (p < 0.0005, t-test). Postoperative KEV and K readings remained stable at the early stage, and the KEV showed a more drastic decreasing trend than Kmax at sixth month. Statistical significance was found in the KEV between preoperative and 6 months after surgery (p < 0.0005), but not in Kmax and other parameters. In 83.3% (15 eyes out of 18 eyes) of the eyes, the preoperative KEV was greater than 4.6 in patients with significant flattening after CXL. Compared with K readings, the KEV can be regarded as a more sensitive index to evaluate the postoperative morphological changes after CXL in pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rabinowitz YS: Keratoconus[J]. Surv Ophthalmol, 297–319, 1998

  2. Reeves SW, Stinnett S, Adelman RA, Afshari NA: Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol, 140:607-611, 2005

    Article  PubMed  Google Scholar 

  3. Perez-Straziota C, Gaster RN, Rabinowitz YS: Corneal cross-linking for pediatric keratcoconus review. Cornea, 37(6):802–809, 2018

    Article  PubMed  PubMed Central  Google Scholar 

  4. Daxer A, Misof K, Grabner B, Ettl A, Fratzl P: Collagen fibrils in the human corneal stroma: structure and aging. Invest Ophthalmol Vis Sci, 39(3):644–648, 1998

    CAS  PubMed  Google Scholar 

  5. Léoni-Mesplié S, Mortemousque B, Mesplié N, Touboul D, Praud D, Malet F, Colin J: Epidemiological aspects of keratoconus in children[J]. Journal francais d'ophtalmologie, 35(10): 776-785, 2012

    Article  PubMed  Google Scholar 

  6. Barr JT, Wilson BS, Gordon MO, Rah MJ, Riley C, Kollbaum PS, Zadnik K; CLEK Study Group: Estimation of the incidence and factors predictive of corneal scarring in the Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study. Cornea, 25(1):16–25, 2006

    Article  PubMed  Google Scholar 

  7. Léoni-Mesplié S, Mortemousque B, Touboul D, Malet F, Praud D, Mesplié N, Colin J: Scalability and severity of keratoconus in children. Am J Ophthalmol, 154(1):56–62.e1, 2012

    Article  PubMed  Google Scholar 

  8. Shalchi Z, Wang X, Nanavaty MA: Safety and efficacy of epithelium removal and transepithelial corneal collagen crosslinking for keratoconus. Eye (Lond), 29(1):15–29, 2015

    Article  CAS  PubMed  Google Scholar 

  9. Kankariya VP, Kymionis GD, Diakonis VF, Yoo SH: Management of pediatric keratoconus - evolving role of corneal collagen cross-linking: an update. Indian J Ophthalmol, 61(8):435-440, 2013

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ambrosio R, Jr., Alonso RS, Luz A, Coca Velarde LG: Corneal-thickness spatial profile and corneal-volume distribution: tomographic indices to detect keratoconus. J Cataract Refract Surg, 32:1851-1859, 2006

    Article  PubMed  Google Scholar 

  11. Wang MFZ, Fernandez-Gonzalez R: (Machine-)learning to analyze in vivo microscopy: support vector machines. Biochim Biophys Acta Proteins Proteom, 1865:1719-1727, 2017

    Google Scholar 

  12. Hersh PS, Greenstein SA, Fry KL: Corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg, 37:149-160, 2011

    Article  PubMed  Google Scholar 

  13. Koller T, Pajic B, Vinciguerra P, Seiler T: Flattening of the cornea after collagen crosslinking for keratoconus. J Cataract Refract Surg, 37(8):1488–1492, 2011

    Article  PubMed  Google Scholar 

  14. Mukhtar S, Ambati BK: Pediatric keratoconus: a review of the literature. Int Ophthalmol, 38(5):2257-2266, 2018

    Article  PubMed  Google Scholar 

  15. Duncan JK, Belin MW, Borgstrom M: Assessing progression of keratoconus: novel tomographic determinants. Eye Vis (Lond), 3:6, 2016

  16. Gomes JA, Tan D, Rapuano CJ, Belin MW, Ambrósio R Jr, Guell JL, Malecaze F, Nishida K, Sangwan VS: Global consensus on keratoconus and ectatic diseases. Cornea, 34(4):359-369, 2015

    Article  PubMed  Google Scholar 

  17. Mahmoud AM, Nuñez MX, Blanco C, Koch DD, Wang L, Weikert MP, Frueh BE, Tappeiner C, Twa MD, Roberts CJ: Expanding the cone location and magnitude index to include corneal thickness and posterior surface information for the detection of keratoconus. Am J Ophthalmol, 156(6):1102–1111, 2013

    Article  PubMed  Google Scholar 

  18. Kanellopoulos AJ, Moustou V, Asimellis G: Evaluation of visual acuity, pachymetry and anterior-surface irregularity in keratoconus and crosslinking intervention follow-up in 737 cases. J Kerat Ect Cor Dis, 2(3):95–103, 2013

    Google Scholar 

  19. Suzuki M, Amano S, Honda N, Usui T, Yamagami S, Oshika T: Longitudinal changes in corneal irregular astigmatism and visual acuity in eyes with keratoconus. Jpn J Ophthalmol, 51(4):265–269, 2007

