Skip to main content

Advertisement

Log in

An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats

  • Research Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Estrogen depletion due to aging, surgery or pathological events can cause a multitude of problems, including neurodegenerative alterations. In rodents without ovaries, 17-beta estradiol (E2) has been shown to produce beneficial effects on cognition, stimulating brain regions (e.g., the neocortex, hippocampus and amygdala) related to cognition and learning. Another treatment that stimulates these brain regions is an enriched environment (EE), which is a complex set of external factors in the immediate surroundings that facilitates greater stimulation of sensorial, cognitive and motor circuits of the brain. The aim of the present study was to test, using an animal model of ovariectomy-induced impairment of memory, the relative effect of E2 (with a time-released pellet; 1 μg/rat/day), EE exposure and a combination of both treatments. Experimental and control groups were submitted to two memory tests 18 weeks post-surgery: the autoshaping learning task (ALT) for measuring associative learning and the novel object recognition test (NORT) for evaluating short- and long-term memory. To assess potential motor impairments caused by treatments, all rats were tested after the ALT in an automatic activity counter. Results from ALT show that the ovariectomy blocked the conditioned responses displayed, an effect rescued by chronic treatment with estrogen or EE exposure. The combination of both treatments did not improve the results obtained separately. In the NORT, the exploration time for recognizing a novel object was similar in the short run with all groups, but greater in the long run with hormone administration or EE exposure. As with the ALT, in the NORT there was no improvement shown by the combination treatment. These data were not masked by changes in spontaneous activity because this parameter was not modified in the rats by either treatment. Possible action mechanisms are proposed, taking into account the role of corticosterone and BDNF on cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Antunes M, Biala G (2012) The novel object recognition memory: neurobiology, test procedure, and its modifications. Cogn Process 13:93–110

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Arndt SS, Laarakker MC, Van Lith HA, Van der Staay FJ, Gieling E, Salomon AR, Van’t Klooster J, Ohl F (2009) Individual housing of mice—impact on behaviour and stress responses. Physiol Behav 97:385–393

    Article  PubMed  CAS  Google Scholar 

  • Aubele T, Kritzer MF (2012) Androgen influence on prefrontal dopamine systems in adult male rats: localization of cognate intracellular receptors in medial prefrontal projections to the ventral tegmental area and effects of gonadectomy and hormone replacement on glutamate-stimulated extracellular dopamine level. Cereb Cortex 22:1799–1812

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Balderas I, Rodriguez-Ortiz CJ, Salgado-Tonda P, Chavez-Hurtado J, McGaugh JL, Bermudez-Rattoni F (2008) The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn Mem 15:618–624

    Article  PubMed Central  PubMed  Google Scholar 

  • Balderas I, Rodriguez-Ortiz CJ, Bermudez-Rattoni F (2014) Consolidation and reconsolidation of object recognition memory. Behav Brain Res. doi:10.1016/j.bbr.2014.08.049

    PubMed  Google Scholar 

  • Bastos CP, Pereira LM, Ferreira-Vieira TH, Drumond LE, Massensini AR, Moraes MF, Pereira GS (2015) Object recognition memory deficit and depressive-like behavior caused by chronic ovariectomy can be transitorialy recovered by the acute activation of hippocampal estrogen receptors. Psychoneuroendocrinology 57:14–25

    Article  PubMed  CAS  Google Scholar 

  • Berchtold NC, Kesslak JP, Pike CJ, Adlard PA, Cotman CW (2001) Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus. Eur J Neurosci 14:1992–2002

    Article  PubMed  CAS  Google Scholar 

  • Beylin AV, Shors TJ (2003) Glucocorticoids are necessary for enhancing the acquisition of associative memories after acute stressful experience. Horm Behav 43:124–131

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bosse R, Di Paolo T (1995) Dopamine and GABAA receptor imbalance after ovariectomy in rats: model of menopause. J Psychiatry Neurosci 20:364–371

