Skip to main content

Advertisement

Log in

Using Transfer Learning of Convolutional Neural Network on Neck Radiographs to Identify Acute Epiglottitis

  • Original Paper
  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Acute epiglottitis (AE) is a life-threatening condition and needs to be recognized timely. Diagnosis of AE with a lateral neck radiograph yields poor reliability and sensitivity. Convolutional neural networks (CNN) are powerful tools to assist the analysis of medical images. This study aimed to develop an artificial intelligence model using CNN-based transfer learning to identify AE in lateral neck radiographs. All cases in this study are from two hospitals, a medical center, and a local teaching hospital in Taiwan. In this retrospective study, we collected 251 lateral neck radiographs of patients with AE and 936 individuals without AE. Neck radiographs obtained from patients without and with AE were used as the input for model transfer learning in a pre-trained CNN including Inception V3, Densenet201, Resnet101, VGG19, and Inception V2 to select the optimal model. We used five-fold cross-validation to estimate the performance of the selected model. The confusion matrix of the final model was analyzed. We found that Inception V3 yielded the best results as the optimal model among all pre-train models. Based on the average value of the fivefold cross-validation, the confusion metrics were obtained: accuracy = 0.92, precision = 0.94, recall = 0.90, and area under the curve (AUC) = 0.96. Using the Inception V3-based model can provide an excellent performance to identify AE based on radiographic images. We suggest using the CNN-based model which can offer a non-invasive, accurate, and fast diagnostic method for AE in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Due to privacy and ethical concerns, neither the data nor the source of the data can be made available.

Abbreviations

AE:

Acute epiglottitis

CNN:

Convolutional neural networks

AI:

Artificial intelligence

HE:

Histogram equalization

ROI:

Region of interest (ROI)

ACF:

Aggregate channel feature

CAM:

Class activation mapping

References

  1. K. Rafei, R. Lichenstein, Airway infectious disease emergencies, Pediatr Clin North Am 53(2) (2006) 215-42.

    Article  PubMed  Google Scholar 

  2. S. Sato, Y. Kuratomi, A. Inokuchi, Pathological characteristics of the epiglottis relevant to acute epiglottitis, Auris Nasus Larynx 39(5) (2012) 507-11.

    Article  PubMed  Google Scholar 

  3. C.J. Li, P. Aronowitz, Sore throat, odynophagia, hoarseness, and a muffled, high-pitched voice, Cleve Clin J Med 80(3) (2013) 144-5.

    Article  PubMed  Google Scholar 

  4. B. Westerhuis, M.G. Bietz, J. Lindemann, Acute epiglottitis in adults: an under-recognized and life-threatening condition, S D Med 66(8) (2013) 309–11, 313.

  5. D.R. Lee, C.H. Lee, Y.K. Won, D.I. Suh, E.J. Roh, M.H. Lee, E.H. Chung, Clinical characteristics of children and adolescents with croup and epiglottitis who visited 146 Emergency Departments in Korea, Korean J Pediatr 58(10) (2015) 380-5.

    Article  PubMed  PubMed Central  Google Scholar 

  6. K.H. Kim, Y.H. Kim, J.H. Lee, D.W. Lee, Y.G. Song, S.Y. Cha, S.Y. Hwang, Accuracy of objective parameters in acute epiglottitis diagnosis: A case-control study, Medicine (Baltimore) 97(37) (2018) e12256.

  7. J.K. Podgore, J.W. Bass, Letter: The "thumb sign" and "little finger sign" in acute epiglottitis, J Pediatr 88(1) (1976) 154-5.

    Article  CAS  PubMed  Google Scholar 

  8. C. Grover, Images in clinical medicine. "Thumb sign" of epiglottitis, N Engl J Med 365(5) (2011) 447.

  9. Y. Ducic, P.C. Hebert, L. MacLachlan, K. Neufeld, A. Lamothe, Description and evaluation of the vallecula sign: a new radiologic sign in the diagnosis of adult epiglottitis, Ann Emerg Med 30(1) (1997) 1-6.

