Skip to main content

Advertisement

Log in

The role of the posterior parietal cortex in stereopsis and hand-eye coordination during motor task behaviours

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

The field of ‘Neuroergonomics’ has the potential to improve safety in high-risk operative environments through a better appreciation of the way in which the brain responds during human–tool interactions. This is especially relevant to minimally invasive surgery (MIS). Amongst the many challenges imposed on the surgeon by traditional MIS (laparoscopy), arguably the greatest is the loss of depth perception. Robotic MIS platforms, on the other hand, provide the surgeon with a magnified three-dimensional view of the environment, and as a result may offload a degree of the cognitive burden. The posterior parietal cortex (PPC) plays an integral role in human depth perception. Therefore, it can be hypothesized that differences in PPC activation between monoscopic and stereoscopic vision may be observed. In order to investigate this hypothesis, the current study explores disparities in PPC responses between monoscopic and stereoscopic visual perception to better de-couple the burden imposed by laparoscopy and robotic surgery on the operator’s brain. Fourteen participants conducted tasks of depth perception and hand-eye coordination under both monoscopic and stereoscopic visual feedback. Cortical haemodynamic responses were monitored throughout using optical functional neuroimaging. Overall, recruitment of the bilateral superior parietal lobule was observed during both depth perception and hand-eye coordination tasks. This occurred contrary to our hypothesis, regardless of the mode of visual feedback. Operator technical performance was significantly different in two- and three-dimensional visual displays. These differences in technical performance do not appear to be explained by significant differences in parietal lobe processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Anzai A, Ohzawa I, Freeman RD (1999) Neural mechanisms for processing binocular information I. Simple cells. J Neurophysiol 82(2):891–908

    CAS  PubMed  Google Scholar 

  • Behrmann M, Geng JJ, Shomstein S (2004) Parietal cortex and attention. Curr Opin Neurobiol 14(2):212–217

    Article  CAS  PubMed  Google Scholar 

  • Bengtsson SL, Ehrsson HH, Forssberg H, Ullén F (2004) Dissociating brain regions controlling the temporal and ordinal structure of learned movement sequences. Eur J Neurosci 19(9):2591–2602

    Article  PubMed  Google Scholar 

  • Bunce S (2006) Functional near-infrared spectroscopy. IEEE Eng Med Biol Mag 25(4):54–62

    Article  PubMed  Google Scholar 

  • Buneo CA, Andersen RA (2006) The posterior parietal cortex: sensorimotor interface for the planning and online control of visually guided movements. Neuropsychologia 44:2594–2606

    Article  PubMed  Google Scholar 

  • Cao J, Worsley K (1999) The geometry of the Hotelling’s T2 random field with applications to the detection of shape changes. Ann Stat 27(3):925–942

    Article  Google Scholar 

  • Carpenter PA, Just MA, Keller TA, Eddy W, Thulborn K (1999) Graded functional activation in the visuospatial system with the amount of task demand. J Cogn Neurosci 11(1):9–24

    Article  CAS  PubMed  Google Scholar 

  • Corbetta M, Miezin FM, Shulman GL, Petersen SE (1993) A PET study of visuospatial attention. J Neurosci 13(3):1202–1226

    CAS  PubMed  Google Scholar 

  • Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 3:292–297

    Article  CAS  PubMed  Google Scholar 

  • Creem SH, Proffitt DR (2001) Defining the cortical visual systems: “what”,”where““ and,”how”. Acta Psychol 107(1):43–68

    Article  CAS  Google Scholar 

  • Culham JC, Kanwisher NG (2001) Neuroimaging of cognitive functions in human parietal cortex. Curr Opin Neurobiol 11:157–163

    Article  CAS  PubMed  Google Scholar 

  • Downar J, Crawley AP, Mikulis DJ, Davis KD (2002) A cortical network sensitive to stimulus salience in a neutral behavioral context across multiple sensory modalities. J Neurophysiol 87(1):615–620

