Skip to main content
Log in

Locating a general minisum ‘circle’ on the plane

  • Research paper
  • Published:
4OR Aims and scope Submit manuscript

Abstract

We approximate a set of given points in the plane by the boundary of a convex and symmetric set which is the unit circle of some norm. This generalizes previous work on the subject which considers Euclidean circles only. More precisely, we examine the problem of locating and scaling the unit circle of some given norm k with respect to given points on the plane such that the sum of weighted distances (as measured by the same norm k) between the circumference of the circle and the points is minimized. We present general results and are able to identify a finite dominating set in the case that k is a polyhedral norm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brimberg J, Juel H, Schöbel A (2007) Locating a circle on a sphere. Oper Res 55: 782–791

    Article  Google Scholar 

  • Brimberg J, Juel H, Schöbel A (2009a) Locating a circle on the plane using the minimax criterion. Stud Locat Anal 17: 45–60

    Google Scholar 

  • Brimberg J, Juel H, Schöbel A (2009b) Locating a minisum circle in the plane. Discrete Appl Math 157: 901–912

    Article  Google Scholar 

  • Brimberg J, Walker JH, Love RF (2007) Estimation of travel distances with the weighted p norm: some empirical results. J Transp Geogr 15: 62–72

    Article  Google Scholar 

  • Chernov N, Sapirstein PN (2008) Fitting circles to data with correlated noise. Comput Stat Data Anal 52: 5328–5337

    Article  Google Scholar 

  • Day MM (1947) Some characterizations of inner-product spaces. Trans Am Math Soc 62: 320–337

    Article  Google Scholar 

  • Díaz-Báñez JM, Mesa JA, Schöbel A (2004) Continuous location of dimensional structures. Eur J Oper Res 152: 22–44

    Article  Google Scholar 

  • Drezner Z, Steiner G, Wesolowsky GO (2002) On the circle closest to a set of points. Comput Oper Res 29: 637–650

    Article  Google Scholar 

  • Durier R, Michelot C (1985) Geometrical properties of the Fermat-Weber problem. Eur J Oper Res 20: 332–343

    Article  Google Scholar 

  • Icking C, Klein R, Ma L, Nickel S, Weißler A (2001) On bisectors for different distance functions. Discrete Appl Math 109: 139–161

    Article  Google Scholar 

  • Karimäki V (1991) Effective circle fitting for particle trajectories. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip 305: 187–192

    Article  Google Scholar 

  • Körner M (2010) Minisum hyperspheres. Dissertation, Georg-August-Universität Göttingen

  • Körner M, Brimberg J, Juel H, Schöbel A Geometric fit of a point set by generalized circles. J Glob Optim, to appear

  • Labbé M, Laporte G, Rodriguez Martin I, Gonzalez JJS (2005) Locating median cycles in networks. Eur J Oper Res 160: 457–470

    Article  Google Scholar 

  • Ma L (2000) Bisectors and Voronoi Diagrams for convex distance functions. Dissertation, Fernuniversität Hagen. http://wwwpi6.fernuni-hagen.de/Publikationen/tr267

  • Martini H, Swanepoel K, Weiss G (2002) The Fermat-Toricelli problem in normed planes and spaces. J Optim Theory Appl 115: 283–314

    Article  Google Scholar 

  • Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, Berlin

    Google Scholar 

  • Nievergelt Y (2002) A finite algorithm to fit geometrically all midrange lines, circles, planes, spheres, hyperplanes, and hyperspheres. Numerische Mathematik 91: 257–303

    Article  Google Scholar 

  • Nievergelt Y (2010) Median spheres: theory, algorithms, applications. Numerische Mathematik 114: 573–606

    Article  Google Scholar 

  • Pearce CEM (1974) Locating concentric ring roads in a city. Transp Sci 8: 142–168

    Article  Google Scholar 

  • Phelps RR (1989) Convex functions, monotone operators and differentiability. Lecture notes in mathematics 1364, Springer, Berlin

  • Schöbel A (1999) Locating lines and hyperplanes. Kluwer, Dordrecht

    Google Scholar 

  • Suzuki T (2005) Optimal location of orbital routes in a circular city. ISOLDE X, Sevilla and Islantilla, Spain, June 2-8

  • Thisse JF (1987) Location theory, regional science, and economics. J Reg Sci 27: 519–528

    Article  Google Scholar 

  • Ward JE, Wendell RE (1980) A new norm for measuring distance which yields linear location problems. Oper Res 28: 836–844

    Article  Google Scholar 

  • Ward JE, Wendell RE, Richard E (1985) Using block norms for location modeling. Oper Res 33: 1074–1090

    Article  Google Scholar 

  • Wesolowsky GO (1975) Location of the median line for weighted points. Environ Plann A 7: 163–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack Brimberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brimberg, J., Juel, H., Körner, MC. et al. Locating a general minisum ‘circle’ on the plane. 4OR-Q J Oper Res 9, 351–370 (2011). https://doi.org/10.1007/s10288-011-0169-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-011-0169-5

Keywords

MSC classification (2000)

Navigation