Skip to main content

Advertisement

Log in

Skin Lesion Segmentation in Dermoscopic Images with Noisy Data

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

We propose a deep learning approach to segment the skin lesion in dermoscopic images. The proposed network architecture uses a pretrained EfficientNet model in the encoder and squeeze-and-excitation residual structures in the decoder. We applied this approach on the publicly available International Skin Imaging Collaboration (ISIC) 2017 Challenge skin lesion segmentation dataset. This benchmark dataset has been widely used in previous studies. We observed many inaccurate or noisy ground truth labels. To reduce noisy data, we manually sorted all ground truth labels into three categories — good, mildly noisy, and noisy labels. Furthermore, we investigated the effect of such noisy labels in training and test sets. Our test results show that the proposed method achieved Jaccard scores of 0.807 on the official ISIC 2017 test set and 0.832 on the curated ISIC 2017 test set, exhibiting better performance than previously reported methods. Furthermore, the experimental results showed that the noisy labels in the training set did not lower the segmentation performance. However, the noisy labels in the test set adversely affected the evaluation scores. We recommend that the noisy labels should be avoided in the test set in future studies for accurate evaluation of the segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used in this study are publicly available benchmark datasets.

References

  1. R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, Cancer statistics, 2022, CA Cancer J Clin, vol. 72, no. 1, pp. 7–33, 2022, https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  2. H. Pehamberger, M. Binder, A. Steiner, and K. Wolff, In vivo epiluminescence microscopy: improvement of early diagnosis of melanoma, Journal of Investigative Dermatology, vol. 100, no. 3 SUPPL., pp. S356–S362, 1993, https://doi.org/10.1038/jid.1993.63.

    Article  Google Scholar 

  3. H. P. Soyer, G. Argenziano, R. Talamini, and S. Chimenti, Is dermoscopy useful for the diagnosis of melanoma?, Arch Dermatol, vol. 137, no. 10, pp. 1361–1363, Oct. 2001, https://doi.org/10.1001/archderm.137.10.1361.

    Article  CAS  PubMed  Google Scholar 

  4. R. P. Braun, H. S. Rabinovitz, M. Oliviero, A. W. Kopf, and J. H. Saurat, Pattern analysis: a two-step procedure for the dermoscopic diagnosis of melanoma, Clin Dermatol, vol. 20, no. 3, pp. 236–239, May 2002, https://doi.org/10.1016/S0738-081X(02)00216-X.

    Article  PubMed  Google Scholar 

  5. A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in Neural Information and Processing Systems (NIPS), vol. 25, 2012, pp. 1097–1105.

  6. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, Rethinking the inception architecture for computer vision, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2818–2826.

  7. K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556, 2014.

  8. I. Goodfellow et al., Generative adversarial networks, Commun ACM, vol. 63, no. 11, pp. 139–144, 2020.

    Article  Google Scholar 

  9. K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

  10. A. Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature, vol. 542, no. 7639, pp. 115–118, 2017, https://doi.org/10.1038/nature21056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. V. Gulshan et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs, JAMA, vol. 316, no. 22, pp. 2402–2410, 2016.

    Article  PubMed  Google Scholar 

  12. S. Sornapudi et al., Deep learning nuclei detection in digitized histology images by superpixels, J Pathol Inform, vol. 9, no. 1, p. 5, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  13. G. Litjens et al., A survey on deep learning in medical image analysis, Med Image Anal, vol. 42, pp. 60–88, 2017, https://doi.org/10.1016/j.media.2017.07.005.

    Article  PubMed  Google Scholar 

  14. L. K. Ferris et al., Computer-aided classification of melanocytic lesions using dermoscopic images, J Am Acad Dermatol, vol. 73, no. 5, pp. 769–776, Nov. 2015, https://doi.org/10.1016/J.JAAD.2015.07.028.

    Article  PubMed  Google Scholar 

  15. M. A. Marchetti et al., Results of the 2016 International Skin Imaging Collaboration International Symposium on biomedical imaging challenge: comparison of the accuracy of computer algorithms to dermatologists for the diagnosis of melanoma from dermoscopic images, J Am Acad Dermatol, vol. 78, no. 2, pp. 270-277.e1, Feb. 2018, https://doi.org/10.1016/j.jaad.2017.08.016.

    Article  PubMed  Google Scholar 

  16. H. A. Haenssle et al., Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists, Annals of Oncology, vol. 29, no. 8, pp. 1836–1842, 2018, https://doi.org/10.1093/annonc/mdy166.

    Article  CAS  PubMed  Google Scholar 

  17. N. C. F. Codella et al., Deep learning ensembles for melanoma recognition in dermoscopy images, IBM J. Res. Dev., vol. 61, no. 4–5, pp. 5:1–5:15, Jul. 2017, https://doi.org/10.1147/JRD.2017.2708299.

  18. S. Pathan, K. G. Prabhu, and P. C. Siddalingaswamy, Techniques and algorithms for computer aided diagnosis of pigmented skin lesions—a review, Biomed Signal Process Control, vol. 39, pp. 237–262, Jan. 2018, https://doi.org/10.1016/J.BSPC.2017.07.010.

