Skip to main content
Log in

Groundwater management and illegality in a differential-evolutionary framework

  • Original Paper
  • Published:
Computational Management Science Aims and scope Submit manuscript

Abstract

It is estimated that half of all the water extracted, both in developed and developing countries, is unauthorized. This phenomenon makes the management of a groundwater even more difficult to avoid over-exploitation. To study the interaction between farmers, that could be compliant and non-compliant, and a water agency, we built a leader-follower differential game. However, we assumed that the water agency does not know neither ex-ante nor ex-post the number of compliant farmers. After illustrating the results of the dynamic game through numerical simulation using the Western La Mancha (Spain) data, we endogenize the types’ choice in an evolutionary context. Finally, we perform comparative dynamics in the steady state to understand the role of the sanction to counter illegal behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Conference on “Water and Agriculture” Events at Mercure Hotel, Boulevard de Lauzelle 61, Louvain-La-Nueve (Belgium), September 2010.

  2. A real world example of a such sanction is given the European Union Emission Trading System, where \(\sigma =\,\)€100 for each tonne of CO\(_2\) emitted for which no allowance has been surrendered, in addition to buying and surrendering the equivalent amount of allowances (see https://icapcarbonaction.com/en/?option=com_etsmap &task=export &format=pdf &layout=list &systems%5B%5D=43).

References

  • Antoci A, Borghesi S, Sodini M (2017) Water resource use and competition in an evolutionary model. Water Resour Manag 31(8):2523–2543

    Article  Google Scholar 

  • Biancardi M, Iannucci G, Villani G (2022a) An evolutionary game on compliant and non-compliant firms in groundwater exploitation. Ann Oper Res 318(2):831–847

    Article  Google Scholar 

  • Biancardi M, Iannucci G, Villani G (2022b) Groundwater exploitation and illegal behaviors in a differential game. Dyn Games Appl 12(3):996–1009

    Article  Google Scholar 

  • Biancardi M, Iannucci G, Villani G (2023) Inter-temporal decisions, optimal taxation and non-compliant behaviors in groundwater management. Commun Nonlinear Sci Numer Simul 116:106872

    Article  Google Scholar 

  • Biancardi M, Maddalena L (2018) Competition and cooperation in the exploitation of the groundwater resource. Dec Econ Finance 41(2):219–237

    Google Scholar 

  • Biancardi M, Maddalena L, Villani G (2020) Groundwater extraction among overlapping generations: a differential game approach. Dec Econ Finance 43(2):539–556

    Google Scholar 

  • Biancardi M, Maddalena L, Villani G (2020) Water taxes and fines imposed on legal and illegal firms exploiting groudwater. Discrete Contin Dyn Syst B 22(11):1–20

    Google Scholar 

  • Bomze IM, van Damme EE (1992) A dynamical characterization of evolutionarily stable states. Ann Oper Res 37(1):229–244

    Article  Google Scholar 

  • Brill TC, Burness HS (1994) Planning versus competitive rates of groundwater pumping. Water Resource Res 30(6):1873–1880

    Article  Google Scholar 

  • Budds J (2009) Contested H2O: science, policy and politics in water resources management in Chile. Geoforum 40(3):418–430

    Article  Google Scholar 

  • Castellano I (2020) Water Scarcity in the American West. Palgrave MacMillan, Cham

    Book  Google Scholar 

  • de Frutos Cachorro J, Erdlenbruch K, Tidball M (2014) Optimal adaptation strategies to face shocks on groundwater resources. J Econ Dyn Control 40:134–153

    Article  Google Scholar 

  • De Stefano L, Lopez-Gunn E (2012) Unauthorized groundwater use: institutional, social and ethical considerations. Water Policy 14(S1):147–160

    Article  Google Scholar 

  • Dworak T, Schmidt G, De Stefano L, Palacios E, Berglund E (2010) Background paper to the conference: application of EU water-related policies at farm level

  • Erdlenbruch K, Tidball M, Zaccour G (2014) Quantity-quality management of a groundwater resource by a water agency. Environ Sci Policy 44:201–214

    Article  Google Scholar 

  • Esteban E, Albiac J (2011) Groundwater and ecosystems damages: questioning the Gisser-Sánchez effect. Ecol Econ 70(11):2062–2069

