Skip to main content

Advertisement

Log in

Neuroenergetics at the brain–mind interface: a conceptual approach

  • Review
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Modern neuroimaging techniques, such as PET and fMRI, attracted specialists in cognitive processing to the problems of brain energy and its transformations in relation to information processing. Neuroenergetics has experienced explosive progress during the last decade, complex biochemical and biophysical models of energy turnover in the brain necessitate the search of the general principles behind them, which could be linked to the cognitive view of the brain. In our conceptual descriptive generalization, we consider how the basic thermodynamical reasoning can be used to better understand brain energy. We suggest how thermodynamical principles can be applied to the existing data and theories to obtain the holistic framework of energetic processes in the brain coupled with information processing. This novel and purely descriptive framework permits the integration of approaches of different disciplines to cognitive processing: psychology, physics, physiology, mathematics, molecular biology, biochemistry, etc. Thus, the proposed general principled approach would be helpful for specialists from different fields of cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aubert A, Pellerin L, Magistretti PJ, Costalat R (2007) A coherent neurobiological framework for functional neuroimaging provided by a model integrating compartmentalized energy metabolism. Proc Natl Acad Sci U S A 104(10):4188–4193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basar E (2012) A review of alpha activity in integrative brain function: fundamental physiology, sensory coding, cognition and pathology. Int J Psychophysiol 86(1):1–24

    Article  PubMed  Google Scholar 

  • Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  CAS  PubMed  Google Scholar 

  • Bennett CH (2003) Notes on Landauer’s principle, reversible computation, and Maxwell’s Demon. Studies Hist Philos Sci Part B Studies Hist Philos Modern Phys 34(3):501–510

    Article  Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    CAS  PubMed  Google Scholar 

  • David O, Harrison L, Friston KJ (2005) Modelling event-related responses in the brain. Neuroimage 25(3):756–770

    Article  PubMed  Google Scholar 

  • Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond Ser B Biol Sci 360(1456):815–836

    Article  Google Scholar 

  • Friston K (2010) The free-energy principle: a unified brain theory? Nat Rev Neurosci 11(2):127–138

    Article  CAS  PubMed  Google Scholar 

  • Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol Paris 100(1–3):70–87

    Article  PubMed  Google Scholar 

  • Friston K, Thornton C, Clark A (2012) Free-energy minimization and the dark-room problem. Front Psychol 3:130

    PubMed Central  PubMed  Google Scholar 

  • Gerlach C, Aaside CT, Humphreys GW, Gade A, Paulson OB, Law I (2002) Brain activity related to integrative processes in visual object recognition: bottom-up integration and the modulatory influence of stored knowledge. Neuropsychologia 40(8):1254–1267

    Article  CAS  PubMed  Google Scholar 

  • Gjedde A (2007) Coupling of brain function to metabolism: evaluation of energy requirements. In: Lajtha A (ed) Handbook of neurochemistry and molecular neurobiology. Brain energetics. integration of molecular and cellular processes. Springer, New York, pp 343–400

    Chapter  Google Scholar 

  • Gruetter R, Leif H (2003) Principles of the measurement of neuro-glial metabolism using in vivo 13C NMR spectroscopy. In: Advances in molecular and cell biology, vol 31. Elsevier, pp 409–433

  • Harris Julia J, Jolivet R, Attwell D (2012) Synaptic energy use and supply. Neuron 75(5):762–777

    Article  CAS  PubMed  Google Scholar 

  • Hyder F, Patel AB, Gjedde A, Rothman DL, Behar KL, Shulman RG (2006) Neuronal-glial glucose oxidation and glutamatergic-GABAergic function. J Cereb Blood Flow Metab 26(7):865–877

    Article  CAS  PubMed  Google Scholar 

  • Ioannides AA (2006) Magnetoencephalography as a research tool in neuroscience: state of the art. Neuroscientist 12(6):524–544

    Article  PubMed  Google Scholar 

  • Klingner CM, Hasler C, Brodoehl S, Witte OW (2014) Excitatory and inhibitory mechanisms underlying somatosensory habituation. Hum Brain Mapp 35(1):152–160

    Article  PubMed  Google Scholar 

  • Logothetis NK, Pfeuffer J (2004) On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 22(10):1517–1531