    PubMed Central  PubMed  CAS  Google Scholar 

  • Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21:513–521

    Article  PubMed  Google Scholar 

  • Chan M, Chow C, Hamson DK, Lieblich SE, Galea LA (2014) Effects of chronic oestradiol, progesterone and medroxyprogesterone acetate on hippocampal neurogenesis and adrenal mass in adult female rats. J Neuroendocrinol 26:386–399

    Article  PubMed  CAS  Google Scholar 

  • Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14:125–130

    Article  PubMed  Google Scholar 

  • Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF (2003) Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci 58A:176–180

    Article  Google Scholar 

  • Colcombe SJ, Erickson KI, Scalf PE, Kim JS, Prakash R, McAuley E, Elavsky S, Marquez DX, Hu L, Kramer AF (2006) Aerobic exercise training increases brain volume in aging humans. J Gerontol A Biol Sci Med Sci 61:1166–1170

    Article  PubMed  Google Scholar 

  • Correa M (2007) Neuroanatomía funcional de los aprendizajes implícitos: asociativos, motores y de hábito. Rev Neurol 44:234–242

    PubMed  CAS  Google Scholar 

  • Costa DA, Cracchiolo JR, Bachstetter AD, Hughes TF, Bales KR, Paul SM, Mervis RF, Arendash GW, Potter H (2007) Enrichment improves cognition in AD mice by amyloid-related and unrelated mechanisms. Neurobiol Aging 28:831–844

    Article  PubMed  CAS  Google Scholar 

  • Craig MC, Murphy DG (2010) Estrogen therapy and Alzheimer’s dementia. Ann NY Acad Sci 1205:245–253

    Article  PubMed  Google Scholar 

  • Dahlqvist P, Rönnbäck A, Bergström S-A, Söderström I, Olsson T (2004) Environment enrichment reverses learning impairment in the Morris water maze after focal cerebral ischemia in rats. Eur J Neurosci 19:2288–2298

    Article  PubMed  Google Scholar 

  • Daniel JM, Hulst JL, Berbling JL (2006) Estradiol replacement enhances working memory in middle-aged rats when initiated immediately after ovariectomy but not after a long-term period of ovarian hormone deprivation. Endocrinology 147:607–614

    Article  PubMed  CAS  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2007) The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci Biobehav Rev 31:673–704

    Article  PubMed  CAS  Google Scholar 

  • Diamond MC (2001) Response of the brain to enrichment. An Acad Bras Cienc 73:211–220

    Article  PubMed  CAS  Google Scholar 

  • Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats 1: behavioral data. Behav Brain Res 31:47–59

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Raya J, Espinoza-Fonseca M, Picazo O, Trujillo-Ferrara J (2007) Effect of a M1 allosteric modulator on scopolamine-induced amnesia. Med Chem 3:7–11

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Raya J, Plata-Cruz N, Neri-Gómez T, Camacho-Arroyo I, Picazo O (2011) Effects of short-term hormonal replacement on learning and on basal forebrain ChAT and TrkA content in ovariectomized rats. Brain Res 1375:77–84

    Article  PubMed  CAS  Google Scholar 

  • Espinosa-Raya J, Neri-Gómez T, Orozco-Suárez S, Campos MG, Guerra-Araiza C (2012) Chronic administration of tibolone modulates anxiety-like behavior and enhances cognitive performance in ovariectomized rats. Horm Behav 61:76–83

    Article  PubMed  CAS  Google Scholar 

  • Estrada-Camarena E, López-Rubalcava C, Hernández-Aragón A, Mejía-Mauries S, Picazo O (2011) Long-term ovariectomy modulates the antidepressant-like action of estrogens, but not of antidepressants. J Psychopharmacol 25:1365–1377

    Article  PubMed  CAS  Google Scholar 

  • Farid S, Hussain MM, Asad M (2013) Adrenocortical response to 17-beta estradiol replacement in oophorectomized female sprague dawley rats. J Coll Physicians Surg Pak 23:695–698

