Skip to main content
Log in

Optimal impulse control on an unbounded domain with nonlinear cost functions

  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract.

In this paper we consider the optimal impulse control of a system which evolves randomly in accordance with a homogeneous diffusion process in ℜ1. Whenever the system is controlled a cost is incurred which has a fixed component and a component which increases with the magnitude of the control applied. In addition to these controlling costs there are holding or carrying costs which are a positive function of the state of the system. Our objective is to minimize the expected discounted value of all costs over an infinite planning horizon. Under general assumptions on the cost functions we show that the value function is a weak solution of a quasi-variational inequality and we deduce from this solution the existence of an optimal impulse policy. The computation of the value function is performed by means of the Finite Element Method on suitable truncated domains, whose convergence is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Baccarin.

Additional information

Mathematics Subject Classification:

49J40, 60G40, 65N30

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baccarin, S., Sanfelici, S. Optimal impulse control on an unbounded domain with nonlinear cost functions. CMS 3, 81–100 (2006). https://doi.org/10.1007/s10287-005-0045-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10287-005-0045-x

Keywords: