Skip to main content
Log in

A model for production, perception, and acquisition of actions in face-to-face communication

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The concept of action as basic motor control unit for goal-directed movement behavior has been used primarily for private or non-communicative actions like walking, reaching, or grasping. In this paper, literature is reviewed indicating that this concept can also be used in all domains of face-to-face communication like speech, co-verbal facial expression, and co-verbal gesturing. Three domain-specific types of actions, i.e. speech actions, facial actions, and hand-arm actions, are defined in this paper and a model is proposed that elucidates the underlying biological mechanisms of action production, action perception, and action acquisition in all domains of face-to-face communication. This model can be used as theoretical framework for empirical analysis or simulation with embodied conversational agents, and thus for advanced human–computer interaction technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbs JH (1979) Speech motor equivalence: the need for a multi-level control model. In: Proceedings of the ninth international congress of phonetic sciences, Institute of Phonetics, Copenhagen, pp 318–324

  • Alibali MW, Heat DC, Myers HJ (2001) Effects of visibility between speaker and listener on gesture production. J Memory Lang 44:169–188

    Article  Google Scholar 

  • Allwood J (1976) Linguistic communication as action and cooperation. Gothenburg monographs in linguistics 2. Göteborg University, Department of Linguistics, Göteborg

    Google Scholar 

  • Ambadar Z, Schooler J, Cohn JF (2005) Deciphering the enigmatic face: the importance of facial dynamics to interpreting subtle facial expressions. Psychol Sci 16:403–410

    Article  PubMed  Google Scholar 

  • Arbib MA, Billard A, Iacoboni M, Oztop E (2000) Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Netw 13:975–997

    Article  CAS  PubMed  Google Scholar 

  • Bailly G (1997) Learning to speak: sensory-motor control of speech movements. Speech Commun 22:251–267

    Article  Google Scholar 

  • Bassili JN (1978) Facial motion in the perception of faces and of emotional expression. J Exp Psychol Hum Percept Perform 4:373–379

    Article  CAS  PubMed  Google Scholar 

  • Bergmann K, Kopp S (2009) Increasing the expressiveness of virtual agents—autonomous generation of speech and gesture for spatial description tasks. In: Proceedings of 8th international conference on autonomous agents and multiagent systems (AAMAS 2009), pp 361–368

  • Bernstein N (1967) The coordination and regulation of movement. Pergamon, London

    Google Scholar 

  • Blakemore SJ, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2:561–567

    CAS  PubMed  Google Scholar 

  • Brass M, Schmitt RM, Spengler S, Gergely G (2007) Investigating action understanding: inferential processes versus action simulation. Curr Biol 17:2117–2121

    Article  CAS  PubMed  Google Scholar 

  • Browman C, Goldstein L (1989) Articulatory gestures as phonological units. Phonology 6:201–251

    Article  Google Scholar 

  • Browman C, Goldstein L (1992) Articulatory phonology: an overview. Phonetica 49:155–180

    Article  CAS  PubMed  Google Scholar 

  • Cheng S, Sabes PN (2006) Modeling sensorimotor learning with linear dynamical systems. Neural Comput 18:760–793

    Article  PubMed  Google Scholar 

  • Cohn JF (2007) Foundations of human computing: facial expression and emotion. In: Huang TS, Nijholt A, Pantic M, Pentland A (eds) Artificial intelligence for human computing (LNAI 4451. Springer, Berlin, pp 1–16

    Chapter  Google Scholar 

  • Cohn JF, Ambadar Z, Ekman P (2007) Observer-based measurement of facial expression with the facial action coding system. In: Coan JA, Allen JJB (eds) Handbook of emotion elicitation and assessment. Oxford University Press, New York, pp 203–221

    Google Scholar 

  • Cooper F, Delattre P, Liberman A, Borst J, Gerstman L (1952) Some experiments on the perception of synthetic speech sounds. J Acoust Soc Am 24:597–606

    Article  Google Scholar 

  • Cunnington R, Windischberger C, Robinson S, Moser E (2006) The selection of intended actions and the observation of others’ actions: a time-resolved fMRI study. NeuroImage 29:1294–1302

    Article  PubMed  Google Scholar 

  • Dang J, Honda K (2004) Construction and control of a physiological articulatory model. J Acoust Soc Am 115:853–870

    Article  PubMed  Google Scholar 

  • De la Torre F, Campoy J, Ambadar Z, Cohn JF (2007) Temporal segmentation of facial behavior. In: Proceedings of the IEEE 11th international conference on computer vision (ICCV 2007), Rio de Janeiro, Brazil, pp 1–8