    PubMed  Google Scholar 

  • Farmer J, Zhao X, Van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague–Dawley rats in vivo. Neuroscience 124:71–79

    Article  PubMed  CAS  Google Scholar 

  • Fernandez SM, Frick KM (2004) Chronic oral estrogen affects memory and neurochemistry in middle-aged female mice. Behav Neurosci 118:1340–1351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fonseca CS, Gusmão ID, Raslan AC, Monteiro BM, Massensini AR, Moraes MF, Pereira GS (2013) Object recognition memory and temporal lobe activation after delayed estrogen replacement therapy. Neurobiol Learn Mem 101:19–25

    Article  PubMed  CAS  Google Scholar 

  • Freret T, Billard JM, Schumann-Bard P, Dutar P, Dauphin F, Boulouard M, Bouet V (2012) Rescue of cognitive aging by long-lasting environmental enrichment exposure initiated before median lifespan. Neurobiol Aging 33:1005e1–1005e10

    Article  Google Scholar 

  • Frick KM (2009) Estrogens and age-related memory decline in rodents: what have we learned and where do we go from here? Horm Behav 55:2–23

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Frick KM, Fernandez SM (2003) Enrichment enhances spatial memory and increases synaptophysin levels in aged female mice. Neurobiol Aging 24:615–626

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB (1998) Impairment of basal forebrain cholinergic neurons associated with aging and long-term loss of ovarian function. Exp Neurol 151:289–302

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB (1999) Treatment with estrogen and progesterone affects relative levels of brain-derived neurotrophic factor mRNA and protein in different regions of the adult rat brain. Brain Res 844:20–27

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RB (2010) Estrogen therapy and cognition: a review of the cholinergic hypothesis. Endocr Rev 31:224–253

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gibbs RB, Aggarwal P (1998) Estrogen and basal forebrain cholinergic neurons: implications for brain aging and Alzheimer’s disease-related cognitive decline. Horm Behav 34:98–111

    Article  PubMed  CAS  Google Scholar 

  • Girbovan C, Plamondon H (2013) Environmental enrichment in female rodents: considerations in the effects on behavior and biochemical markers. Behav Brain Res 253:178–190

    Article  PubMed  CAS  Google Scholar 

  • Gresack JE, Frick KM (2004) Environmental enrichment reduces the mnemonic and neural benefits of estrogen. Neuroscience 128:459–471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gresack JE, Kerr KM, Frick KM (2007) Life-long environmental enrichment differentially affects the mnemonic response to estrogen in young, middle-aged, and aged female mice. Neurobiol Learn Mem 88:393–408

    Article  PubMed Central  PubMed  Google Scholar 

  • Gurkan L, Ekeland A, Gautvik KM, Langeland N, Rønningen H, Solheim LF (1986) Bone changes after castration in rats A model for osteoporosis. Acta Orthop Scand 57:67–70

    Article  PubMed  CAS  Google Scholar 

  • Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82:26–34

    Article  PubMed  Google Scholar 

  • Henderson VW (2008) Cognitive changes after menopause: influence of estrogen. Clin Obstet Gynecol 51:618–626

    Article  PubMed Central  PubMed  Google Scholar 

  • Hu YS, Xu P, Pigino G, Brady ST, Larson J, Lazarov O (2010) Complex environment experience rescues impaired neurogenesis, enhances synaptic plasticity, and attenuates neuropathology in familial Alzheimer’s disease-linked APPswe/PS1DeltaE9 mice. FASEB J 24:1667–1681

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC (2000) Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 164:45–52

    Article  PubMed  CAS  Google Scholar 

  • Jacobs B, Schall M, Scheibel AB (1993) A quantitative dendritic analysis of Wernicke’s area in human. II. Gender, hemispheric, and environmental changes. J Comp Neurol 327:97–111