    PubMed  Google Scholar 

  • Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63(2):921–935

    Article  PubMed  Google Scholar 

  • Fischmeister F, Bauer H (2006) Neural correlates of monocular and binocular depth cues based on natural images: a LORETA analysis. Vis Res 46(20):3373–3380

    Article  PubMed  Google Scholar 

  • Hitchcock EM, Warm JS, Matthews G, Dember WN, Shear PK, Tripp LD, Mayleben DW, Parasuraman R (2003) Automation cueing modulates cerebral blood flow and vigilance in a simulated air traffic control task. Theor Issues Ergon Sci 4(1–2):89–112

    Article  Google Scholar 

  • Hopfinger J, Buonocore M, Mangun G (2000) The neural mechanisms of top-down attentional control. Nat Neurosci 3:284–291

    Article  CAS  PubMed  Google Scholar 

  • Imperial College London (2012) The Hamlyn Centre. Retrieved from http://www3.imperial.ac.uk/roboticsurgery

  • Intuitive Surgical (2012) The da Vinci surgical system. Retrieved from http://www.intuitivesurgical.com/products/davinci_surgical_system/

  • James DR, Orihuela-Espina F, Leff DR, Mylonas G, Kwok KW, Darzi A, Yang GZ (2010) Cognitive burden estimation for visuomotor learning with fNIRS. MICCAI 2010 Beijing, Spring, pp 319–326

  • James DR, Orihuela-Espina F, Leff DR, Sodergren MH, Athanasiou T, Darzi A, Yang GZ (2011) The ergonomics of natural orifice translumenal endoscopic surgery (NOTES) navigation in terms of performance, stress, and cognitive behavior. Surgery 149(4):525–533

    Article  PubMed  Google Scholar 

  • Jasper HH (1958) The ten twenty electrode system of the international federation. Electroencephalogr Clin Neurophysiol 10:371–375

    Google Scholar 

  • Jubault T, Ody C, Koechlin E (2007) Serial organization of human behavior in the inferior parietal cortex. J Neurosci 27(41):11028–11036

    Article  CAS  PubMed  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34(4):1600–1611

    Article  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Knill DC (2005) Reaching for visual cues to depth: the brain combines depth cues differently for motor control and perception. J Vis 5(2):103–115

    Article  PubMed  Google Scholar 

  • Koechlin E, Danek A, Burnod Y, Grafman J (2002) Medial prefrontal and subcortical mechanisms underlying the acquisition of motor and cognitive action sequences in humans. Neuron 35(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Kong SH, Oh BM, Yoon H, Ahn HS, Lee HJ, Chung SG, Shiraishi N, Kitano S, Yang HK (2010) Comparison of two-and three-dimensional camera systems in laparoscopic performance: a novel 3D system with one camera. Surg Endosc 24(5):1132–1143

    Article  PubMed  Google Scholar 

  • Kwok K-W, Sun L-W, Mylonas GP, James DRC, Orihuela-Espina F, Yang G-Z (2012) Collaborative gaze channelling for improved cooperation during robotic assisted surgery. Ann Biomed Eng 40(10):2156–2167

  • Lancaster J, Woldrff M, Parsons L, Liotti M, Freitas C, Rainey L, Kochunov P, Nickerson D, Mikiten S, Fox P (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131

    Article  CAS  PubMed  Google Scholar 

  • Leff D, Koh PH, Aggarwal R, Leong J, Deligianni F, Elwell C, Delpy DT, Darzi A, Yang G-Z (2006) Optical mapping of the frontal cortex during a surgical knot-tying task, a feasibility study. In: Yang G-Z et al (eds) Medical imaging and augmented reality, vol 4091. Springer, pp 140–147

  • Leff DR, Orihuela-Espina F, Atallah L, Darzi A, Yang GZ (2007) Functional near infrared spectroscopy in novice and expert surgeons: a manifold embedding approach. MICCAI 2007 Brisbane Australia. Springer, Berlin, pp 270–277

  • Leff DR, Elwell CE, Orihuela-Espina F, Atallah L, Delpy DT, Darzi A, Yang GZ (2008a) Changes in prefrontal cortical behaviour depend upon familiarity on a bimanual co-ordination task: an fNIRS study. Neuroimage 39(2):805–813

