Skip to main content
Log in

Motion as manipulation: implementation of force–motion analogies by event-file binding and action planning

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Tool-improvisation analogies are structure-mapping inferences implemented, in many species, by event-file binding and pre-motor action planning. These processes act on multi-modal representations of currently perceived situations and eventuate in motor acts that can be directly evaluated for success or failure; they employ implicit representations of force–motion relations encoded by the pre-motor system and do not depend on explicit, language-like representations of relational concepts. A detailed reconstruction of the analogical reasoning steps involved in Rutherford’s and Bohr’s development of the first quantized-orbit model of atomic structure is used to show that human force–motion analogies can in general be implemented by these mechanisms. This event-file manipulation model of the implementation of force–motion analogies is distinguished from the standard view that structure-mapping analogies require the manipulation of explicit, language-like representations of relational concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Bar M (2008) The proactive brain: using analogies and associations to generate predictions. Trends Cogn Sci 11(7):280–289

    Article  Google Scholar 

  • Barsalou L (1999) Perceptual symbol systems. Behav Brain Sci 22:577–660

    PubMed  CAS  Google Scholar 

  • Barsalou L (2008) Grounded cognition. Annu Rev Psychol 59:617–645

    Article  PubMed  Google Scholar 

  • Blanchette I, Dunbar K (2002) Representational change and analogy: how analogical inferences alter target representations. J Exp Psychol Learn Mem Cogn 28:672–685

    Article  PubMed  Google Scholar 

  • Bohr N (1913) On the constitution of atoms and molecules. Philos Mag 26:1–25

    CAS  Google Scholar 

  • Brill B, Dietrich G, Foucart J, Fuwa K, Hirata S (2009) Tool use as a way to assess cognition: how do captive chimpanzees handle the weight of the hammer when cracking a nut? Anim Cogn 12:217–235

    Article  Google Scholar 

  • Bubic A, von Cramon DY, Schubotz RI (2010) Prediction, cognition and the brain. Front Psychol: Hum Neurosci 4:25. doi:10.3389/fnhum.2010.00025

    Google Scholar 

  • Buckner R, Andrews-Hanna J, Schacter D (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    Article  PubMed  Google Scholar 

  • Bunge SA, Wendelken C, Badre D, Wagner AD (2005) Analogical reasoning and prefrontal cortex: evidence for separate retrieval and integration mechanisms. Cereb Cortex 5:239–249

    Google Scholar 

  • Burgess PW, Simons J, Dumontheil I, Gilbert S (2007) The gateway hypothesis of rostral prefrontal cortex (area 10) function. In: Duncan J, Phillips L, McLeod P (eds) Measuring the mind: speed, control, and age. Oxford University Press, Oxford, pp 217–248

    Google Scholar 

  • Butz MV, Sigaud O, Gérard P (2003) Anticipatory behavior in adaptive learning. Springer, Berlin

    Book  Google Scholar 

  • Cangelosi A, Metta G, Sagerer G, Nolfi S, Nehaniv C, Fischer K, Tani J, Belpaeme T, Sandini G, Nori F, Fadiga L, Wrede B, Rohlfing K, Tuci E, Dautenhahn K, Saunders J, Zeschel A (2010) Integration of action and language knowledge: a roadmap for developmental robotics. IEEE Trans Autono Mental Dev 2(3):167–195

    Article  Google Scholar 

  • Carvalho S, Cunha E, Sousa C, Matsuzawa T (2008) Chaînes opératoires and resource-exploitation strategies in chimpanzee (Pan troglodytes) nut cracking. J Hum Evol 55:148–163

    Article  PubMed  Google Scholar 

  • Catmur C, Walsh V, Heyes C (2007) Sensorimotor learning configures the human mirror system. Curr Biol 17:1527–1531

    Article  PubMed  CAS  Google Scholar 

  • Catmur C, Gillmeister H, Bird G, Liepelt R, Brass M, Heyes C (2008) Through the looking lass: counter-mirror activation following incompatible sensorimotor learning. Eur J Neurosci 28:1208–1215

    Article  PubMed  Google Scholar 

  • Catmur C, Wlash V, Heyes C (2009) Associative sequence learning: the role of experience in the development of imitation and the mirror system. Philos Trans R Soc Lond 364:2369–2380

    Article  Google Scholar 

  • Cattaneo L, Rizzolatti G (2009) The mirror neuron system. Arch Neurol 66:557–560

    Article  PubMed  Google Scholar 

  • Cho S, Moody TD, Fernandino F, Mumford JA, Poldrack RA, Cannon TD, Knowlton BJ, Holyoak KJ (2010) Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cereb Cortex 20:524–533

    Article  PubMed  Google Scholar 

  • Culham J, Valyear K (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212

    Article  PubMed  CAS  Google Scholar 

  • Day S, Gentner D (2007) Nonintentional analogical inference in text comprehension. Mem Cogn 35(1):39–49

    Article  Google Scholar 

  • Day SB, Goldstone RL (2011) Analogical transfer from a simulated physical system. J Exp Psychol Learn Mem Cogn 37(3):551–567

    Article  PubMed  Google Scholar 

  • Dietrich E (2000) Analogy and conceptual change, or you can’t step into the same mind twice. In: Dietrich E, Markman A (eds) Cognitive dynamics: conceptual change in humans and machines. Lawrence Erlbaum, Mahwah, pp 265–294

    Google Scholar 

  • Dietrich ES (2010) Analogical insight: toward unifying categorization and analogy. Cogn Process 11:331–345

    Article  PubMed  Google Scholar 

  • Dreher J-C, Koechlin E, Tierney M, Grafman J (2008) Damage to the fronto-polar cortex is associated with impaired multitasking. PLOS One 3(9):e3227

    Article  PubMed  Google Scholar 

  • Engel A, Burke M, Fiehler K, Bien S, Rosler F (2007) How moving objects become animated: the human mirror system assimilates non-biological movement patterns. Soc Neurosci 3:368–387

    Article  Google Scholar 

  • Falkenhainer B, Forbus KD, Gentner D (1989) The structure mapping engine: algorithm and examples. Artif Intell 41:1–63

    Article  Google Scholar 

  • Feist GJ, Gorman ME (1998) The psychology of science: review and integration of a nascent discipline. Rev Gen Psychol 2(1):3–47

    Article  Google Scholar 

  • Fields C (2011a) Implementation of structure-mapping inference by event-file binding and action planning: a model of tool-improvisation analogies. Psychol Res 75:129–142

    Article  PubMed  Google Scholar 

  • Fields C (2011b) Trajectory recognition as the basis for object individuation: a functional model of object-file instantiation and object-token encoding. Front Psychol: Percep Sci 2:49. doi:10.3389/fpsyg.2011.00049

  • Fodor J (1983) The modularity of mind. MIT Press, Cambridge

    Google Scholar 

  • Fodor J (2000) The mind doesn’t work that way: the scope and limits of computational psychology. MIT Press, Cambridge

    Google Scholar 

  • Forbus KD, Gentner D, Law K (1994) MAC/FAC: a model of similarity-based retrieval. Cogn Sci 19:141–205

    Google Scholar 

  • Gallese V, Lakoff G (2005) The brain’s concepts: the role of sensory-motor systems in conceptual knowledge. Cogn Neuropsychol 22:455–479

    Article  PubMed  Google Scholar 

  • Gentner D (1983) Structure-mapping: a theoretical framework for analogy. Cogn Sci 7:155–170

    Article  Google Scholar 

  • Gentner D (2003) Why we’re so smart. In: Gentner D, Goldin-Meadow S (eds) Language and mind: advances in the study of language and thought. MIT Press, Cambridge, pp 195–235

    Google Scholar 

  • Gentner D (2005) The development of relational category knowledge. In: Gershkoff-Stowe L, Rakison D (eds) Building object categories in developmental time. Erlbaum, Hillsdale, pp 245–275

    Google Scholar 

  • Gentner D, Christie S (2008) Relational language supports relational cognition in humans, apes (Comment on Penn et al. 2008). Behav Brain Sci 31(2):136–137

    Article  Google Scholar 

  • Gentner D, Wolff P (2000) Metaphor and knowledge change. In: Dietrich E, Markman A (eds) Cognitive dynamics: conceptual change in humans and machines. LEA, Mahwah, pp 295–342

    Google Scholar 

  • Gentner D, Brem S, Ferguson R, Markman A, Levidow B, Wolff P, Forbus K (1997) Analogical reasoning and conceptual change: a case study of Johannes Kepler. J Learn Sci 6(1):3–40

    Article  Google Scholar 

  • Gilbert S, Frith C, Burgess P (2005) Involvement of rostral prefrontal cortex in selection between stimulus-oriented and stimulus-independent thought. Eur J Neurosci 21:1423–1431

    Article  PubMed  Google Scholar 

  • Green A, Fugelsang J, Kraemer D, Shamosh N, Dunbar K (2006) Frontopolar cortex mediates abstract integration in analogy. Brain Res 1096:125–137