    Article  PubMed  CAS  Google Scholar 

  • Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, Younkin LH, Younkin SG, Borchelt DR, Savonenko AV (2005) Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci 25:5217–5224

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Tamura M, Hayashi M, Katsuura Y, Tanabe H, Ohta T, Komoriya K (2000) Elevation of tail skin temperature in ovariectomized rats in relation to menopausal hot flushes. Am J Physiol Regul Integr Comp Physiol 278:R863–R869

    PubMed  CAS  Google Scholar 

  • Konkle AT, Kentner AC, Baker SL, Stewart A, Bielajew C (2010) Environmental-enrichment-related variations in behavioral, biochemical, and physiologic responses of Sprague–Dawley and Long Evans rats. J Am Assoc Lab Anim Sci 49:427–436

    PubMed Central  PubMed  CAS  Google Scholar 

  • Lambert TJ, Fernandez SM, Frick KM (2005) Different types of environmental enrichment have discrepant effects on spatial memory and synaptophysin levels in female mice. Neurobiol Learn Mem 83:206–216

    Article  PubMed  CAS  Google Scholar 

  • Laviola G, Hannan AJ, Macri S, Solinas M, Jaber M (2008) Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 31:159–168

    Article  PubMed  Google Scholar 

  • Leal-Galicia P, Saldívar-González A, Morimoto S, Arias C (2007) Exposure to environmental enrichment elicits differential hippocampal cell proliferation: role of individual responsiveness to anxiety. Dev Neurobiol 67:395–405

    Article  PubMed  CAS  Google Scholar 

  • Leal-Galicia P, Castañeda-Bueno M, Quiroz-Baez R, Arias C (2008) Long-term exposure to environmental enrichment since youth prevents recognition memory decline and increases synaptic plasticity markers in aging. Neurobiol Learn Mem 90:511–518

    Article  PubMed  Google Scholar 

  • Leggio MG, Mandolesi L, Federico F, Spirito F, Ricci B, Gelfo F, Petrosini L (2005) Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat. Behav Brain Res 163:78–90

    Article  PubMed  Google Scholar 

  • Li H, Satinoff E (1996) Body temperature and sleep in intact and ovariectomized female rats. Am J Physiol 271:R1753–R1758

    PubMed  CAS  Google Scholar 

  • Lima AP, Silva K, Padovan CM, Almeida SS, Fukuda MT (2014) Memory, learning, and participation of the cholinergic system in young rats exposed to environmental enrichment. Behav Brain Res 259:247–252

    Article  PubMed  CAS  Google Scholar 

  • Luine VN, Jacome LF, Maclusky NJ (2003) Rapid enhancement of visual and place memory by estrogens in rats. Endocrinology 144:2836–2844

    Article  PubMed  CAS  Google Scholar 

  • Maki PM (2006) Hormone therapy and cognitive function: is there a critical period for benefit? Neuroscience 138:1027–1030

    Article  PubMed  CAS  Google Scholar 

  • Markowska AL, Savonenko AV (2002) Effectiveness of estrogen replacement in restoration of cognitive function after long-term estrogen withdrawal in aging rats. J Neurosci 22:10985–10995

    PubMed  CAS  Google Scholar 

  • Martin AL, Brown RE (2010) The lonely mouse: verification of a separation-induced model of depression in female mice. Behav Brain Res 207:196–207

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin K, Bimonte-Nelson H, Neisewander J, Conrad C (2008) Assessment of estradiol influence on spatial tasks and hippocampal CA1 spines: evidence that the duration of hormone deprivation after ovariectomy compromises 17beta-estradiol effectiveness in altering CA1 spines. Horm Behav 54:386–395

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Meaney MJ, Aitki DH, Bhatnagar S, Van Berkel C, Sapolsky KM (1988) Postnatal handling attenuates neuroendocrine, anatomical and cognitive impairments related the aged hippocampus. Science 283:766–768