    Article  PubMed  Google Scholar 

  • Leff DR, Leong JJ, Aggarwal R, Yang GZ, Darzi A (2008b) Could variations in technical skills acquisition in surgery be explained by differences in cortical plasticity. Ann Surg 247(3):540–543

    Article  PubMed  Google Scholar 

  • Leff DR, Orihuela-Espina F, Atallah L, Athanasiou T, Leong JJ, Darzi A, Yang GZ (2008c) Functional prefrontal reorganization accompanies learning-associated refinements in surgery: a manifold embedding approach. Comput Aided Surg 13(6):325–339

    Article  PubMed  Google Scholar 

  • Leff DR, Orihuela-Espina F, Leong J, Darzi A, Yang GZ (2008d) Modelling dynamic fronto-parietal behaviour during minimally invasive surgery—a Markovian trip distribution approach, MICCAI. Springer, New York, pp 595–602

    Google Scholar 

  • McMahon AJ, Anderson JN, Ramsay JR, O’Dwyer PJ, Russell IT, Ross S, Sutherland G, Galloway D, Morran CG (1994) Laparoscopic versus minilaparotomy cholecystectomy: a randomised trial. Lancet 343(8890):135–138

    Article  CAS  PubMed  Google Scholar 

  • Mellet E, Tzourio N, Denis M, Mazoyer B (1995) A positron emission tomography study of visual and mental spatial exploration. J Cogn Neurosci 7(4):433–445

    Article  CAS  PubMed  Google Scholar 

  • Merboldt KD, Baudewig J, Treue S, Frahm J (2002) Functional MRI of self-controlled stereoscopic depth perception. NeuroReport 13(14):1721–1725

    Article  PubMed  Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford, New York

    Google Scholar 

  • Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785

    Article  CAS  PubMed  Google Scholar 

  • Minini L, Parker AJ, Bridge H (2010) Neural modulation by binocular disparity greatest in human dorsal visual stream. J Neurophysiol 104(1):169

    Article  PubMed Central  PubMed  Google Scholar 

  • Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Front Cogn Neurosci 229:342–345

    Google Scholar 

  • Ng V, Bullmore E, De Zubicaray G, Cooper A, Suckling J, Williams S (2001) Identifying rate-limiting nodes in large-scale cortical networks for visuospatial processing: an illustration using fMRI. J Cogn Neurosci 13(4):537–545

    Article  CAS  PubMed  Google Scholar 

  • Nishida Y, Hayashi O, Iwami T, Kimura M, Kani K, Ito R, Shiino A, Suzuki M (2001) Stereopsis-processing regions in the human parieto-occipital cortex. NeuroReport 12(10):2259–2263

    Article  CAS  PubMed  Google Scholar 

  • O’Craven KM, Rosen BR, Kwong KK, Treisman A, Savoy RL (1997) Voluntary attention modulates fMRI activity in human MT-MST. Neuron 18(4):591–598

    Article  PubMed  Google Scholar 

  • Ohuchida K, Kenmotsu H, Yamamoto A, Sawada K, Hayami T, Morooka K, Takasugi S, Konishi K, Ieiri S, Tanoue K (2009) The frontal cortex is activated during learning of endoscopic procedures. Surg Endosc 23(10):2296–2301

    Article  PubMed  Google Scholar 

  • Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Kohno S, Oda I, Isobe S, Suzuki T, Kohyama K (2004) Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. Neuroimage 21:99

    Article  PubMed  Google Scholar 

  • Parasuraman R (2003) Neuroergonomics: research and practice. Theor Issues Ergon Sci 4(1–2):5–20

    Article  Google Scholar 

  • Parker AJ (2007) Binocular depth perception and the cerebral cortex. Nat Rev Neurosci 8(5):379–391

    Article  CAS  PubMed  Google Scholar 

  • Perrey S (2008) Non-invasive NIR spectroscopy of human brain function during exercise. Methods 45(4):289–299