    Article  Google Scholar 

  • Esteban E, Dinar A (2013) Cooperative management of groundwater resources in the presence of environmental externalities. Environ Resource Econ 54(3):443–469

    Article  Google Scholar 

  • Feinerman E, Knapp K (1983) Benefits from groundwater management:magnitude, sensitivity, and distribution. Am J Agric Econ 65(2):703–710

    Article  Google Scholar 

  • Gisser M, Sanchez DA (1980) Competition versus optimal control in groundwater pumping. Water Resour Res 16(4):638–642

    Article  Google Scholar 

  • Hofbauer J (1999) The spatially dominant equilibrium of a game. Ann Oper Res 89:233–251

    Article  Google Scholar 

  • Kim C, Moore MR, Hanchar JJ, Nieswiadomy M (1989) A dynamic model of adaptation to resource depletion: theory and an application to groundwater mining. J Environ Econ Manag 17(1):66–82

    Article  Google Scholar 

  • Martínez-Santos P, Llamas MR, Martínez-Alfaro PE (2008) Vulnerability assessment of groundwater resources: a modelling-based approach to the Mancha Occidental aquifer, Spain. Environ Modell Softw 23(9):1145–1162

    Article  Google Scholar 

  • Negri DH (1989) The common property aquifer as a differential game. Water Resour Res 25(1):9–15

    Article  Google Scholar 

  • Pereau J-C (2020) Conflicting objectives in groundwater management. Water Resour Econ 31:100122

    Article  Google Scholar 

  • Pereau J-C, Mouysset L, Doyen L (2018) Groundwater management in a food security context. Environ Resource Econ 71(2):319–336

    Article  Google Scholar 

  • Pereau J-C, Pryet A (2018) Environmental flows in hydro-economic models. Hydrogeol J 26(7):2205–2212

    Article  Google Scholar 

  • Pereau J-C, Pryet A, Rambonilaza T (2019) Optimality versus viability in groundwater management with environmental flows. Ecol Econ 161:109–120

    Article  Google Scholar 

  • Petrohilos-Andrianos Y, Xepapadeas A (2017) Resource harvesting regulation and enforcement: an evolutionary approach. Res Econ 71(2):236–253

    Article  Google Scholar 

  • Provencher B, Burt O (1993) The externalities associated with the common property exploitation of groundwater. J Environ Econ Manag 24(2):139–158

    Article  Google Scholar 

  • Rosa L, Chiarelli DD, Rulli MC, Dell’Angelo J, D’Odorico P (2020) Global agricultural economic water scarcity. Sci Adv 6, eaaz6031 (2020)

  • Roseta-Palma C (2003) Joint quantity/quality management of groundwater. Environ Resource Econ 26(1):89–106

    Article  Google Scholar 

  • Rubio SJ, Casino B (2001) Competitive versus efficient extraction of a common property resource: the groundwater case. J Econ Dyn Control 25(8):1117–1137

    Article  Google Scholar 

  • Rubio SJ, Casino B (2003) Strategic behavior and efficiency in the common property extraction of groundwater. Environ Resource Econ 26(1):73–87

    Article  Google Scholar 

Download references

Acknowledgements

The research has been funded by the Italian Ministry of Ecological Transition as part of the project“ Water as Sustainable Product–WASP”.

Author information

Authors and Affiliations

Authors

Contributions

MB: Conceptualization, Methodology, Formal analysis. GI: Conceptualization, Methodol- ogy, Formal analysis. GV: Conceptualization, Methodology, Formal analysis.

Corresponding author

Correspondence to Giovanni Villani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Mathematical appendix

Mathematical appendix

1.1 Proof of Proposition 1

The first order conditions with respect to water pumped are:

$$\begin{aligned} \begin{aligned}&\frac{\partial \pi }{\partial w_c} =p\left( \alpha -\beta w_c\right) -\tau (t)-c_0+c_1 H(t)=0 \\&\frac{\partial \pi }{\partial w_{nc}} =p\left( \alpha -\beta w_{nc}\right) -c_0+c_1 H(t)-(\sigma +\tau (t))\phi =0 \end{aligned} \end{aligned}$$

