Skip to main content

Advertisement

Log in

A Robust and Explainable Structure-Based Algorithm for Detecting the Organ Boundary From Ultrasound Multi-Datasets

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Detecting the organ boundary in an ultrasound image is challenging because of the poor contrast of ultrasound images and the existence of imaging artifacts. In this study, we developed a coarse-to-refinement architecture for multi-organ ultrasound segmentation. First, we integrated the principal curve–based projection stage into an improved neutrosophic mean shift–based algorithm to acquire the data sequence, for which we utilized a limited amount of prior seed point information as the approximate initialization. Second, a distribution-based evolution technique was designed to aid in the identification of a suitable learning network. Then, utilizing the data sequence as the input of the learning network, we achieved the optimal learning network after learning network training. Finally, a scaled exponential linear unit–based interpretable mathematical model of the organ boundary was expressed via the parameters of a fraction-based learning network. The experimental outcomes indicated that our algorithm 1) achieved more satisfactory segmentation outcomes than state-of-the-art algorithms, with a Dice score coefficient value of 96.68 ± 2.2%, a Jaccard index value of 95.65 ± 2.16%, and an accuracy of 96.54 ± 1.82% and 2) discovered missing or blurry areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Deo, S.V.S., Sharma, J., Kumar, S.: GLOBOCAN 2020 report on global cancer burden: Challenges and opportunities for surgical oncologists. Ann. Surg. Oncol. 29, 6497–6500 (2022).

    CAS  PubMed  Google Scholar 

  2. Nasser, N.J., Saibishkumar, E.P., Wang, Y., Chung, P., Breen, S.: Control charts for evaluation of quality of low-dose-rate brachytherapy for prostate cancer. J. Contemp. Brachytherapy 14, 354–363 (2022).

    PubMed  PubMed Central  Google Scholar 

  3. Patel, M., Turchan, W.T., Morris, C.G., Augustine, D., Wu, T., Oto, A., Zagaja, G.P., Liauw, S.L.: A contemporary report of low-dose-rate brachytherapy for prostate cancer using MRI for risk stratification: Disease outcomes and patient-reported quality of life. Cancers. 15, 1336 (2023).

    PubMed  PubMed Central  Google Scholar 

  4. Nouranian, S., Ramezani, M., Spadinger, I., Morris, W.J., Salcudean, S.E., Abolmaesumi, P.: Learning-based multi-Label segmentation of transrectal ultrasound images for prostate brachytherapy. IEEE Trans. Med. Imaging. 35, 921–932 (2016).

    PubMed  Google Scholar 

  5. Akkus, Z., Cai, J., Boonrod, A., Zeinoddini, A., Weston, A.D., Philbrick, K.A., Erickson, B.J.: A survey of deep-learning applications in ultrasound: artificial intelligence–powered ultrasound for improving clinical workflow. J. Am. Coll. Radiol. 16, 1318–1328 (2019).

    PubMed  Google Scholar 

  6. Lei, Y., Wang, T., Roper, J., Jani, A.B., Patel, S.A., Curran, W.J., Patel, P., Liu, T., Yang, X.: Male pelvic multi‐organ segmentation on transrectal ultrasound using anchor‐free mask CNN. Med. Phys. 48, 3055–3064 (2021).

    PubMed  Google Scholar 

  7. Fiorentino, M.C., Villani, F.P., Cosmo, M.D., Frontoni, E., Moccia, S.: A review on deep-learning algorithms for fetal ultrasound-image analysis. Med. Image Anal. 83, 102629 (2023).

    PubMed  Google Scholar 

  8. Zhai, D., Hu, B., Gong, X., Zou, H., Luo, J.: ASS-GAN: Asymmetric semi-supervised GAN for breast ultrasound image segmentation. Neurocomputing. 493, 204–216 (2022).

    Google Scholar 

  9. Sharifzadeh, M., Benali, H., Rivaz, H.: Investigating shift variance of convolutional neural networks in ultrasound image segmentation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 69, (2022).

  10. Zhang, R.: Making convolutional networks shift-invariant again. Presented at the in 36th International Conference on Machine Learning (ICML) pp. 7324–7334 (2019).

  11. Yang, X., Yu, L., Li, S., Wang, X., Wang, N., Qin, J., Ni, D., Heng, P.-A.: Towards automatic semantic segmentation in volumetric ultrasound. Medical Image Computing and Computer Assisted Intervention (MICCAI) pp. 711–719 (2017).

  12. Nair, A.A., Washington, K.N., Tran, T.D., Reiter, A., Lediju Bell, M.A.: Deep learning to obtain simultaneous image and segmentation outputs from a single input of raw ultrasound channel data. IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 67, 2493–2509 (2020).

  13. Gupta, D., Anand, R.S.: A hybrid edge-based segmentation approach for ultrasound medical images. Biomed. Signal Process. Control. 31, 116–126 (2017).