    Article  PubMed  Google Scholar 

  • Luscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3(6):545–550

    Article  CAS  PubMed  Google Scholar 

  • Matthews PC (1998) Vector calculus. Springer undergraduate mathematics series. Springer, Berlin

    Google Scholar 

  • McKenna MC, Dienel GA, Sonnewald U, Waagepetersen HS, Schousboe A (2012) Chapter 11—energy metabolism of the brain. In: Brady S, Siegel G, Albers RW, Price D (eds) Basic neurochemistry, 8th edn. Academic Press, New York, pp 200–231

    Chapter  Google Scholar 

  • Miller L (1986) ‘Narrow localizationism’ in psychiatric neuropsychology. Psychol Med 16(4):729–734

    Article  CAS  PubMed  Google Scholar 

  • Naatanen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118(12):2544–2590

    Article  CAS  PubMed  Google Scholar 

  • Nehlig A, Coles JA (2007) Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 55(12):1238–1250

    Article  PubMed  Google Scholar 

  • Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL (2005) The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci U S A 102(15):5588–5593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raichle ME, Mintun MA (2006) Brain work and brain imaging. Ann Rev Neurosci 29:449–476

    Article  CAS  PubMed  Google Scholar 

  • Riera JJ, Schousboe A, Waagepetersen HS, Howarth C, Hyder F (2008) The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism. Neuroimage 40(4):1436–1459

    Article  PubMed  Google Scholar 

  • Sengupta B, Faisal AA, Laughlin SB, Niven JE (2013a) The effect of cell size and channel density on neuronal information encoding and energy efficiency. J Cereb Blood Flow Metab 33(9):1465–1473

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sengupta B, Laughlin SB, Niven JE (2013b) Balanced excitatory and inhibitory synaptic currents promote efficient coding and metabolic efficiency. PLoS Comput Biol 9(10):e1003263

    Article  PubMed Central  PubMed  Google Scholar 

  • Sengupta B, Stemmler MB, Friston KJ (2013c) Information and efficiency in the nervous system—a synthesis. PLoS Comput Biol 9(7):e1003157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shulman RG, Hyder F, Rothman DL (2001) Cerebral energetics and the glycogen shunt: neurochemical basis of functional imaging. Proc Nat Acad Sci USA 98(11):6417–6422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27(8):489–495

    Article  CAS  PubMed  Google Scholar 

  • Simpson IA, Carruthers A, Vannucci SJ (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab 27(11):1766–1791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith E (2008) Thermodynamics of natural selection III: Landauer’s principle in computation and chemistry. J Theor Biol 252(2):213–220

    Article  CAS  PubMed  Google Scholar 

  • Stowe KS (2007) An introduction to thermodynamics and statistical mechanics, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Strelnikov K (2007) Can mismatch negativity be linked to synaptic processes? A glutamatergic approach to deviance detection. Brain Cogn 65(3):244–251

    Article  PubMed  Google Scholar 

  • Strelnikov K (2010) Neuroimaging and neuroenergetics: brain activations as information-driven reorganization of energy flows. Brain Cogn 72(3):449–456

    Article  PubMed  Google Scholar 

  • Strelnikov K (2013) Sensory stimulation induces tensor fields, which specifically transform brain activity. Neurosci Lett 554:42–46

    Article  CAS  PubMed  Google Scholar 

  • Strelnikov K, Barone P (2012) Stable modality-specific activity flows as reflected by the neuroenergetic approach to the FMRI weighted maps. PLoS ONE 7(3):e33462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strelnikov K, Barone P (2014) Overlapping brain activity as reflected by the spatial differentiation of functional magnetic resonance imaging, electroencephalography and magnetoencephalography data. J Neurosci Neuroeng 2:1–12

    Google Scholar 

  • Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P (2010) Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cereb Cortex 20(5):1217–1222

    Article  CAS  PubMed  Google Scholar 

  • Toni I, Krams M, Turner R, Passingham RE (1998) The time course of changes during motor sequence learning: a whole-brain fMRI study. Neuroimage 8(1):50–61

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuzma Strelnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strelnikov, K. Neuroenergetics at the brain–mind interface: a conceptual approach. Cogn Process 15, 297–306 (2014). https://doi.org/10.1007/s10339-014-0609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-014-0609-1

Keywords

Navigation