  • De Ruiter JP (1998) Gesture and gesture production. Doctoral dissertation at Catholic University of Nijmegen, The Netherlands (now called Radboud University Nijmegen)

  • Demiris Y, Dearden A (2005) From motor babbling to hierarchical learning by imitation: a robot developmental pathway. In: Berthouze L, Kaplan F, Kozima H, Yano H, Konczak J, Metta G, Nadel J, Sandini G, Stojanov G, Balkenius C (eds) Proceedings of the fifth international workshop on epigenetic robotics: modeling cognitive development in robotic systems, Lund University Cognitive Studies 123, Lund, Sweden, pp 31–37

  • Der R, Martinus G (2006) From motor babbling to purposive actions: emerging self-exploration in a dynamical systems approach to early robot development. In: S Nolfi, G Baldassarre, R Calabretta, JCT Hallam, D Marocco, JA Meyer, O Miglino, D Parisi (eds) From animals to Animats 9. Proceedings of the 9th international conference on simulation of adaptive behavior (SAB 2006, Rome, Italy) LNAI 4905, Springer, Heidelberg, pp 406–421

  • Desmurget M, Grafton ST (2000) Forward modeling allows feedback control for fast reaching movements. Trends Cogn Sci 4:423–431

    Article  PubMed  Google Scholar 

  • Diehl RL, Lotto AJ, Holt LL (2004) Speech perception. Annu Rev Psychol 55:149–179

    Article  PubMed  Google Scholar 

  • Ekman P, Friesen WV (1976) Measuring facial movement. Env Psychol Nonverbal Behav 1:56–75

    Article  Google Scholar 

  • Ekman P, Friesen WV (1978) Facial action coding system. Consulting Psychologists Press, Palo Alto

    Google Scholar 

  • Ekman P, Oster H (1979) Facial expressions of emotion. Annu Rev Psychol 30:527–554

    Article  Google Scholar 

  • Fadiga L, Craighero L (2004) Electrophysiology of action representation. J Clin Neurophysiol 21:157–168

    Article  PubMed  Google Scholar 

  • Feldman AG (1986) Once more on equilibrium point hypothesis for motor control. J Mot Behav 18:17–54

    CAS  PubMed  Google Scholar 

  • Field TM, Woodson R, Greenberg R, Cohen D (1984) Discrimination and imitation of facial expressions by neonates. In: Chess S, Thomas A (eds) Annual progress in child psychiatry and child development. Brunner, Mazel, New York

    Google Scholar 

  • Flash T, Hogan KN (1985) The coordinate of arm movements: an experimentally confirmed mathematical model. J Neurosci 5:1688–1703

    CAS  PubMed  Google Scholar 

  • Fowler CA, Turvey MT (1981) Immediate compensation in bite-block speech. Phonetica 37:306–326

    Article  CAS  PubMed  Google Scholar 

  • Gallese V (2000) The inner sense of action: agency and motor representations. J Conscious Stud 7:23–40

    Google Scholar 

  • Girin L, Schwartz JL, Feng G (2001) Audio-visual enhancement of speech in noise. J Acoust Soc Am 109:3007–3020

    Article  CAS  PubMed  Google Scholar 

  • Goldstein L, Byrd D, Saltzman E (2006) The role of vocal tract action units in understanding the evolution of phonology. In: Arbib MA (ed) Action to language via the mirror neuron system. Cambridge University Press, Cambridge, pp 215–249

    Chapter  Google Scholar 

  • Goldstein L, Pouplier M, Chen L, Saltzman L, Byrd D (2007) Dynamic action units slip in speech production errors. Cognition 103:386–412

    Article  PubMed  Google Scholar 

  • Grafton ST, Hamilton AF (2007) Evidence for a distributed hierarchy of action representation in the brain. Hum Mov Sci 26:590–616

    Article  PubMed  Google Scholar 

  • Grosjean M, Shiffrar M, Knoblich G (2007) Fitts’ law holds for action perception. Psychol Sci 18:95–99

    Article  PubMed  Google Scholar 

  • Guenther FH (2006) Cortical interaction underlying the production of speech sounds. J Commun Disord 39:350–365

    Article  PubMed  Google Scholar 

  • Guenther FH, Hampson M, Johnson D (1998) A theoretical investigation of reference frames for the planning of speech movements. Psychol Rev 105:611–633