    Article  CAS  PubMed  Google Scholar 

  • Rizzolatti G, Matelli M (2003) Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 153(2):146–157

    Article  PubMed  Google Scholar 

  • Rockall T, Darzi A (2003) Robot-assisted laparoscopic colorectal surgery. Surg Clin N Am 83(6):1463

    Article  PubMed  Google Scholar 

  • Sack A (2009) Parietal cortex and spatial cognition. Behav Brain Res 202(2):153

    Article  PubMed  Google Scholar 

  • Sack A, Hubl D, Prvulovic D, Formisano E, Zanella FE, Maurer K, Goebel R, Dierks T, Linden DEJ (2002) The experimental combination of rTMS and fMRI reveals the functional relevance of parietal cortex for visuospatial functions. Cogn Brain Res 13(11):85–93

    Article  CAS  Google Scholar 

  • Shikata E, Tanaka Y, Nakamura H, Taira M, Sakata H (1996) Selectivity of the parietal visual neurones in 3D orientation of surface of stereoscopic stimuli. NeuroReport 7(14):2389–2394

    Article  CAS  PubMed  Google Scholar 

  • Storz P, Buess GF, Kunert W, Kirschniak A (2012) 3D HD versus 2D HD: surgical task efficiency in standardised phantom tasks. Surg Endosc 26(5):1454–1460

    Article  PubMed  Google Scholar 

  • Sun J (1993) Tail probabilities of the maxima of Gaussian random fields. Ann Probab 21:34–71

    Article  Google Scholar 

  • Tagaris GA, Kim SG, Strupp JP, Andersen P, Ugurbil K, Georgopoulos AP (1996) Quantitative relations between parietal activation and performance in mental rotation. NeuroRep-Int J Rapid Commun Res Neurosci 7(3):773–776

    Article  CAS  Google Scholar 

  • Todd JJ, Marois R (2005) Posterior parietal cortex activity predicts individual differences in visual short-term memory capacity. Cogn Affect Behav Neurosci 5(2):144–155

    Article  PubMed  Google Scholar 

  • Ungerleider L, Haxby JV (1994) What’and where’in the human brain. Curr Opin Neurobiol 4(2):157–165

    Article  CAS  PubMed  Google Scholar 

  • Vannini P, Almkvist O, Franck A, Jonsson T, Volpe U, Wiberg MK, Wahlund LO, Dierks T (2004) Task demand modulations of visuospatial processing measured with functional magnetic resonance imaging. Neuroimage 21(1):58–68

    Article  PubMed  Google Scholar 

  • Walter E, Dassonville P (2011) Activation in a frontoparietal cortical network underlies individual differences in the performance of an embedded figures task. PLoS ONE 6(7):e20742

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wijeakumar S, Shahani U, McCulloch D, Simpson W (2012) Neural and vascular responses to fused binocular stimuli: a VEP and fNIRS study. Invest Ophthalmol Vis Sci 53(9):5881–5889

    Article  PubMed  Google Scholar 

  • Wu T, Kansaku K, Hallett M (2004) How self-initiated memorized movements become automatic: a functional MRI study. J Neurophysiol 91(4):1690–1698

    Article  PubMed  Google Scholar 

  • Ye JC, Tak S, Jang KE, Jung J, Jang J (2009) NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44(2):428–447

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded in part by the Academy of Medical Sciences and Cancer Research (UK), which was not involved in the in study design, in the collection, analysis and interpretation of data.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Paggetti.

Appendix

Appendix

See Tables 3, 4, 5 and 6.

Table 5 ΔHbO2 (average task HbO2—average rest HbO2) for each channel and for each experiment and visual condition
Table 6 ΔHHb (average task HHb—average rest HHb) for each channel and for each experiment and visual condition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paggetti, G., Leff, D.R., Orihuela-Espina, F. et al. The role of the posterior parietal cortex in stereopsis and hand-eye coordination during motor task behaviours. Cogn Process 16, 177–190 (2015). https://doi.org/10.1007/s10339-014-0641-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-014-0641-1

Keywords

Navigation