Abstract
This paper deals with an extension of energetic reasoning, using some efficient lower bounds of the bin-packing problem, to get tight lower bounds for the P|r i , q i |C max. The link between P||C max and bin-packing problem is well-known. Our purpose is to extend the use of efficient lower bounds of the bin-packing problem to P|r i , q i |C max. We focus on some time-intervals, to compute the mandatory parts of activities within this time-interval and then to deduce an associated bin-packing instance. Thus, lower bounds of the bin-packing problem are used to get new satisfiability tests for the parallel machine problem. We also propose to extend the classical time-bound adjustments of release dates and deadlines to efficiently use bin-packing lower bounds. Experimental results that prove the efficiency of our approach on several kind of instances are reported.
Similar content being viewed by others
References
Baptiste P, Le Pape C, Nuijten W (1999) Satisfiability tests and time bound adjustments for cumulative scheduling problems. Ann Oper Res 92:305–333
Bourjolly JM, Rebetz V (2004) An analysis of lower bounds procedures for the bin packing problem. Eur J Oper Res (to appear)
Brucker P (1995) Scheduling algorithms. Springer, Berlin Heidelberg New York
Carlier J (1987) Scheduling jobs with release dates and tails on identical machines to minimize makespan. Eur J Oper Res 29:298–306
Carlier J, Latapie B (1991) Une Méthode Arborescente pour Résoudre les Problèmes Cumulatifs. RAIRO-RO 25(3):311–340
Carlier J, Néron E (2004) Computing redundant resources for the resource constrained project scheduling problem. Eur J Oper Res (to appear)
Carlier J, Pinson E (1998) Jackson’s pseudo preemptive schedule for the Pm/r i ,q i /C max scheduling problem. Ann Oper Res 83:41–58
Carlier J, Pinson E (2004) Jackson pseudo preemptive schedule and cumulative scheduling problems. Ann Oper Res (to appear)
Chao HY, Harper MP, Quong RW (1995) A tight lower bound for optimal bin packing. Oper Res Lett 18:133–138
Dell’Amico M, Martello S (1995) Optimal scheduling of tasks on identical parallel processors. J Comput 7(2):181–200
Elhedhli S (2004) Ranking lower bounds for the bin packing problem. Eur J Operl Res (to appear)
Erschler J, Lopez P, Thuriot C (1991) Raisonnement Temporel sous Contraintes de Ressources et Problèmes d’Ordonnancement. Rev Intell Artif 5:7–32
Fekete S, Schepers J (1991) New classes of fast lower bounds for bin packing problems. Math Progr 91:11–31
Fekete SP, Schepers J (1998) New classes of lower bounds for bin packing problems. (Lecture Notes in Computer Science, vol 1412, pp 257–270). Springer, Berlin Heidelberg New York
Gharbi A, Haouari M (1999) A new exact algorithm for the P|r i ,q j |C max scheduling problem. Mémoire de DEA, Université de Tunis III
Haouari M, Gharbi A (2002) A new exact algorithm for the P|r i ,q j |C max scheduling problem. J Scheduling 5:329–335
Haouari M, Gharbi A (2004) Fast lifting procedures for the bin packing problem (submitted)
Hoogeven H, Hurkens C, Lenstra JK, Vandevelde A (1995) Lower bounds for the multiprocessor flow shop. In: 2nd workshop on models and algorithms for planning and scheduling, Wernigerode
Horn WA (1974) Some simple scheduling algorithms. Naval Res Logist Q 177–185
Jackson J-R (1955) Scheduling a production line to minimize maximum tardiness. Research Report 43, University of California, Los Angeles. Management Science Research Project
Johnson DS, Demers A, Ullman JD, Garey MR, Graham RL (1974) Worst case performance bounds for simple one-dimensional packing algorithms. SIAM J Comput 3:299–325
Lahrichi A (1982) Ordonnancements: La Notion de “Parties Obligatoires” et son Application aux Problèmes Cumulatifs. R.A.I.R.O.-R.O 16:241–262
Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys M (1993) Sequencing and scheduling: algorithms and complexity. In: Graves SC, Rinnooy Kan AHG, Zipkin PH (eds) Logistics of production and inventory. Handbook in operations research and management science 4
Lopez P, Erschler J, Esquirol P (1992) Ordonnancement de Tâches sous Contraintes: une Approche énergétique. R.A.I.R.O.-A.P.I.I. 26:453–481
Martello S, Toth P (1990) Lower bounds and reduction procedure for the bin packing problem. Discret Appl Math 28:59–70
Néron E, Baptiste Ph, Gupta JND (2001) Solving hybrid flow-shop using energetic reasoning. Omega 29:501–511
Tercinet F (2004) Méthodes arborescentes pour la résolution des problèmes d’ordonnancement, conception d’un outil d’aide au développement. PhD Thesis, Université François Rabelais Tours
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tercinet, F., Néron, E. & Lenté, C. Energetic reasoning and bin-packing problem, for bounding a parallel machine scheduling problem. 4OR 4, 297–317 (2006). https://doi.org/10.1007/s10288-006-0017-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10288-006-0017-1