    Article  CAS  PubMed  Google Scholar 

  • Guenther FH, Ghosh SS, Tourville JA (2006) Neural modeling and imaging of the cortical interactions underlying syllable production. Brain Lang 96:280–301

    Article  PubMed  Google Scholar 

  • Guidetti M, Nicoladis E (2008) Introduction to special issue: gestures and communicative development. First Language 28:107–115

    Article  Google Scholar 

  • Hickok G, Poeppel D (2007) Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 4:131–138

    Article  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4:2745–2754

    CAS  PubMed  Google Scholar 

  • Houde JF, Jordan MI (2002) Sensorimotor adaptation of speech I: compensation and adaptation. J Speech Lang Hear Res 45:295–310

    Article  PubMed  Google Scholar 

  • Iacoboni M (2005) Neural mechanisms of imitation. Curr Opin Neurobiol 15:632–637

    Article  CAS  PubMed  Google Scholar 

  • Indefrey W, Level PJM (2004) The spatial and temporal signatures of word production components. Cognition 92:101–144

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Gomi H, Honda M (2004) Dynamical simulation of speech cooperative articulation by muscle linkages. Biol Cybern 91:275–282

    Article  PubMed  Google Scholar 

  • Jahanshahi M, Frith CD (1998) Willed action and its impairments. Cogn Neuropsychol 15:483–533

    Article  Google Scholar 

  • Jastorff J, Kourtzi Z, Giese MA (2006) Learning to discriminate complex movements: biological versus artificial trajectories. J Vis 6:791–804

    Article  PubMed  Google Scholar 

  • Jeannerad M (2001) Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage 14:S103–S109

    Article  Google Scholar 

  • Jeannerod M (1999) The 25th Bartlett lecture: to act or not to act: perspectives on the representation of actions. Q J Exp Psychol 52A:1–29

    Article  Google Scholar 

  • Jordan MI (1995) Computational aspects of motor control and motor learning. In: Heuer H, Prinz W, Keele SW, Bridgeman B (eds) Handbook of perception and action: motor skills. Academic Press, London, pp 71–120

    Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  CAS  PubMed  Google Scholar 

  • Kawato M, Maeda Y, Uno Y, Suzuki R (1990) Trajectory formation of arm movement by cascade neural network model based on minimum torque-change criterion. Biol Cybern 62:275–288

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS, Tuller BT, Vatikiotis-Baetson E, Fowler CA (1984) Functionally specific articulatory cooperation following jaw perturbations during speech: evidence for coordinative structures. J Exp Psychol Hum Percept Perform 10:812–832

    Article  CAS  PubMed  Google Scholar 

  • Kelso JAS, Saltzman E, Tuller B (1986) The dynamical perspective on speech production: data and theory. J Phon 14:29–59

    Google Scholar 

  • Kendon A (2004) Gesture: visible action as utterance. Cambridge University Press, New York

    Google Scholar 

  • Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese V, Rizzolatti G (2002) Hearing sounds, understanding actions: action representation in mirror neurons. Science 297:846–848

    Article  CAS  PubMed  Google Scholar 

  • Kopp S (to appear) Social resonance and embodied coordination in face-to-face conversational with artificial interlocutors, speech communication (special issue on speech and face-to-face communication)

  • Kopp S, Wachsmuth I (2004) Synthesizing multimodal utterances for conversational agents. J Comput Anim Virtual Worlds 15:39–51

    Article  Google Scholar 

  • Kopp S, Krenn B, Marsella S, Marshall AN, Pelachaud C, Pirker H, Thórisson KR, Vilhjálmsson H (2006) Towards a common framework for multimodal generation: the behavior markup language. In: Gratch J, Young M, Aylett R, Ballin D, Olivier P (eds) Intelligent virtual agents (LNCS 4133. Springer, Berlin, pp 205–217

    Chapter  Google Scholar 

  • Kopp S, Tepper P, Ferriman K, Cassell J (2007) Trading spaces—how humans and humanoids use speech and gesture to give directions. In: Nishida T (ed) Conversational informatics. Wiley, Oxford, pp 133–160

    Chapter  Google Scholar 

  • Kopp S, Allwood J, Ahlsen E, Grammer K, Stocksmeier T (2008) Modeling embodied feedback in a virtual human. In: Wachsmuth I, Knoblich G (eds) Modeling communication with robots and virtual humans (LNAI 4930. Springer, Berlin, pp 18–37