Solving, we get:

$$\begin{aligned} \begin{aligned}&{\widetilde{w}}_c= \frac{p\alpha -c_0+c_1H(t)-\tau (t)}{p\beta } \\&{\widetilde{w}}_{nc}= \frac{p\alpha -c_0+c_1H(t)-(\sigma +\tau (t))\phi }{p\beta } \end{aligned} \end{aligned}$$

Notice that \({\widetilde{w}}_c>0\) if and only if:

$$\begin{aligned} \tau (t)<{\widetilde{\tau }}_c:=p\alpha -c_0+c_1H(t) \end{aligned}$$

Moreover, \({\widetilde{\tau }}_c>0\) if and only if:

$$\begin{aligned} H(t)>{\widetilde{H}}_c:=\frac{c_0-p\alpha }{c_1} \end{aligned}$$

Analogously, \({\widetilde{w}}_{nc}>0\) if and only if:

$$\begin{aligned} \tau (t)<{\widetilde{\tau }}_{nc}:=\frac{p\alpha -c_0+c_1H(t)}{\phi }-\sigma \end{aligned}$$

Notice that \({\widetilde{\tau }}_{nc}>0\) if and only if:

$$\begin{aligned} H(t)>{\widetilde{H}}_{nc}:=\frac{c_0-p\alpha +\sigma \phi }{c_1} \end{aligned}$$

This concludes the proof. \(\square\)

1.2 HJB equation solution

Assuming an interior solution and differentiating the right-side of equation (13) with respect to \(\tau\), we lead:

$$\begin{aligned} \tau (t)=\frac{(1-\gamma )[(1-x)\phi +x]V'(H,t)}{x S_a} \end{aligned}$$
(17)

Replacing \(\tau\) given by (17) in \({\widetilde{w}}_{nc}\) and \({\widetilde{w}}_c\) given by (10) and (11), we obtain:

$$\begin{aligned} w_{nc}=\frac{p\alpha -c_0+c_1H(t)-\sigma \phi }{p\beta }-\frac{\phi (1-\gamma )[(1-x)\phi +x]V'(H,t)}{px\beta S_a} \end{aligned}$$
(18)

and

$$\begin{aligned} w_c=\frac{p\alpha -c_0+c_1H(t)}{p\beta }-\frac{(1-\gamma )[(1-x)\phi +x]V'(H,t)}{px\beta S_a} \end{aligned}$$
(19)

Sustituting (18) and (19) in HJB, and rearranging the terms, it follows:

$$\begin{aligned} \begin{aligned}&rV(H,t)=\frac{N(1-\gamma )^2[(1-x)\phi +x]^2}{2p\beta x S_a^2}\cdot (V'(H,t))^2+ \\&\quad +\frac{(1-\gamma )N[(1-x)\sigma \phi -p\alpha +c_0-c_1H(t)]+\beta p[R+\Omega -\delta H(t)]}{p\beta S_a}\\&\quad \cdot V'(H,t) \\&\quad +\frac{[\alpha p-c_0+c_1H(t)]^2xN}{2 p \beta }-d_0+d_1H(t) \end{aligned} \end{aligned}$$
(20)

Being the game a linear-quadratic variety, we postulate a quadratic function of the form:

$$\begin{aligned} V(H,t)=AH^2(t)+BH(t)+C \end{aligned}$$

with the first derivative:

$$\begin{aligned} V'(H,t)=2AH(t)+B \end{aligned}$$

where A, B and C are constant parameters of the unknown value function which are to be determined. Substituting the equations V(Ht) and \(V'(H,t)\) in the HJB, we obtain a system of three Riccati equations for the coefficients of the value function:

$$\begin{aligned}{} & {} rA=\frac{2N(1-\gamma )^2[(1-x)\phi +x]^2}{px\beta S_a^2}A^2 - \frac{2[(1-\gamma )c_1N+\delta \beta p]}{p\beta S_a}A+\frac{xNc_1^2}{2\beta p} \end{aligned}$$
(21)
$$\begin{aligned}{} & {} rB=\frac{2N(1-\gamma )^2[(1-x)\phi +x]^2}{p x\beta S_a^2}AB \nonumber \\{} & {} \quad + \frac{2\left\{ (1-\gamma )[(1-x)\phi \sigma -p\alpha +c_0]N+\beta p (R+\Omega )\right\} }{p \beta S_a}A \nonumber \\{} & {} \quad -\frac{(1-\gamma )c_1N+\delta \beta p}{p\beta S_a}B+\frac{(\alpha p-c_0)c_1xN}{\beta }+d_1 \end{aligned}$$
(22)
$$\begin{aligned}{} & {} \quad rC= \frac{N(1-\gamma )^2[\phi (1-x)+x]^2 }{2 p \beta x S_a^2}B^2+ \frac{(1-\gamma )[(1-x)\phi \sigma -p\alpha +c_0]N+\beta p(R+\Omega ) }{p\beta S_a}B \nonumber \\{} & {} \quad +\frac{(\alpha p-c_0)^2xN}{p\beta S_a}-d_0 \end{aligned}$$
(23)

Equation (21) admits two real and distinct solutions \(A_1\) and \(A_2\):

$$\begin{aligned} A_{1,2}=\frac{x S_a \left\{ \beta p(r S_a+2\delta )+2(1-\gamma )c_1N\pm \sqrt{D}\right\} }{4N(1-\gamma )^2[(1-x)\phi +x]^2} \end{aligned}$$

where

$$\begin{aligned}{} & {} D=4\left\{ N(1-\gamma )c_1[(1-x)\phi +1+x]+\frac{\beta p(r S_a+2\delta )}{2} \right\} \cdot \\{} & {} \quad \left\{ N(1-\gamma )(1-x)(1-\phi )c_1 + \frac{\beta p(r S_a+2\delta )}{2} \right\} \end{aligned}$$

is always positive. The solution has to satisfy the stability condition \(\frac{d\dot{H}}{dH}<0\). Substituting (18) and (19) in the dynamics of the water table (4), and considering that \(V'(H,t)=2AH(t)+B\), the stability condition becomes:

$$\begin{aligned} \frac{d\dot{H}}{dH}<0 \iff \frac{1}{S_a}\left\{ \frac{N(1-\gamma )[2(1-\gamma )((1-x)\phi +x)^2 A-c_1 S_a x]}{px\beta S_a}-\delta \right\} <0 \end{aligned}$$

satisfied for \(A=A_2\). Moreover, from equation (22), we determine the value of \(B=B_2\) as:

$$\begin{aligned} B_2=-\frac{x S_a\left\{ [2(1-\gamma )[(1-x)\phi \sigma -p\alpha +c_0]A_2 +x S_a c_1(\alpha p-c_0)]N+p\beta [2(R+\Omega )A_2+d_1 S_a] \right\} }{N(1-\gamma )\{ 2[(1-x)\phi +x]^2(1-\gamma )A_2-xc_1 S_a\} -p\beta x S_a (r S_a + \delta ) } \end{aligned}$$

Finally,

$$\begin{aligned} w_c^*=\frac{\alpha p-c_0+c_1H(t)}{\beta p}-\frac{(1-\gamma )[(1-x)\phi +x](2A_2H(t)+B_2)}{x\beta S_a p} \end{aligned}$$
(24)
$$\begin{aligned} w_{nc}^*=\frac{\alpha p-c_0+c_1H(t)-\sigma \phi }{\beta p}-\frac{\phi (1-\gamma )[(1-x)\phi +x](2A_2H(t)+B_2)}{x\beta S_a p} \end{aligned}$$
(25)

and

$$\begin{aligned} \tau ^*=\frac{(1-\gamma )[(1-x)\phi +x]\left( B_2+2A_2H(t)\right) }{x S_a} \end{aligned}$$
(26)

1.3 Proof of Proposition 3

Substituting the values of \(w_c^*\) and \(w_{nc}^*\), given by (24) and (24), respectively, in the water table dynamics (4) we get:

$$\begin{aligned} \dot{H}={\widehat{Y}} H + Y \end{aligned}$$
(27)

Solving (27) we obtain the optimal trajectory (15). \(\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biancardi, M., Iannucci, G. & Villani, G. Groundwater management and illegality in a differential-evolutionary framework. Comput Manag Sci 20, 16 (2023). https://doi.org/10.1007/s10287-023-00449-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10287-023-00449-z

Keywords

Navigation