    Article  CAS  PubMed  Google Scholar 

  10. T. Fujiwara, T. Miyata, H. Tokumasu, H. Gemba, T. Fukuoka, Diagnostic accuracy of radiographs for detecting supraglottitis: a systematic review and meta-analysis, Acute Med Surg 4(2) (2017) 190-197.

    Article  PubMed  Google Scholar 

  11. F. Pesapane, M. Codari, F. Sardanelli, Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine, European radiology experimental 2(1) (2018) 35.

    Article  PubMed  PubMed Central  Google Scholar 

  12. P. Rajpurkar, J.A. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D.Y. Ding, A. Bagul, C. Langlotz, K.S. Shpanskaya, M.P. Lungren, A. Ng, CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning, ArXiv abs/1711.05225 (2017).

  13. W. Sarle (1994). ”Neural Networks and Statistical Models”, Proceedings of the Nineteenth Annual SAS Users Group International Conference, Cary, NC: SAS Institute, USA, pp. 1538-1550.

  14. E.J. Topol, High-performance medicine: the convergence of human and artificial intelligence, Nat Med 25(1) (2019) 44-56.

    Article  CAS  PubMed  Google Scholar 

  15. C. Qin, D. Yao, Y. Shi, Z. Song, Computer-aided detection in chest radiography based on artificial intelligence: a survey, Biomed Eng Online 17(1) (2018) 113.

    Article  PubMed  PubMed Central  Google Scholar 

  16. R. Kushol, M.N. Raihan, M.S. Salekin, A.B.M.A. Rahman, Contrast Enhancement of Medical X-Ray Image Using Morphological Operators with Optimal Structuring Element, ArXiv abs/1905.08545 (2019). https://doi.org/10.48550/arXiv.1905.08545, May 19, 2019.

  17. S.H. Lim, N.A.M. Isa, C.H. Ooi, K.K.V. Toh, A new histogram equalization method for digital image enhancement and brightness preservation, Signal Image Video P 9(3) (2015) 675–689.

  18. H.-S. Yoon, Y. Han, H.-s. Hahn, Image Contrast Enhancement based Sub-histogram Equalization Technique without Over-equalization Noise, World Academy of Science, Engineering and Technology, International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering 3 (2009) 189-195.

    Google Scholar 

  19. P. Dollar, R. Appel, S. Belongie, P. Perona, Fast Feature Pyramids for Object Detection, Ieee T Pattern Anal 36(8) (2014) 1532-1545.

    Article  Google Scholar 

  20. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the Inception Architecture for Computer Vision, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 2818–2826.

  21. C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, AAAI, 2017. https://arxiv.org/abs/1905.08545, February 12, 2017.

  22. K. Simonyan, A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, CoRR abs/1409.1556 (2015). https://doi.org/10.48550/arXiv.1409.1556, April 10, 2015.

  23. J. Rubin, S. Parvaneh, A. Rahman, B. Conroy, S. Babaeizadeh, Densely connected convolutional networks for detection of atrial fibrillation from short single-lead ECG recordings, J Electrocardiol 51(6S) (2018) S18-S21.

    Article  PubMed  Google Scholar 

  24. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 770–778. https://doi.org/10.1109/CVPR.2016.90, December 12, 2016.

  25. X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, R.M. Summers, ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017) 3462–3471. https://doi.org/10.1109/CVPR.2017.369, November 09, 2017.

  26. M.D. Abràmoff, Y. Lou, A. Erginay, W. Clarida, R.E. Amelon, J.C. Folk, M. Niemeijer, Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning, Investigative ophthalmology & visual science 57 13 (2016) 5200-5206.