    Chapter  Google Scholar 

  • Kröger BJ (1993) A gestural production model and its application to reduction in German. Phonetica 50:213–233

    Article  PubMed  Google Scholar 

  • Kröger BJ, Birkholz P (2007) A gesture-based concept for speech movement control in articulatory speech synthesis. In: Esposito A, Faundez-Zanuy M, Keller E, Marinaro M (eds) Verbal and nonverbal communication behaviours, LNAI 4775. Springer, Berlin, pp 174–189

    Chapter  Google Scholar 

  • Kröger BJ, Schröder G, Opgen-Rhein C (1995) A gesture-based dynamic model describing articulatory movement data. J Acoust Soc Am 98:1878–1889

    Article  Google Scholar 

  • Kröger BJ, Kannampuzha J, Neuschaefer-Rube C (2009a) Towards a neurocomputational model of speech production and perception. Speech Commun 51:793–809

    Article  Google Scholar 

  • Kröger BJ, Kannampuzha J, Lowit A, Neuschaefer-Rube C (2009b) Phonetotopy within a neurocomputational model of speech production and speech acquisition. In: Fuchs S, Loevenbruck H, Pape D, Perrier P (eds) Some aspects of speech and the brain. Peter Lang, Frankfurt, pp 59–90

    Google Scholar 

  • Kurowski K, Blumstein SE (1984) Perceptual integration of the murmur and formant transitions for place of articulation in nasal consonants. J Acoust Soc Am 73:383–390

    Article  Google Scholar 

  • Latash ML (2008) Evolution of motor control: from reflexes and motor programs to the equilibrium-point hypothesis. J Hum Kinet 19:3–24

    Article  PubMed  Google Scholar 

  • Latash ML, Gorniak S, Zatsiorsky VM (2008) Hierarchies of synergies in human movements. Kinesiology 40:29–38

    PubMed  Google Scholar 

  • Lestou V, Pollick FE, Kourtzi Z (2008) Neural substrates for action understanding at different description levels in the human brain. J Cogn Neurosci 20:324–341

    Article  PubMed  Google Scholar 

  • Levelt WJM, Richardson G, Heij WL (1985) Pointing and voicing in deictic expressions. J Memory Lang 24:133–164

    Article  Google Scholar 

  • Levelt WJM, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22:1–38

    CAS  PubMed  Google Scholar 

  • Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21:1–36

    Article  CAS  PubMed  Google Scholar 

  • Lindblom B (1963) Spectrographic study of vowel reduction. J Acoust Soc Am 35:1773–1779

    Article  Google Scholar 

  • Lindblom B (1983) Economy of speech gestures. In: McNeilage PF (ed) The production of speech. Springer, New York, pp 217–245

    Google Scholar 

  • McNeill D (1992) Hand and mind: what gestures reveal about thought. University of Chicago Press, Chicago

    Google Scholar 

  • Meltzoff AN, Moore MK (1977) Imitation of facial and manual gestures by human neonates. Science 198:75–78

    Article  CAS  PubMed  Google Scholar 

  • Meltzoff AN, Moore MK (1989) Imitation in newborn infants: exploring the range of gestures imitted and the underlying mechanisms. Dev Psychol 25:954–962

    Article  Google Scholar 

  • Nasir SM, Ostry DJ (2006) Somatosensory precision in speech production. Curr Biol 16:1918–1923

    Article  CAS  PubMed  Google Scholar 

  • Nasir SM, Ostry DJ (2008) Speech motor learning in profoundly deaf adults. Nat Neurosci 11:1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Nearey T, Assmann P (1986) Modeling the role of inherent spectral change in vowel identification. J Acoust Soc Am 80:1297–1308

    Article  Google Scholar 

  • Neel AT (2004) Formant detail needed for vowel identification. Acoust Res Lett Online 5:125–131

    Article  Google Scholar 

  • Nelson WL (1983) Physical principles for economics of skilled movements. Biol Cybern 46:135–147

    Article  CAS  PubMed  Google Scholar 

  • Nowak DA, Topka H, Timmann D, Boecker H, Hermsdörfer J (2007) The role of the cerebellum or predictive control of grasping. Cerebellum 6:7–17

    Article  PubMed  Google Scholar 

  • Pantic M, Rothkrantz LJM (2000) Expert system for automatic analysis of facial expressions. Image Vis Comput 18:881–905