    Article  Google Scholar 

  • Meneses A (1999) 5-HT system and cognition. Neurosci Biobehav Rev 23:1111–1125

    Article  PubMed  CAS  Google Scholar 

  • Meneses A (2003) Pharmacological analysis of an associative learning task: 5-HT(1)–5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory. Learn Mem 10:363–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Meneses A, Terrón JA (2001) Role of 5-HT (1A) and 5-HT (7) receptors in the facilitatory response induced by 8-OH-DPAT on learning consolidation. Behav Brain Res 121:21–28

    Article  PubMed  CAS  Google Scholar 

  • Miller LS, Colella B, Mikulis D, Maller J, Green RE (2013) Environmental enrichment may protect against hippocampal atrophy in the chronic stages of traumatic brain injury. Front Hum Neurosci 7:1–8

    Google Scholar 

  • Navarrete F, Pérez-Ortiz JM, Femenía T, García-Gutiérrez MS, García-Payá ME, Leiva-Santana C, Manzanares J (2008) Métodos de evaluación de trastornos cognitivos en modelos animales. Rev Neurol 47:137–145

    PubMed  CAS  Google Scholar 

  • Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  PubMed  CAS  Google Scholar 

  • Nordell VL, Lewis DK, Bake S, Sohrabji F (2005) The neurotrophin receptor p75NTR mediates early anti-inflammatory effects of estrogen in the forebrain of young adult rats. BMC Neurosci. doi:10.1186/1471-2202-6-58

    PubMed Central  PubMed  Google Scholar 

  • Okada M, Hayashi N, Kometani M, Nakao K, Inukai T (1997) Influences of ovariectomy and continuous replacement of 17beta-estradiol on the tail skin temperature and behavior in the forced swimming test in rats. Jpn J Pharmacol 73:93–96

    Article  PubMed  CAS  Google Scholar 

  • Ozawa T, Yamada K, Ichitani Y (2014) Hippocampal BDNF treatment facilitates consolidation of spatial memory in spontaneous place recognition in rats. Behav Brain Res 263:210–216

    Article  PubMed  CAS  Google Scholar 

  • Paris JJ, Frye CA (2008) Estrous cycle, pregnancy, and parity enhance performance of rats in object recognition or object placement tasks. Reproduction 136:105–115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pham TM, Ickes B, Albeck D, Söderström S, Granholm AC, Mohammed AH (1999) Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year. Neuroscience 94:279–286

    Article  PubMed  CAS  Google Scholar 

  • Picazo O, Estrada-Camarena E, Hernandez-Aragon A (2006) Influence of the post-ovariectomy time frame on the experimental anxiety and the behavioural actions of some anxiolytic agents. Eur J Pharmacol 530:88–94

    Article  PubMed  CAS  Google Scholar 

  • Ramírez-Rodríguez G, Ocaña-Fernández MA, Vega-Rivera NM, Torres-Pérez OM, Gómez-Sánchez A, Estrada-Camarena E, Ortiz-López L (2014) Environmental enrichment induces neuroplastic changes in middle age female Balb/c mice and increases the hippocampal levels of BDNF, p-Akt and p-MAPK1/2. Neuroscience 260:158–170

    Article  PubMed  CAS  Google Scholar 

  • Ravenelle R, Santolucito HB, Byrnes EM, Byrnes JJ, Donaldson ST (2014) Housing environment modulates physiological and behavioral responses to anxiogenic stimuli in trait anxiety male rats. Neuroscience 270:76–87

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Redolat R, Mesa-Gresa P (2012) Potential benefits and limitations of enriched environments and cognitive activity on age-related behavioural decline. Curr Top Behav Neurosci 10:293–316

    Article  PubMed  Google Scholar 

  • Resnick SM, Henderson VW (2002) Hormone therapy and risk of Alzheimer disease: a critical time. JAMA 288:2170–2172