    Article  Google Scholar 

  19. T. Majtner, S. Yildirim-Yayilgan, and J. Y. Hardeberg, Combining deep learning and hand-crafted features for skin lesion classification, 2016 6th International Conference on Image Processing Theory, Tools and Applications, IPTA 2016, 2017, https://doi.org/10.1109/IPTA.2016.7821017.

  20. N. Codella, J. Cai, M. Abedini, R. Garnavi, A. Halpern, and J. R. Smith, Deep learning, sparse coding, and SVM for melanoma recognition in dermoscopy images BT - Machine Learning in Medical Imaging, 2015, pp. 118–126.

  21. I. González-Díaz, DermaKNet: incorporating the knowledge of dermatologists to convolutional neural networks for skin lesion diagnosis, IEEE J Biomed Health Inform, vol. 23, no. 2, pp. 547–559, 2019, https://doi.org/10.1109/JBHI.2018.2806962.

    Article  PubMed  Google Scholar 

  22. J. R. Hagerty et al., Deep learning and handcrafted method fusion: higher diagnostic accuracy for melanoma dermoscopy images, IEEE J Biomed Health Inform, vol. 23, no. 4, pp. 1385–1391, 2019, https://doi.org/10.1109/JBHI.2019.2891049.

    Article  PubMed  Google Scholar 

  23. G. Celebi, Emre M.; Wen, Quan; Iyatomi, Hitoshi; Shimizu, Kouhei; Zhou, Huiyu; Schaefer, A state-of-the-art on lesion border detection in dermoscopy images, in Dermoscopy Image Analysis, J. S. Celebi, M. Emre; Mendonca, Teresa; Marques, Ed. Boca Raton: CRC Press, 2015, pp. 97–129. [Online]. Available: https://doi.org/10.1201/b19107

  24. N. K. Mishra et al., Automatic lesion border selection in dermoscopy images using morphology and color features, Skin Research and Technology, vol. 25, no. 4, pp. 544–552, 2019.

    Article  PubMed  Google Scholar 

  25. M. E. Celebi, H. Iyatomi, G. Schaefer, and W. v Stoecker, Lesion border detection in dermoscopy images, Computerized Medical Imaging and Graphics, vol. 33, no. 2, pp. 148–153, 2009, https://doi.org/10.1016/j.compmedimag.2008.11.002.

  26. M. A. Al-masni, M. A. Al-antari, M. T. Choi, S. M. Han, and T. S. Kim, Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks, Comput Methods Programs Biomed, vol. 162, pp. 221–231, 2018, https://doi.org/10.1016/j.cmpb.2018.05.027.

    Article  PubMed  Google Scholar 

  27. P. Tschandl, C. Sinz, and H. Kittler, Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation, Comput Biol Med, vol. 104, pp. 111–116, 2019, https://doi.org/10.1016/j.compbiomed.2018.11.010.

    Article  PubMed  Google Scholar 

  28. Y. Yuan and Y. C. Lo, Improving dermoscopic image segmentation with enhanced convolutional-deconvolutional networks, IEEE J Biomed Health Inform, vol. 23, no. 2, pp. 519–526, 2019, https://doi.org/10.1109/JBHI.2017.2787487.

    Article  PubMed  Google Scholar 

  29. F. Xie, J. Yang, J. Liu, Z. Jiang, Y. Zheng, and Y. Wang, Skin lesion segmentation using high-resolution convolutional neural network, Comput Methods Programs Biomed, vol. 186, p. 105241, 2020, https://doi.org/10.1016/j.cmpb.2019.105241.

  30. Ş. Öztürk and U. Özkaya, Skin lesion segmentation with improved convolutional neural network, J Digit Imaging, vol. 33, no. 4, pp. 958–970, 2020, https://doi.org/10.1007/s10278-020-00343-z.

    Article  PubMed  PubMed Central  Google Scholar 

  31. O. Ronneberger, P. Fischer, and T. Brox, U-Net: convolutional networks for biomedical image segmentation. [Online]. Available: http://lmb.informatik.uni-freiburg.de/

  32. X. Tong, J. Wei, B. Sun, S. Su, Z. Zuo, and P. Wu, Ascu-net: attention gate, spatial and channel attention U-net for skin lesion segmentation, Diagnostics, vol. 11, no. 3, 2021, https://doi.org/10.3390/diagnostics11030501.

  33. O. Oktay et al., Attention u-net: learning where to look for the pancreas, arXiv preprint arXiv:1804.03999, 2018.

  34. S. Kadry, D. Taniar, R. Damaševičius, V. Rajinikanth, and I. A. Lawal, Extraction of abnormal skin lesion from dermoscopy image using VGG-SegNet, in 2021 Seventh International Conference on Bio Signals, Images, and Instrumentation (ICBSII), 2021, pp. 1–5.

  35. V. Rajinikanth, S. Kadry, R. Damaševičius, D. Sankaran, M. A. Mohammed, and S. Chander, Skin melanoma segmentation using VGG-UNet with Adam/SGD optimizer: a study, in 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), 2022, pp. 982–986.

