Skip to main content
Log in

Visual marking and change detection

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The preview benefit from prior exposure of response-irrelevant (distracter) objects in visual search has been accounted for in terms of top-down inhibition (i.e. visual marking), bottom-up abrupt onset capture, or asynchrony-dependent perceptual segregation. We assess the relative contribution of abrupt onset and visual marking in a paradigm combining visual search with a visual working memory task. We investigated time-based selection of multiple objects for storage in visual working memory, using a change detection paradigm (Luck and Vogel in Nature 390:279–281, 1997) with distracter preview. We varied preview exposure (short vs. long), in a series of three experiments. The contribution of asynchrony-related perceptual segregation was assessed across experiments by varying the complexity of the stimuli (colored squares, oriented bars and oriented T-shapes) and the type of change detection (color or orientation), resulting in different levels of perceptual segregation between visual elements. The results suggest that bottom-up abrupt onset, visual marking and perceptual segregation factors co-operate in time-based selection for storage in visual working memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Brener R (1940) An experimental investigation of memory span. J Exp Psychol 26:467–482

    Article  Google Scholar 

  • Bundesen C (1990) A theory of visual attention. Psychol Rev 97:523–547

    Article  PubMed  CAS  Google Scholar 

  • Bundesen C, Shibuya H, Larsen A (1985) Visual selection from multielement displays: a model for partial report. In: Posner MI, Marin O (eds) Attention and performance XI, Erlbaum, Hillsdale, pp 631–649

    Google Scholar 

  • Colby CL, Goldberg ME (1999) Space and attention in parietal cortex. Ann Rev Neurosci 22:319–349

    Article  PubMed  CAS  Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Ann Rev Neurosci 18:193–222

    Article  PubMed  CAS  Google Scholar 

  • Donk M (2006) The preview benefit: visual marking, feature-based inhibition, temporal. segregation, or onset capture? Vis Cogn 14:736–748

    Article  Google Scholar 

  • Donk M, Theeuwes J (2001) Visual marking beside the mark: Prioritizing selection by abrupt onsets. Percept Psychophys 63:891–900

    PubMed  CAS  Google Scholar 

  • Duncan J (1983) Perceptual selection based on alphanumeric class: evidence from partial reports. Percept Psychophys 33:533–47

    PubMed  CAS  Google Scholar 

  • Duncan J (2001) An adaptive coding model of neural function. in prefrontal cortex. Nature Rev 2:820–829

    Article  CAS  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  PubMed  CAS  Google Scholar 

  • Gegenfurtner K, Sperling G (1993) Information transfer in iconic memory experiments. J Exp Psychol: Hum Percept Perform 19:845–866

    Article  CAS  Google Scholar 

  • Jacobsen T, Humphreys GW, Schröger E, Roeber U (2002) Visual marking for search: behavioral and event-related potential analyses. Cogn Brain Res 14:410–421

    Article  Google Scholar 

  • Jiang Y, Chun MM, Marks LE (2002) Visual marking: Dissociating effects of new and old set size. J Exp Psychol: Learn, Mem Cogn 28:293–302

    Article  Google Scholar 

  • Jonides J, Yantis S (1988) Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys 43:346–54

    PubMed  CAS  Google Scholar 

  • Lamme VAF, Roelfsema PR (2000) The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci 23:571–579

    Article  PubMed  CAS  Google Scholar 

  • Luck SJ, Beach NJ (1998) Visual attention and the binding problem: a neurophysiological perspective. In: Wright RD (eds) Visual attention. Oxford University Press, New York, pp 455–478

    Google Scholar 

  • Luck SJ, Vogel EK (1997) The capacity of VWMfor features and conjunctions. Nature 390:279–281

    Article  PubMed  CAS  Google Scholar 

  • Neisser U (1967) Cognitive psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Pollmann S., Weidner R, Humphreys GW, Olivers CNL, Müller K, Lohmann G, Wiggins CJ, Watson DG (2003) Separating distractor rejection and target detection in posterior parietal cortex—an event-related fMRI-study of visual marking. NeuroImage 18:310–323

    Article  PubMed  CAS  Google Scholar 

  • Schmidt BK, Vogel EK, Woodman GF, Luck SJ (2002) Voluntary and automatic attentional control of visual working memory. Percept Psychophys 64:754–763

    PubMed  Google Scholar 

  • Schweickert R, Boruff B (1986) Short-term memory capacity: Magic number or magic spell? J Exp Psychol: Learn Mem Cogn 12:419–425

    Article  CAS  Google Scholar 

  • Sperling G (1960) The information available in brief visual presentations. Psychol Monogr 74:1–29

    Google Scholar 

  • Vogel EK, Woodman GF, Luck SJ (2001) Storage of features, conjunctions and objects in visual working memory. J Exp Psychol: Hum Percept Perform 27:92–114

    Article  CAS  Google Scholar 

  • Vogel EK, McCollough AW, Machizawa MG (2005) Neural measures reveal individual differences in controlling access to working memory. Nature 438:500–503

    Article  PubMed  CAS  Google Scholar 

  • Watson DG, Humphreys GW (1997) Visual marking: prioritizing selection for new objects by top-down attentional inhibition of old objects. Psychol Rev 104:90–122

    Article  PubMed  CAS  Google Scholar 

  • Watson DG, Humphreys GW (1998) Visual marking of moving objects: a role for top-down feature based inhibition in selection. J Exp Psychol: Hum Percept Perform 24:946–962

    Article  CAS  Google Scholar 

  • Watson DG, Humphreys GW, Olivers CN (2003) Visual marking: using time in visual selection. Trends Cogn Sci 7:180–186

    Article  PubMed  Google Scholar 

  • Woodman GF, Vecera SP, Luck SJ (2003) Perceptual organization influences visual working memory. Psychon Bull Rev 10:80–87

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dave Barton, at the University of Sunderland, for his support in programming, and Valerie Bonnardel, Andrey Nikolaev and Michael Ziessler, for helpful comments on the manuscript. We would also like to thank Danny Dukes and Rachel Stalker for contribution in data collection and analysis. Finally, we would like to thank Michael Posner and two anonymous referees for important remarks and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Raffone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, J.L., Crawley, R., van Leeuwen, C. et al. Visual marking and change detection. Cogn Process 8, 233–244 (2007). https://doi.org/10.1007/s10339-007-0180-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-007-0180-0

Keywords

Navigation