    Article  PubMed  Google Scholar 

  20. Sefic Kasumovic S, Racic-Sakovic A, Kasumovic A, Pavljasevic S, Duric-Colic B, Cabric E, Mavija M, Lepara O, Jankov M: Assessment of the tomographic values in keratoconic eyes after collagen crosslinking procedure. Med Arch, 69(2):91–94, 2015

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kanellopoulos AJ, Asimellis G: Revisiting keratoconus diagnosis and progression classification based on evaluation of corneal asymmetry indices, derived from Scheimpflug imaging in keratoconic and suspect cases. Clin Ophthalmol, 7:1539–1548, 2013

    Article  PubMed  Google Scholar 

  22. Maeda N, Klyce SD, Smolek MK, Thompson HW: automated keratoconus screening with corneal topography analysis. Invest Ophthalmol Vis Sci, 35:2749–2757, 1994

    CAS  PubMed  Google Scholar 

  23. Saad A, Gatinel D: Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci, 51:5546–5554, 2010

    Article  PubMed  Google Scholar 

  24. Uçakhan ÖÖ, Cetinkor V, Özkan M, Kanpolat A: Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes. J Cataract Refract Surg, 37:1116–1124, 2011

    Article  PubMed  Google Scholar 

  25. Arbelaez MC, Versaci F, Vestri G, Barboni P, Savini G: Use of a support vector machine for keratoconus and subclinical keratoconus detection by topographic and tomographic data. Ophthalmology, 119(11):2231-2238, 2012

    Article  PubMed  Google Scholar 

  26. Kohlhaas M, Spoerl E, Schilde T, Unger G, Wittig C, Pillunat LE: Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg, 32(2):279–283, 2006

    Article  PubMed  Google Scholar 

  27. Mazzotta C, Balestrazzi A, Traversi C, Baiocchi S, Caporossi T, Tommasi C, Caporossi A: Treatment of progressive keratoconus by riboflavin-UVA-induced cross-linking of corneal collagen: ultrastructural analysis by Heidelberg Retinal Tomograph II in vivo confocal microscopy in humans. Cornea, 26(4):390–397, 2007

    Article  PubMed  Google Scholar 

  28. Caporossi A, Mazzotta C, Baiocchi S, Caporossi T, Denaro R, Balestrazzi A: Riboflavin-UVA-induced corneal collagen cross-linking in pediatric patients. Cornea, 31(3):227–231, 2012

    Article  PubMed  Google Scholar 

  29. Vinciguerra P, Albé E, Frueh BE, Trazza S, Epstein D: Two-year corneal cross-linking results in patients younger than 18 years with documented progressive keratoconus. Am J Ophthalmol, 154(3):520–526, 2012

    Article  PubMed  Google Scholar 

  30. Mazzotta C, Caporossi T, Denaro R, Bovone C, Sparano C, Paradiso A, Baiocchi S, Caporossi A: Morphological and Functional Correlations in Riboflavin Uv a Corneal Collagen Cross-Linking for Keratoconus. Acta Ophthalmol, 90:259-265, 2012

    Article  PubMed  Google Scholar 

  31. Magli A, Forte R, Tortori A, Capasso L, Marsico G, Piozzi E: Epithelium-off corneal collagen cross-linking versus transepithelial cross-linking for pediatric keratoconus. Cornea, 32(5):597–601, 2013

    Article  PubMed  Google Scholar 

  32. Koller T, Iseli HP, Donitzky C, Ing D, Papadopoulos N, Seiler T: Topography-guided surface ablation for forme fruste keratoconus. Ophthalmology, 113(12):2198–2202, 2006

    Article  PubMed  Google Scholar 

  33. Kanellopoulos AJ, Binder PS: Collagen cross-linking (CCL) with sequential topography-guided PRK: a temporizing alternative for keratoconus to penetrating keratoplasty. Cornea, 26(7):891–895, 2007

    Article  PubMed  Google Scholar 

  34. Ambrósio R Jr, Klyce SD, Wilson SE: Corneal topographic and pachymetric screening of keratorefractive patients. J Refract Surg, 19(1):24-29, 2003

    Article  PubMed  Google Scholar 

  35. Piñero DP, Alió JL, Alesón A, Escaf Vergara M, Miranda M: Corneal volume, pachymetry, and correlation of anterior and posterior corneal shape in subclinical and different stages of clinical keratoconus. J Cataract Refract Surg, 36(5):814–825, 2010

    Article  PubMed  Google Scholar 

  36. Kobashi H, Rong SS: Corneal collagen cross-linking for keratoconus: systematic review. Biomed Res Int, 2017:8145651, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  37. Cavas-Martínez F, De la Cruz Sánchez E, Nieto Martínez J, Fernández Cañavate FJ, Fernández-Pacheco DG: Corneal topography in keratoconus: state of the art. Eye Vis (Lond), 3:5, 2016

Download references

Funding

This work was supported by Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoying Mu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, B., Li, Z. et al. The Keratectasia Volume (KEV) in Corneal Topography to Evaluate the Effect of Corneal Collagen Cross-linking in Pediatric Keratoconus. J Digit Imaging 36, 1752–1759 (2023). https://doi.org/10.1007/s10278-021-00515-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-021-00515-5

Keywords

Navigation