    Google Scholar 

  14. Zong, J., Qiu, T., Li, W., Guo, D.: Automatic ultrasound image segmentation based on local entropy and active contour model. Comput. Math. with Appl. 78, 929–943 (2019).

    Google Scholar 

  15. Ni, B., Liu, Z., Cai, X., Nappi, M., Wan, S.: Segmentation of ultrasound image sequences by combing a novel deep siamese network with a deformable contour model. Neural Comput. Applic. (2022).

  16. Shi, Q., Yin, S., Wang, K., Teng, L., Li, H.: Multichannel convolutional neural network-based fuzzy active contour model for medical image segmentation. Evol. Syst. 13, 535–549 (2022).

    Google Scholar 

  17. Orlando, N., Gillies, D.J., Gyacskov, I., Romagnoli, C., D’Souza, D., Fenster, A.: Automatic prostate segmentation using deep learning on clinically diverse 3D transrectal ultrasound images. Med. Phys. 47, 2413–2426 (2020).

    CAS  PubMed  Google Scholar 

  18. Wu, R., Wang, B., Xu, A.: Functional data clustering using principal curve methods. Commun. Stat. 1–20 (2021).

  19. Ge, Y., Yu, W., Lin, Y., Gong, Y., Zhan, Z., Chen, W., Zhang, J.: Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Trans. Cybern. 48, 2166–2180 (2018).

    PubMed  Google Scholar 

  20. Leema, N., Nehemiah, H.K., Kannan, A.: Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets. Appl. Soft Comput. 49, 834–844 (2016).

    Google Scholar 

  21. Chen, M.-R., Chen, B.-P., Zeng, G.-Q., Lu, K.-D., Chu, P.: An adaptive fractional-order BP neural network based on extremal optimization for handwritten digits recognition. Neurocomputing. 391, 260–272 (2020).

    Google Scholar 

  22. Klambauer, G., Unterthiner, T., Mayr, A., Hochreiter, S.: Self-normalizing neural networks. In: Advances in Neural Information Processing Systems. (2017).

  23. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs). In: International Conference on Learning Representations (ICLR) (2016).

  24. Biau, G., Fischer, A.: Parameter selection for principal curves. IEEE Trans. Inf. Theory 58, 1924–1939 (2012).

    Google Scholar 

  25. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84, 502–516 (1989).

    Google Scholar 

  26. Kegl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Machine Intell. 22, 281–297 (2000).

    Google Scholar 

  27. Hauberg, S.: Principal curves on Riemannian manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 38, 1915–1921 (2016).

    PubMed  Google Scholar 

  28. Peng, T., Wang, Y., Xu, T.C., Shi, L., Jiang, J., Zhu, S.: Detection of lung contour with closed principal curve and machine learning. J. Digit. Imaging. 31, 520–533 (2018).

    PubMed  PubMed Central  Google Scholar 

  29. Cheng, Y.: Mean shift, mode seeking, and clustering. IEEE Trans. Pattern Anal. Machine Intell. 17, 790–799 (1995).

    Google Scholar 

  30. Guo, Y., Şengür, A., Akbulut, Y., Shipley, A.: An effective color image segmentation approach using neutrosophic adaptive mean shift clustering. Measurement. 119, 28–40 (2018).

    Google Scholar 

  31. Moraes, E.C.C., Ferreira, D.D., Vitor, G.B., Barbosa, B.H.G.: Data clustering based on principal curves. Adv. Data Anal. Classif. 14, 77–96 (2020).

    Google Scholar 

  32. Hastie, T., Stuetzle, W.: Principal Curves. Journal of the American Statistical Association. 84, 502–516 (1989).

    Google Scholar 

  33. Kégl, B., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans. Pattern Anal. Mach. Intell. 22, 281–297 (2000).

    Google Scholar 

  34. Zhan, Z., Wang, Z., Jin, H., Zhang, J.: Adaptive distributed differential evolution. IEEE Trans. Cybern. 50, 4633–4647 (2020).

    Google Scholar 

  35. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Computat. 13, 945–958 (2009).

    Google Scholar 

  36. Xiao, M., Zheng, W.X., Jiang, G., Cao, J.: Undamped oscillations generated by Hopf bifurcations in fractional-order recurrent neural networks with Caputo derivative. IEEE Trans. Neural Netw. Learning Syst. 26, 3201–3214 (2015).

    Google Scholar 

  37. Panigrahi, L., Verma, K., Singh, B.K.: Ultrasound image segmentation using a novel multi-scale Gaussian kernel fuzzy clustering and multi-scale vector field convolution. Expert Syst. Appl. 115, 486–498 (2019).

    Google Scholar 

  38. Han, J., Moraga, C.: The influence of the sigmoid function parameters on the speed of backpropagation learning. From Natural to Artificial Neural Computation. pp. 195–201. Springer Berlin Heidelberg, Berlin, Heidelberg (1995).