    Article  PubMed  Google Scholar 

  • Reul JM, De Kloet ER (1986) Anatomical resolution of two types of corticosterone receptor sites in rat brain with in vitro autoradiography and computerized image analysis. J Steroid Biochem 24:269–272

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Landa JF, Hernández-Figueroa JD, Hernández-Calderón B, Saavedra M (2009) Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model. Prog Neuropsychopharmacol Biol Psychiatry 33:367–372

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B (2000) Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 25:213–238

    Article  PubMed  CAS  Google Scholar 

  • Roozendaal B, McGaugh JL (1997) Glucocorticoid receptor agonist and antagonist administration into the basolateral but not central amygdala modulates memory storage. Neurobiol Learn Mem 67:176–179

    Article  PubMed  CAS  Google Scholar 

  • Rossato JI, Bevilaqua LR, Myskiw JC, Medina JH, Izquierdo I, Cammarota M (2007) On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn Mem 14:36–46

    Article  PubMed Central  PubMed  Google Scholar 

  • Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, Fabbri ME, Tessarollo L, Maffei L, Berardi N, Caleo M (2006) Brain-derived neurotrophin factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 24:1850–1856

    Article  PubMed  Google Scholar 

  • Ryan J, Scali J, Carriere I, Ritchie K, Ancelin ML (2008) Hormonal treatment, mild cognitive impairment and Alzheimer’s disease. Int Psychogeriatr 20:47–56

    PubMed Central  PubMed  Google Scholar 

  • Saito S, Kobayashi S, Ohashi Y, Igarashi M, Komiya Y, Ando S (1994) Decreased synaptic density in aged brains and its prevention by rearing under enriched environment as revealed by synaptophysin contents. J Neurosci Res 39:57–62

    Article  PubMed  CAS  Google Scholar 

  • Sampedro-Piquero P, Begega A, Arias JL (2014) Increase of glucocorticoid receptor expression after environmental enrichment: relations to spatial memory, exploration and anxiety-related behaviors. Physiol Behav 129:118–129

    Article  PubMed  CAS  Google Scholar 

  • Sánchez MM, Young LJ, Plotsky PM, Insel TR (2000) Distribution of corticosteroid receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal formation. J Neurosci 20:4657–4668

    PubMed  Google Scholar 

  • Schwabe L, Joëls M, Roozendaal B, Wolf OT, Oitzl MS (2012) Stress effects on memory: an update and integration. Neurosci Biobehav Rev 36:1740–1749

    Article  PubMed  Google Scholar 

  • Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats-behavioural and neurochemical aspects. Behav Brain Res 222:246–264

    Article  PubMed  CAS  Google Scholar 

  • Singh M, Sumien N, Kyser C, Simpkins JW (2008) Estrogens and progesterone as neuroprotectants: what animal models teach us. Front Biosci 13:1083–1089

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spada JA, Galíndez C, Spada A (2006) Lesión de las cortezas extrahipocampales del lóbulo temporal medial: descripción de un caso. Rev Neurol 43:403–408

    PubMed  CAS  Google Scholar 

  • Steckler T, Andrews JS, Marten P, Turner JD (1993) Effects of NBA lesions with two neurotoxins on spatial memory and autoshaping. Pharmacol Biochem Behav 44:877–889

    Article  PubMed  CAS  Google Scholar 

  • Strom JO, Theodorsson E, Theodorsson A (2008a) Order of magnitude differences between methods for maintaining physiological 17β-estradiol concentrations in ovariectomized rats. Scand J Clin Lab Investig 68:814–822

    Article  CAS  Google Scholar 

  • Strom JO, Theodorsson A, Theodorsson E (2008b) Substantial discrepancies in 17beta-oestradiol concentrations obtained with three different commercial direct radioimmunoassay kits in rat sera. Scand J Clin Lab Investig 68:806–813