    Article  Google Scholar 

  • Payan Y, Perrier P (1997) Synthesis of V-V sequences with a 2D biomechanical tongue model controlled by the equilibrium point hypothesis. Speech Commun 22:185–205

    Article  Google Scholar 

  • Perkell J, Matthies M, Lane H, Guenther F, Wilhelms-Tricarico R, Wozniak J, Guiod P (1997) Speech motor control: acoustic goals, saturation effects, auditory feedback and internal models. Speech Commun 22:227–249

    Article  Google Scholar 

  • Perrier P (2005) Control and representation in speech production. ZAS Pap Linguist 40:109–132

    Google Scholar 

  • Perrier P, Ma L (2008) Speech planning for VCV sequences: influence of the planned sequence. In: Proceedings of the 8th international seminar on speech production, Strasbourg, France, pp 69–72

  • Perrier P, Ostry DJ, Laboissiere R (1996) The equilibrium point hypothesis and its application to speech motor control. J Speech Hear Res 39:365–378

    CAS  PubMed  Google Scholar 

  • Perrier P, Payan Y, Zandipour M, Perkell J (2003) Influence of tongue biomechanics on speech movements during the production of velar stop consonants: a modeling study. J Acoust Soc Am 114:1582–1599

    Article  PubMed  Google Scholar 

  • Poizner H, Bellugi U, Lutes-Driscoll V (1981) Perception of American sign language in dynamic point-light displays. J Exp Psychol Hum Percept Perform 7:430–440

    Article  CAS  PubMed  Google Scholar 

  • Purcell DW, Munhall KG (2006) Adaptive control of vowel formant frequency: evidence from real-time formant manipulation. J Acoust Soc Am 120:966–977

    Article  PubMed  Google Scholar 

  • Rasmussen J, Damsgaard M, Voigt M (2001) Muscle recruitment by the min/max criterion—a comparative numerical study. J Biomech 34:409–415

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror neuron system. Annu Rev Neurosci 27:169–192

    Article  CAS  PubMed  Google Scholar 

  • Rochet-Capellan A, Laboissiere R, Galvan A, Schwartz JL (2008) The speech focus position effect on jaw-finger coordination in a pointing task. J Speech Lang Hear Res 51:1507–1521

    Article  PubMed  Google Scholar 

  • Rodrigo MJ, Gonzalez A, de Vega M, Muneton-Ayala M, Rodriguez G (2004) From gestural to verbal deixis: a longitudinal study with Spanish infants and toddlers. First Lang 24:71–90

    Article  Google Scholar 

  • Rosenblum LD, Johnson JA, Saldana HM (1996) Point-light displays enhance comprehension of speech in noise. J Speech Hear Res 39:1159–1170

    CAS  PubMed  Google Scholar 

  • Sabes PN (2000) The planning and control of reaching movements. Curr Opin Neurobiol 10:740–746

    Article  CAS  PubMed  Google Scholar 

  • Sabes PN, Jordan MI (1997) Obstacle avoidance and a perturbation sensitivity model for motor planning. J Neurosci 17:7119–7128

    CAS  PubMed  Google Scholar 

  • Sadeghipour A, Kopp S (2009) A probabilistic model of motor resonance for embodied gesture perception. In: Proceedings of intelligent virtual agents (IVA09), pp 80–103

  • Saltzman E (1979) Levels of sensorimotor representation. J Math Psychol 20:91–163

    Article  Google Scholar 

  • Saltzman E, Byrd D (2000) Task-dynamics of gestural timing: phase windows and multifrequency rhythms. Hum Mov Sci 19:499–526

    Article  Google Scholar 

  • Saltzman E, Kelso JAS (1987) Skilled actions: a task dynamic approach. Psychol Rev 94:84–106

    Article  CAS  PubMed  Google Scholar 

  • Saltzman E, Munhall KG (1989) A dynamic approach to gestural patterning in speech production. Ecol Psychol 1:333–382

    Article  Google Scholar 

  • Schaal S (1999) Is imitation learning the route to humanoid robots? Trends Cogn Sci 3:233–242

    Article  PubMed  Google Scholar 

  • Schmidt KL, Cohn JF (2002) Human facial expressions as adaptations: evolutionary questions in facial expression research. Am J Phys Anthropol 116(S33):3–24

    Article  Google Scholar 

  • Schmidt KL, Cohn JF, Tian Y (2003) Signal characteristics of spontaneous facial expressions: automatic movement in solitary and social smiles. Biol Psychol 65:49–66