    Google Scholar 

  36. K. Zafar et al., Skin lesion segmentation from dermoscopic images using convolutional neural network, Sensors (Switzerland), vol. 20, no. 6, pp. 1–14, 2020, https://doi.org/10.3390/s20061601.

    Article  Google Scholar 

  37. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: a large-scale hierarchical image database, in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009, pp. 248–255.

    Google Scholar 

  38. M. Nawaz et al., Melanoma segmentation: a framework of improved DenseNet77 and UNET convolutional neural network, Int J Imaging Syst Technol, vol. 32, no. 6, pp. 2137–2153, 2022.

    Article  Google Scholar 

  39. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

  40. D. K. Nguyen, T. T. Tran, C. P. Nguyen, and V. T. Pham, Skin Lesion segmentation based on integrating EfficientNet and residual block into U-Net neural network, Proceedings of 2020 5th International Conference on Green Technology and Sustainable Development, GTSD 2020, pp. 366–371, 2020, https://doi.org/10.1109/GTSD50082.2020.9303084.

  41. M. Tan and Q. Le, Efficientnet: rethinking model scaling for convolutional neural networks, in International Conference on Machine Learning, 2019, pp. 6105–6114.

  42. N. C. F. Codella et al., Skin lesion analysis toward melanoma detection: a challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC), Proceedings - International Symposium on Biomedical Imaging, vol. 2018-April, pp. 168–172, 2018, https://doi.org/10.1109/ISBI.2018.8363547.

  43. N. Lama et al., ChimeraNet: U-Net for hair detection in dermoscopic skin lesion images, J Digit Imaging, no. 0123456789, 2022, https://doi.org/10.1007/s10278-022-00740-6.

  44. J. Hu, L. Shen, and G. Sun, Squeeze-and-excitation networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 7132–7141.

  45. F. Yu and V. Koltun, Multi-scale context aggregation by dilated convolutions, arXiv preprint arXiv:1511.07122, 2015.

  46. Q. Abbas, M. E. Celebi, and I. F. Garc\’\ia, Hair removal methods: a comparative study for dermoscopy images, Biomed Signal Process Control, vol. 6, no. 4, pp. 395–404, 2011.

  47. S. Ioffe and C. Szegedy, Batch normalization: accelerating deep network training by reducing internal covariate shift.

  48. C. H. Sudre, W. Li, T. Vercauteren, S. Ourselin, and M. Jorge Cardoso, Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations, in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer, 2017, pp. 240–248.

  49. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980, 2014.

  50. F. Navarro, M. Escudero-Viñolo, and J. Bescós, Accurate segmentation and registration of skin lesion images to evaluate lesion change, IEEE J Biomed Health Inform, vol. 23, no. 2, pp. 501–508, 2019, https://doi.org/10.1109/JBHI.2018.2825251.

    Article  PubMed  Google Scholar 

  51. P. Shan, Y. Wang, C. Fu, W. Song, and J. Chen, Automatic skin lesion segmentation based on FC-DPN, Comput Biol Med, vol. 123, no. April, p. 103762, 2020, https://doi.org/10.1016/j.compbiomed.2020.103762.

  52. R. Kaymak, C. Kaymak, and A. Ucar, Skin lesion segmentation using fully convolutional networks: a comparative experimental study, Expert Syst Appl, vol. 161, p. 113742, 2020, https://doi.org/10.1016/j.eswa.2020.113742.

  53. M. Goyal, A. Oakley, P. Bansal, D. Dancey, and M. H. Yap, Skin lesion segmentation in dermoscopic images with ensemble deep learning methods, IEEE Access, vol. 8, pp. 4171–4181, 2020, https://doi.org/10.1109/ACCESS.2019.2960504.

    Article  Google Scholar 

  54. P. Chen, S. Huang, and Q. Yue, Skin lesion segmentation using recurrent attentional convolutional networks, IEEE Access, vol. 10, no. September, pp. 94007–94018, 2022, https://doi.org/10.1109/ACCESS.2022.3204280.

    Article  Google Scholar 

  55. H. Ashraf, A. Waris, M. F. Ghafoor, S. O. Gilani, and I. K. Niazi, Melanoma segmentation using deep learning with test-time augmentations and conditional random fields, Sci Rep, vol. 12, no. 1, pp. 1–16, 2022, https://doi.org/10.1038/s41598-022-07885-y.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

We confirm that all the authors contributed to the study conception and design. The experiments are conducted by Norsang Lama. Data analysis and validation are performed by all the authors. The first draft of the manuscript was written by Norsang Lama, and all the authors commented on the previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding author

Correspondence to Ronald Joe Stanley.

Ethics declarations

Ethics Approval

NA.

Consent to Participate

NA.

Consent to for Publication

NA

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lama, N., Hagerty, J., Nambisan, A. et al. Skin Lesion Segmentation in Dermoscopic Images with Noisy Data. J Digit Imaging 36, 1712–1722 (2023). https://doi.org/10.1007/s10278-023-00819-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00819-8

Keywords

Navigation