  39. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: International Conference on Machine Learning. p. 8 (2010).

  40. Peng, T., Tang, C., Wu, Y., Cai, J.: H-SegMed: a hybrid method for prostate segmentation in TRUS images via improved closed principal curve and improved enhanced machine learning. Int. J. Comput. Vis. 130, 1896–1919 (2022).

    Google Scholar 

  41. Liu, Y., He, C., Gao, P., Wu, Y., Ren, Z.: A binary level set variational model with L1 data term for image segmentation. Signal Process. 155, 193–201 (2019).

    Google Scholar 

  42. Benaichouche, A.N., Oulhadj, H., Siarry, P.: Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction. Digit. Signal Process. 23, 1390–1400 (2013).

    Google Scholar 

  43. Ali, S., Madabhushi, A.: An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery. IEEE Trans. Med. Imaging. 31, 1448–1460 (2012).

    PubMed  Google Scholar 

  44. Gao, Y., Zhou, M., Metaxas, D.: UTNet: A hybrid transformer architecture for medical image segmentation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 61–71 (2021).

  45. Peng, T., Gu, Y., Ye, Z., Cheng, X., Wang, J.: A-LugSeg: Automatic and explainability-guided multi-site lung detection in chest X-ray images. Expert Syst. Appl. 198, 116873 (2022).

    Google Scholar 

  46. Peng, T., Zhao, J., Gu, Y., Wang, C., Wu, Y., Cheng, X., Cai, J.: H-ProMed: Ultrasound image segmentation based on the evolutionary neural network and an improved principal curve. Pattern Recognit. 131, 108890 (2022).

    Google Scholar 

  47. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems. (2017).

  48. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: Simple and efficient design for semantic segmentation with Transformers. In: Advances in Neural Information Processing Systems. pp. 12077–12090 (2021).

  49. Wang, Y., Dou, H., Hu, X., Zhu, L., Yang, X., Xu, M., Qin, J., Heng, P.-A., Wang, T., Ni, D.: Deep attentive features for prostate segmentation in 3D transrectal ultrasound. IEEE Trans. Med. Imaging 38, 2768–2778 (2019).

    PubMed  Google Scholar 

  50. Girum, K.B., Lalande, A., Hussain, R., Créhange, G.: A deep learning method for real-time intraoperative US image segmentation in prostate brachytherapy. Int J. Comput. Assist. Radiol. Surg. 15, 1467–1476 (2020).

    PubMed  Google Scholar 

  51. Lei, Y., Tian, S., He, X., Wang, T., Wang, B., Patel, P., Jani, A.B., Mao, H., Curran, W.J., Liu, T., Yang, X.: Ultrasound prostate segmentation based on multidirectional deeply supervised V-Net. Med. Phys. 46, 3194–3206 (2019).

    PubMed  PubMed Central  Google Scholar 

  52. Rao, S., Liu, W., Principe, J., Medeiros Martins, A.: Information Theoretic Mean Shift Algorithm. In: 2006 16th IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing. pp. 155–160. IEEE, Maynooth, Ireland (2006).

  53. Gu, R., Wang, G., Song, T., Huang, R., Aertsen, M., Deprest, J., Ourselin, S., Vercauteren, T., Zhang, S.: CA-Net: Comprehensive attention convolutional neural networks for explainable medical image segmentation. IEEE Trans. Med. Imaging. 40, 699–711 (2021).

    PubMed  PubMed Central  Google Scholar 

  54. Floridi, L.: Establishing the rules for building trustworthy AI. Nat. Mach. Intell. 1, 261–262 (2019).

    Google Scholar 

  55. Liang, W., Tadesse, G.A., Ho, D., Fei-Fei, L., Zaharia, M., Zhang, C., Zou, J.: Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 4, 669–677 (2022).

    Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Tao Peng: Methodology, Coding, Writing—original draft. Yidong Gu: Data preprocessing, Analysis. Ji Zhang: Data preprocessing, Analysis. Yan Dong: Data preprocessing, Analysis. Gongye DI: Data preprocessing, Analysis. Wenjie Wang: Data preprocessing, Analysis. Jing Zhao: Data preprocessing, Analysis. Jing Cai: Supervision, Writing—review & editing.

Corresponding authors

Correspondence to Tao Peng or Jing Cai.

Ethics declarations

Ethics Approval

This study involves a retrospective use of patients’ standard of care images, where the clinicians have obtained patients’ agreement before the ultrasound examination, which is an item covered by the medical insurance program.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

N/A.

Competing Interests

The authors have no related financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Gu, Y., Zhang, J. et al. A Robust and Explainable Structure-Based Algorithm for Detecting the Organ Boundary From Ultrasound Multi-Datasets. J Digit Imaging 36, 1515–1532 (2023). https://doi.org/10.1007/s10278-023-00839-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-023-00839-4

Keywords

Navigation