    Article  Google Scholar 

  27. V. Gulshan, L. Peng, M. Coram, M.C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner, T. Madams, J. Cuadros, R. Kim, R. Raman, P.C. Nelson, J.L. Mega, D.R. Webster, Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs, JAMA 316(22) (2016) 2402-2410.

    Article  PubMed  Google Scholar 

  28. P. Maurette, C.A.M.R. Sfa, To err is human: building a safer health system, Ann Fr Anesth 21(6) (2002) 453-454.

    Article  CAS  Google Scholar 

  29. P. Asadi, E. Modirian, N. Dadashpour, Medical Errors in Emergency Department; a Letter to Editor, Emergency (Tehran, Iran) 6(1) (2018) e33.

  30. T. Fujiwara, H. Okamoto, Y. Ohnishi, T. Fukuoka, K. Ichimaru, Diagnostic accuracy of lateral neck radiography in ruling out supraglottitis: a prospective observational study, Emerg Med J 32(5) (2015) 348-52.

    Article  PubMed  Google Scholar 

  31. D. Yee, S. Soltaninejad, D. Hazarika, G. Mbuyi, R. Barnwal, A. Basu, Medical image compression based on region of interest using better portable graphics (BPG), 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (2017) 216–221. https://doi.org/10.1109/SMC.2017.8122605, November 30, 2017.

  32. Q. Zhang, H. Xiao, Extracting Regions of Interest in Biomedical Images, 2008 International Seminar on Future BioMedical Information Engineering (2008) 3–6. https://doi.org/10.1109/FBIE.2008.8, December 18, 2008.

  33. J. Aneja, A. Deshpande, A.G. Schwing, Convolutional Image Captioning, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2018) 5561–5570. https://doi.org/10.48550/arXiv.1805.09019, May 23, 2018.

  34. B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, A. Torralba, Learning Deep Features for Discriminative Localization, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016) 2921–2929. https://doi.org/10.48550/arXiv.1512.04150, December 14, 2015.

  35. M. Raghu, C. Zhang, J.M. Kleinberg, S. Bengio, Transfusion: Understanding Transfer Learning with Applications to Medical Imaging, ArXiv abs/1902.07208 (2019). https://doi.org/10.48550/arXiv.1902.07208, October 29, 2019.

  36. K.L. Grant, A. Mcparland, Applications of artificial intelligence in emergency medicine, University of Toronto Medical Journal 96(1) (2019). Available at https://www.researchgate.net/publication/332566835_Applications_of_artificial_intelligence_in_emergency_medicine, January 17, 2023.

  37. J. Hanna, P.R. Brauer, E. Berson, S. Mehra, Adult epiglottitis: Trends and predictors of mortality in over 30 thousand cases from 2007 to 2014, Laryngoscope 129(5) (2019) 1107-1112.

    Article  PubMed  Google Scholar 

  38. R.K. Shah, C. Stocks, Epiglottitis in the United States: national trends, variances, prognosis, and management, Laryngoscope 120(6) (2010) 1256-62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yang-Tse Lin, MD: conception and design, acquisition of data, or analysis and interpretation of data.

Ben-Chang Shia, Ph.D.: development of the theoretical formulation

Chia-Jung Chang, MD: conception and design, acquisition of data, or analysis and interpretation of data

Yueh Wu, MD: conception and design, acquisition of data, or analysis and interpretation of data

Jheng-Dao Yang, MD: concept and design, acquisition of data, or analysis and interpretation of data

Jiunn-Horng Kang, MD Ph.D.: development of the theoretical formulation, performed the analytic calculations and performed the numerical simulations, contributed to the final version of the manuscript

All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Jiunn-Horng Kang.

Ethics declarations

Conflict of Interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YT., Shia, BC., Chang, CJ. et al. Using Transfer Learning of Convolutional Neural Network on Neck Radiographs to Identify Acute Epiglottitis. J Digit Imaging 36, 893–901 (2023). https://doi.org/10.1007/s10278-023-00774-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00774-4

Keywords

Navigation