    Article  PubMed  CAS  Google Scholar 

  • Hegarty M (2004) Mechanical reasoning by mental simulation. Trends Cogn Sci 8(6):280–285

    Article  PubMed  Google Scholar 

  • Heyes C (2010) Where do mirror neurons come from? Neurosci Biobehav Rev 34(4):575–583

    Article  PubMed  Google Scholar 

  • Holyoak K (2005) Analogy. In: Holyoak K, Morrison R (eds) The Cambridge handbook of thinking and reasoning. Cambridge University Press, Cambridge, pp 117–142

    Google Scholar 

  • Holyoak KJ, Thagard P (1995) Mental leaps. MIT Press, Cambridge

    Google Scholar 

  • Hommel B (2004) Event files: feature binding in and across perception and action. Trends Cogn Sci 8(11):494–500

    Article  PubMed  Google Scholar 

  • Hommel B (2007) Feature integration across perception and action: event files affect response choice. Psychol Res 71:42–63

    Article  PubMed  Google Scholar 

  • Hummel JE, Holyoak KJ (2003) A symbolic-connectionist theory of relational inference and generalization. Psychol Rev 110:220–264

    Article  PubMed  Google Scholar 

  • Johnson-Frey S, Newman-Norland R, Grafton S (2005) A distributed left-hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15:681–695

    Article  PubMed  Google Scholar 

  • Jung-Beeman M, Bowden EM, Haberman J, Frymiare JL, Arumbel-Liu S, Greenblatt R, Reber PJ, Kounios J (2004) Neural activity when people solve verbal problems with insight. PLOS Biol 2(4):0500–0510

    Article  CAS  Google Scholar 

  • Keizer AW, Nieuwenhuis S, Colzato LS, Teeuwisse W, Rombouts SARB, Hommel B (2008) When moving faces activate the house area: an fMRI study of object-file retrieval. Behav Brain Functions 4:50. doi:10.1186/1744-9081-4-50

    Article  Google Scholar 

  • Knowlton BJ, Holyoak KJ (2009) Prefrontal substrate of human relational reasoning. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 1005–1017

    Google Scholar 

  • Kosslyn SM, Thompson WL, Ganis G (2006) The case for mental imagery. Oxford University Press, New York

    Book  Google Scholar 

  • Kounios J, Beeman M (2009) The “Aha!” moment: the cognitive neuroscience of insight. Curr Dir Psychol Sci 18(4):210–216

    Article  Google Scholar 

  • Kounios J, Frymiare JL, Bowden EM, Fleck JI, Subramaniam K, Parrish TB, Jung-Beeman M (2006) The prepared mind: neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychol Sci 17:882–890

    Article  PubMed  Google Scholar 

  • Lakoff G, Johnson M (1999) Philosophy in the flesh: the embodied mind and its challenge to western thought. Basic Books, New York

    Google Scholar 

  • Lasry N, Aulls M (2007) The effects of multiple internal representations on context rich instruction. Am J Phys 75:1030–1037

    Article  Google Scholar 

  • Leech R, Mareshal D, Cooper R (2008) Analogy as relational priming: a developmental and computational perspective on the origins of a complex cognitive skill. Behav Brain Sci 31:357–378

    PubMed  Google Scholar 

  • Mahon BZ, Caramazza A (2009) Concepts and categories: a cognitive neuropsychological perspective. Annu Rev Psychol 60:27–51

    Article  PubMed  Google Scholar 

  • Markman A, Gentner D (2001) Thinking. Annu Rev Psychol 52:223–247

    Article  PubMed  CAS  Google Scholar 

  • Martin A (2007) The representation of object concepts in the brain. Annu Rev Psychol 58:25–45

    Article  PubMed  Google Scholar 

  • Mehra J, Rechenberg H (1982) The Historical Development of Quantum Theory, vol 1: The Quantum Theory of Planck, Einstein, Bohr and Sommerfeld: its foundation and the rise of its difficulties 1900–1925. Springer, Berlin, p 372

    Google Scholar 

  • Morrison R, Krawczyk D, Holyoak K, Hummel J, Chow T, Miller B, Knowlton BJ (2005) A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. J Cogn Neurosci 16(2):260–271

    Article  Google Scholar 

  • Moulton ST, Kosslyn SM (2009) Imagining predictions: mental imagery as mental emulation. Philosop Trans R Soc B 364:1273–1280