    Article  CAS  Google Scholar 

  • Sun H, Zhang J, Zhang L, Liu H, Zhu H, Yang Y (2010) Environmental enrichment influences BDNF and NR1 levels in the hippocampus and restores cognitive impairment in chronic cerebral hypoperfused rats. Curr Neurovasc Res 7:268–280

    Article  PubMed  CAS  Google Scholar 

  • Taglialatela G, Hogan D, Zhang WR, Dineley KT (2009) Intermediate-and long-term recognition memory deficits in Tg2576 mice are reversed with acute calcineurin inhibition. Behav Brain Res 200:95–99

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Utian WH (2004) Menopause-related definitions. Int Congr Ser. doi:10.1016/jics200401102

    Google Scholar 

  • Van Goethem NP, Rutten K, van der Staay FJ, Jans LA, Akkerman S, Steinbusch HW, Blokland A, Van’t Klooster J, Prickaerts J (2012) Object recognition testing: rodent species, strains, housing conditions, and estrous cycle. Behav Brain Res 232:323–334

    Article  PubMed  Google Scholar 

  • Vegeto E, Benedusi V, Maggi A (2008) Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol 29:507–519

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wadowska M, Woods J, Rogozinska M, Briones TL (2014) Neuroprotective effects of enriched environment housing after transient global cerebral ischemia are associated with the upregulation of insulin-like growth factor-1 signaling. Neuropathol Appl Neurobiol. doi:10.1111/nan12146

    Google Scholar 

  • Walf AA, Rhodes ME, Frye CA (2006) Ovarian steroids enhance object recognition in naturally cycling and ovariectomized, hormone-primed rats. Neurobiol Learn Mem 86:35–46

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, Chen W, Nabeshima T (2007) The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25–35 icv-injected mice: involvement of dopaminergic systems. Neuropsychopharmacology 32:1261–1271

    Article  PubMed  CAS  Google Scholar 

  • White JH, Alborough K, Janssen H, Spratt N, Jordan L, Pollack M (2013) Exploring staff experience of an “enriched environment” within stroke rehabilitation: a qualitative sub-study. Disabil Rehabil. doi:10.3109/096382882013872200

    Google Scholar 

  • Wilson RS, Mendes De Leon CF, Barnes LL, Schneider JA, Bienias JL, Evans DA, Bennett DA (2002) Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA 287:742–748

    Article  PubMed  Google Scholar 

  • Winters BD, Bussey TJ (2005) Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory. J Neurosci 25:4243–4251

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Zhu YQ, Wu J (2008) Effects of estrogen and estrogenic compounds on cognition in ovariectomized rats. Climacteric 11:212–220

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Han D, Wang R, Dong Y, Yang F, Vadlamudi RK, Brann DW (2011) C terminus of Hsc70-interacting protein (CHIP)-mediated degradation of hippocampal estrogen receptor-α and the critical period hypothesis of estrogen neuroprotection. Proc Natl Acad Sci 108:E617–E624

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhao L, Brinton RD (2006) Select estrogens within the complex formulation of conjugated equine estrogens (Premarin) are protective against neurodegenerative insults: implications for a composition of estrogen therapy to promote neuronal function and prevent Alzheimer’s disease. BMC Neurosci 13:7–24

    Google Scholar 

Download references

Acknowledgments

The authors thank Nielsine Nielsen for reviewing the use of English in the manuscript. This study was partially supported by COFAA and SIP-IPN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Picazo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Elsa Addessi, ISTC-CNR, Rome, Italy.

Reviewers: Susanna Pietropaolo, University of Bordeaux 1, France, and Robert Gibbs, University of Pittsburgh, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Pérez, A., Espinosa-Raya, J. & Picazo, O. An enriched environment and 17-beta estradiol produce similar pro-cognitive effects on ovariectomized rats. Cogn Process 17, 15–25 (2016). https://doi.org/10.1007/s10339-015-0746-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-015-0746-1

Keywords

Navigation