    Article  PubMed  Google Scholar 

  • Schmidt KL, Ambadar Z, Cohn JF, Reed LI (2006) Movement differences between deliberate and spontaneous facial expressions: zygomaticus major action in smiling. J Nonverbal Behav 30:37–52

    Article  PubMed  Google Scholar 

  • Schmidt KL, Bhattacharya S, Denlinger R (2009) Comparison of deliberate and spontaneous facial movement in smiles and eyebrow raises. J Nonverbal Behav 33:35–45

    Article  PubMed  Google Scholar 

  • Scholz JP, SChöner G, Hsu WL, Jeka JJ, Horak F, Martin V (2007) Motor equivalent control of the center of mass in response to support surface perturbations. Exp Brain Res 80:163–179

    Article  Google Scholar 

  • Schwartz JL, Boe LJ, Abry C (2007) Linking dispersion-focalization theory and the maximum utilization of the available distance features principle in a perception-for-action-control theory. In: Sole MJ (ed) Experimental approaches to phonology. Oxford University Press, Oxford

    Google Scholar 

  • Shadmehr R, Mussa-Ivaldi FA (1994) Adaptive representation of dynamics during learning of a motor task. J Neurosci 14:3208–3224

    CAS  PubMed  Google Scholar 

  • Smeets JB, Brenner EA (1999) A new view on grasping. Mot Control 3:237–271

    CAS  Google Scholar 

  • Sober SJ, Sabes PN (2003) Multisensory integration during motor planning. J Neurosci 23:6982–6992

    CAS  PubMed  Google Scholar 

  • Sober SJ, Sabes PN (2005) Flexible strategies for sensory integration during motor planning. Nat Neurosci 8:490–497

    CAS  PubMed  Google Scholar 

  • Steels L, Spranger M (2008) The robot in the mirror. Connect Sci 20:337–358

    Article  Google Scholar 

  • Strange W, Jenkins J, Johnson T (1983) Dynamic specification of coarticulated vowels. J Acoust Soc Am 74:695–705

    Article  CAS  PubMed  Google Scholar 

  • Summerfield Q (1987) Some preliminaries to a comprehensive account of audio-visual speech perception. In: Dodd B, Campbell R (eds) Hearing by eye: the psychology of lipreading. Lawrence Erlbaum, London, pp 3–51

    Google Scholar 

  • Tian YL, Kanade T, Cohn JF (2005) Facial expression analysis. In: Li SZ, Jain AK (eds) Handbook of face recognition. Springer, New York, pp 247–275

    Chapter  Google Scholar 

  • Todorov E (2004) Optimality principles in sensorimotor control. Nat Neurosci 7:907–915

    Article  CAS  PubMed  Google Scholar 

  • Todorov E, Ghahramani Z (2003) Unsupervised learning of sensory-motor primitives. In: Proceedings of the 25th annual international conference of the IEEE engineering in medicine and biology society, pp 1750–1753

  • Todorov E, Jordan MI (1998) Smoothness maximization along a predefined path accurately predicts the speed profiles of complex arm movements. J Neurophysiol 80:696–714

    CAS  PubMed  Google Scholar 

  • Tomasello M, Carpenter M, Liszkowski U (2007) A new look at infant pointing. Child Dev 78:705–722

    Article  PubMed  Google Scholar 

  • Turvey MT (1977) Preliminaries to a theory of action with reference to vision. In: Shaw R, Bransford J (eds) Perceiving, acting and knowing: towards an ecological psychology. Erlbaum, Hillsdale, pp 211–266

    Google Scholar 

  • Wolpert DM, Flanagan JR (2001) Motor prediction. Curr Biol 11:R729–R732

    Article  CAS  PubMed  Google Scholar 

  • Wolpert DM, Ghahramani Z, Flanagan JR (2001) Perspectives and problems in motor learning. Trends Cogn Sci 5:487–494

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Deutsche Forschungsgemeinschaft (DFG) Project Nr. Kr 1439/13-1 and project Nr. Kr 1439/15-1, and by the Deutsche Forschungsgemeinschaft (DFG) in SFB 673 “Alignment in Communication” and the Center of Excellence “Cognitive Interaction Technology” (CITEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd J. Kröger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kröger, B.J., Kopp, S. & Lowit, A. A model for production, perception, and acquisition of actions in face-to-face communication. Cogn Process 11, 187–205 (2010). https://doi.org/10.1007/s10339-009-0351-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-009-0351-2

Keywords

Navigation