    Article  Google Scholar 

  • Penn D, Povinelli D (2007) Causal cognition in human and non-human animals: a comparative, critical review. Annu Rev Psychol 58:97–118

    Article  PubMed  Google Scholar 

  • Penn D, Holyoak K, Povinelli D (2008) Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. Behav Brain Sci 31:109–178

    PubMed  Google Scholar 

  • Pinker S (1997) How the mind works. Norton, New York

    Google Scholar 

  • Podolefsky NS, Finkelstein ND (2006) Use of analogy in learning physics: the role of representation. Phys Rev Special Topics Phys Educ Res 2:020101

    Article  Google Scholar 

  • Pruetz JD, Bertolani P (2007) Savanna chimpanzees, Pan troglodytes versus, hunt with tools. Curr Biol 17:1–6

    Article  Google Scholar 

  • Puce A, Perrett D (2003) Electrophysiology and brain imaging of biological motion. Philos Trans R Soc Lond B 358:435–445

    Article  Google Scholar 

  • Pylyshyn ZW (1986) Computation and cognition: toward a foundation for cognitive science. MIT/Bradford, Cambridge

    Google Scholar 

  • Randall L (2005) Warped passages: unraveling the mysteries of the universe’s hidden dimensions. Harper Perennial, New York

    Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Ann Rev Neurosci 27:169–192

    Article  PubMed  CAS  Google Scholar 

  • Rutherford E (1911) The scattering of alpha and beta particles by matter and the structure of the atom. Philos Mag 21:669–688

    CAS  Google Scholar 

  • Sandkuhler S, Bhattacharya J (2008) Deconstructing insight: EEG correlates of insightful problem solving. PLOS One 3(1):e1459

    Article  PubMed  Google Scholar 

  • Schubotz RI (2007) Prediction of external events with our motor system: towards a new framework. Trends Cogn Sci 11(5):211–218

    Article  PubMed  Google Scholar 

  • Schubotz R, van Cramon DY (2004) Sequences of abstract nonbiological stimuli share ventral premotor cortex with action observations and imagery. J Neurosci 24(24):5467–5474

    Article  PubMed  CAS  Google Scholar 

  • Spapé MM, Hommel B (2010) Actions travel with their objects: evidence for dynamic event files. Psychol Res 74:50–58

    Article  PubMed  Google Scholar 

  • Suddendorf T, Coraballis MC (2007) The evolution of foresight: what is mental time travel, and is it unique to humans? Behav Brain Sci 30:299–351

    PubMed  Google Scholar 

  • Visalberghi E, Addessi E, Truppa V, Spagnoletti N, Ottoni E, Izar P, Fragaszy D (2009) Selection of effective stone tools by wild bearded capuchin monkeys. Curr Biol 19:1–5

    Article  Google Scholar 

  • Waltz JA, Lau A, Grewai SK, Holyoak KJ (2000) The role of working memory in analogical mapping. Mem Cogn 28:1205–1212

    Article  CAS  Google Scholar 

  • Weir A, Kacelnik A (2006) A new Caledonian crow (Corvus moneduloides) creatively re-designs tools by bending or unbending aluminum strips. Anim Cogn 9(4):317–334

    Article  PubMed  Google Scholar 

  • Wendelken C, Nakhabenko D, Donohue SE, Carter CS, Bunge SA (2008) “Brain is to thought as stomach is to?” Investigating the role of rostrolateral prefrontal cortex in relational reasoning. J Cogn Neurosci 20(4):682–693

    Article  PubMed  Google Scholar 

  • White PA (2009) Perception of forces exerted by objects in collision events. Psychol Rev 116:580–601

    Article  PubMed  Google Scholar 

  • Wolff P (2007) Representing causation. J Exp Psychol Gen 136:82–111

    Article  PubMed  Google Scholar 

  • Wolff P (2008) Dynamics and the perception of causal events. In: Shipley T, Zacks J (eds) Understanding events: how humans see, represent, and act on events. Oxford University Press, Oxford, pp 555–587

    Google Scholar 

Download references

Acknowledgments

Thanks to Eric Dietrich for three decades of stimulating and enjoyable conversations about algorithms and analogy. The comments and suggestions of three anonymous referees contributed significantly to the presentation.

Conflict of interest

The author states that he has no conflicts of interest relevant to the reported research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Fields.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fields, C. Motion as manipulation: implementation of force–motion analogies by event-file binding and action planning. Cogn Process 13, 231–241 (2012). https://doi.org/10.1007/s10339-012-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-012-0436-1

Keywords

Navigation